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Introduction

Method Of Averaging

Method of averaging is a powerful tool to get information regarding approach to the limit cycle.Here

d2x

dt2
+ ω2x = ϵF (x, ẋ, t)

Here ϵ is a small term. Now we form anstaz.(
x
ẋ

)
=

(
a(t)cos(ωt+ ϕ(t))

−ωa(t)sin(ωt+ ϕ(t))

)
we chose this ansatz because ϵ is a very small term the dynamics will behave like harmonic oscillator
as ϵ = 0 , we will find a constant amplitude a and constant phase differnece ϕ. This weak non linear
oscillator will behave like a harmonic oscillator as we do the near identity transforms near the fixed
points.

Now taking derrivative of the first part will make it

ẋ = −a(t)sin(ωt+ ϕ(t))(ω +
dϕ

dt
) +

da

dt
cos(ωt+ ϕ(t))

−ωa(t)sin(ωt+ ϕ(t)) = −ωa(t)sin(ωt+ ϕ(t))− dϕ

dt
a(t)sin(ωt+ ϕ(t)) +

da

dt
cos(ωt+ ϕ(t)

−a(t) sin(ωt+ ϕ(t))
dϕ

dt
+

da

dt
cos(ωt+ ϕ(t)) = 0 (1)

diffrentiating the second part we’ll get

ẍ = −ωa(t)cos(ωt+ ϕ(t))(ω +
dϕ

dt
)− ω

da

dt
sin(ωt+ ϕ)

ẍ = −ω2a(t)cos(ωt+ ϕ(t))− ωa(t)cos(ωt+ ϕ(t))
dϕ

dt
− ω

da

dt
sin(ωt+ ϕ)

Now substituting everything into the weak oscillator equation we’ll get

−ω2a(t)cos(ωt+ ϕ(t))− ωa(t)cos(ωt+ ϕ(t))
dϕ

dt
− ω

da

dt
sin(ωt+ ϕ) + ω2a(t)cos(ωt+ ϕ)

= ϵF (a(t)cos(ωt+ ϕ(t)),−ωa(t)sin(ωt+ ϕ(t)), t)

−ωa(t)cos(ωt+ ϕ(t))
dϕ

dt
− ω

da

dt
sin(ωt+ ϕ) = ϵF (a(t)cos(ωt+ ϕ(t)),−ωa(t)sin(ωt+ ϕ(t)), t)

(
−a(t) sin(ωt+ ϕ(t)) cos(ωt+ ϕ(t))
−ωa(t)cos(ωt+ ϕ(t)) −ωsin(ωt+ ϕ)

)(
ϕ̇
ȧ

)
=

(
0

ϵF (a(t)cos(ωt+ ϕ(t)),−ωa(t)sin(ωt+ ϕ(t)), t)

)
(

−a(t) sin(Θ) cos(Θ)
−ωa(t) cos(Θ) −ω sin(Θ)

)(
ϕ̇
ȧ

)
=

(
0

εF (a(t) cosΘ, −ωa(t) sinΘ, t)

)
(2)
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Θ = ωt+ ϕ(t).

det = (−a sinΘ)(−ω sinΘ)− (cosΘ)(−ωa cosΘ) (3)

= ωa(sin2 Θ+ cos2 Θ) (4)

= ωa (5)(
−a sinΘ cosΘ
−ωa cosΘ −ω sinΘ

)−1

=
1

ωa

(
−ω sinΘ − cosΘ
ωa cosΘ −a sinΘ

)
(6)(

ϕ̇
ȧ

)
=

1

ωa

(
−ω sinΘ − cosΘ
ωa cosΘ −a sinΘ

)(
0
ϵF

)
(7)

ϕ̇ =
1

ωa
[− cosΘ · ϵF ] (8)

= − ε

ωa
cos(ωt+ ϕ)F (a cos(ωt+ ϕ),−ωa sin(ωt+ ϕ), t) (9)

ȧ =
1

ωa
[−a sinΘ · ϵF ] (10)

= − ϵ

ω
sin(ωt+ ϕ)F (a cos(ωt+ ϕ),−ωa sin(ωt+ ϕ), t) (11)

ϕ̇ = − ϵ

ωa
cos(ωt+ ϕ)F (a cos(ωt+ ϕ),−ωa sin(ωt+ ϕ), t) ,

ȧ = − ϵ

ω
sin(ωt+ ϕ)F (a cos(ωt+ ϕ),−ωa sin(ωt+ ϕ), t) .

(12)

Now we we’ll do the near identity transforms to get the averaged equations around the fixed points

a = ā+ ϵv1 +O(ϵ2)

ϕ = ϕ̄+ ϵv2 +O(ϵ2)

Substituting it into the eq 12 we’ll get the se of equations

˙̄a = −ϵ(
∂v1
∂t

+
1

ωā
sin(ωt+ ϕ)F (ā cos(ωt+ ϕ),−ω sin(ωt+ ϕ), t)

˙̄ϕ = −ϵ(
∂v2
∂t

+
1

ωā
cos(ωt+ ϕ)F (ā cos(ωt+ ϕ),−ωā sin(ωt+ ϕ), t))

Now we’ll choose v1 and v2 such that only the average of the equation is left inside both of the equation
so

˙̄a = −ϵ(
1

2πω

∫ 2π

0

sin(ωt+ ϕ)F (ā cos(ωt+ ϕ),−ωā sin(ωt+ ϕ), t)dt)

˙̄ϕ = −ϵ(
1

2πωā

∫ 2π

0

sin(ωt+ ϕ)F (ā sin(ωt+ ϕ),−ωā sin(ωt+ ϕ), t)dt)

and derrivatives of v1 and v2 were choosen as

< f1 > −f1 =
∂v1
dt

< f2 > −f2 =
∂v2
dt

and after find all the values and integrating it back to the original near identity transforms we we’ll
get the averaged equations. This is how we generally perform the averaging using the near identity
transforms , now we’ll look at how it’s done for the multiple harmonics.
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Fourier Averaging of Multi-Harmonics

Now what do we mean by multiple harmonics , the system with fundamental frequency ω with the higher
harmonics with linear frequency 2ω 3ω ... this can be written as

x(t) =
∑
n

an cosnΩt+ bn sinnΩt

where the an and bn and amplitude associated with the cosine and sine of nth harmonic.
For a general system :

mẍ+ cẋ+ kx+ fnl = fext

For the first Harmonic

We can write the first harmonic as putting the values of n = 1.

x(t) = a1 cosΩt+ b1 sinΩt

We can write the equations as:

x = u =
(
CΩt SΩ

)(a1
b1

)

ẋ = v =
(
CΩ SΩ

)( 0 Ω
−Ω 0

)(
a1
b1

)
The matrix

(
0 Ω
−Ω 0

)
is the matrix orginates when we take the time derrivative of u. now we will use

these equations to write the state space equations.
The state space equations are :

v = u̇

mv̇ + cv + ku+ fnl = fext

Computing :

(
CΩ SΩ

)( 0 Ω
−Ω 0

)(
a1
b1

)
+
(
CΩ SΩ

)(ȧ1
ḃ1

)
=
(
CΩ SΩ

)( 0 Ω
−Ω 0

)(
a1
b1

)
(
CΩ SΩ

)(ȧ1
ḃ1

)
= 0

We got our first state space eqaution , now we will use the general harmonic equation to find the other
one :

v̇ =
(
CΩ SΩ

)(−Ω2 0
0 −Ω2

)(
a1
b1

)
+
(
CΩ SΩ

)( 0 Ω
−Ω 0

)(
ȧ1
ḃ1

)
substituting the general equation becomes :

(
CΩ SΩ

) [( 0 mΩ
−mΩ 0

)(
ȧ1
ḃ1

)
+

(
k − Ω2m cΩ

cΩ k − Ω2m

)(
a1
b1

)
+

(
fnl,a1

fnl,b1

)
−
(
fext,a1

fext,b1

)]
=

(
0
0

)
we have both of our state space equations and now we can combine both of them to get(

−mΩSΩ mΩCΩ

CΩ SΩ

)(
ȧ1
ḃ1

)
+

(
CΩ SΩ

0 0

)[(
k − Ω2m cΩ

cΩ k − Ω2m

)(
a1
b1

)
+

(
ga1

gb1

)]
=

(
0
0

)
(
ȧ1
ḃ1

)
=

1

mΩ

(
SΩ −mΩCΩ

−CΩ −mΩSΩ

)(
CΩ SΩ

0 0

)(
Ra1

Rb1

)
(
ȧ1
ḃ1

)
=

1

2mΩ

(
S2Ω 1− C2Ω

−1− C2Ω −S2Ω

)(
Ra1

Rb1

)
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Now we have our coefficients of the first harmonic coefficients now we will do our near identity transfor-
mations to get our averaged dynamics.We will introduce ā1 b̄1 just like we did in our averaging part(refer
above).

a1 = ā1 + εu+O(ε2)

b1 = b̄1 + εv +O(ε2)

Taking the time derrivative in order to fit it into the equations:

ȧ1 = ˙̄a1 + εu̇+O(ε2)

ḃ1 = ˙̄b1 + εv̇ +O(ε2)

substituting the set of equations into the state space equation we will get:(
˙̄a1
˙̄b1

)
= −ε

(
u̇
v̇

)
+

1

2mΩ

(
S2Ω 1− C2Ω

−1− C2Ω −S2Ω

)(
Rā1

Rb̄1

)
︸ ︷︷ ︸

As we have seen above we will choose u̇ and v̇ such that only the averaged term of the right side is left
, the only averaging will be done the sine and the cosine part so hence they’ll get averaged out and the
term becomes: (

˙̄a1
˙̄b1

)
=

1

2mΩε

(
0 1
−1 0

)(
Rā1

Rb̄1

)
(
˙̄a1
˙̄b1

)
=

1

2mΩε

(
0 1
−1 0

)[(
k − Ω2m cΩ

cΩ k − Ω2m

)(
ā1
b̄1

)
+

(
fnl,ā1

fnl,b̄1

)
−
(
fext,ā1

fext,b̄1

)]

here we have a set of diffrential equations and solving this equation will give us

(
˙̄a1
˙̄b1

)
which we can

substitute it back to the near identity transforms now we have to get u and v which we can get from
using the method mentioned earlier , as we have substracted everything leaving only the averaged part.(

u̇
v̇

)
=

1

2mΩε

(
S2Ω 1− C2Ω

−1− C2Ω −S2Ω

)(
Rā1

Rb̄1

)
− <

1

2mΩε

(
S2Ω 1− C2Ω

−1− C2Ω −S2Ω

)(
Rā1

Rb̄1

)
>

=
1

2mΩ

[(
S2Ω 1− C2Ω

−1− C2Ω −S2Ω

)
−
(

0 1
−1 0

)](
Rā1

Rb̄1

)
(
u̇
v̇

)
=

1

2mΩ

(
S2Ω −C2Ω

−C2Ω −S2Ω

)(
Rā1

Rb̄1

)
here solving this differential equation we’ll get the u and v , the first order slowed dynamics and substi-
tuting the equations back to the near identity transformation we’ll get our averaged equations and we
can now look up to the jacobian of the linearized part to look up for the stability analysis.This is how
we’ll do the near identity transformation of any general harmonic to get our averaged dynamics but the
multiple harmonic case don’t give us the freedom of just taking out the inverse , we will use a trick , well
properties of fourier series to gather our information.

Method of Fourier Based Averaging of Multiple Harmonics

We have already discussed the averaging method and how to apply it in one harmonic case which seems
very straight forward to apply but in the multiple harmonic case we’ll use the orthogonality of sine
and cosines to get our desired harmonic because we just can’t plug out any nth harmonic from the
summation.I’ll show how it can be done.

Our general Harmonic as we know will be:

x(t) =
∑
n

an cosnΩt+ bn sinnΩt

We can do the tranforming we can write : We can write the equations as:

x = u =
∑
n

(
CnΩ SnΩ

)(an
bn

)
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ẋ = v =
∑
n

(
CnΩ SnΩ

)( 0 nΩ
−nΩ 0

)(
an
bn

)

v̇ =
∑
n

(
CnΩ SnΩ

)(−n2Ω2 0
0 −n2Ω2

)(
an
bn

)
+
∑
n

(
CnΩ SnΩ

)( 0 nΩ
−nΩ 0

)(
an
bn

)
forming the state space equations:

v = u̇∑
n

(
CnΩ SnΩ

)( 0 nΩ
−nΩ 0

)(
an
bn

)
+
∑
n

(
CnΩ SnΩ

)(ȧn
ḃn

)
=
∑
n

(
CnΩ SnΩ

)( 0 nΩ
−nΩ 0

)(
an
bn

)
∑
n

(
CnΩ SnΩ

)(ȧn
ḃn

)
= 0

plugging the values into the general equation to form the other state space equation we will get:∑
n

(
CnΩ SnΩ

)( 0 nΩm
−nΩm 0

)(
ȧn
ḃn

)
+
∑
n

(
CnΩ SnΩ

)(k − n2Ω2m ncΩ
ncΩ k − n2aΩ2m

)(
an
bn

)
+

∑
n

(
CnΩ SnΩ

)(fnl,a1

fnl,b1

)
−
∑
n

(
CnΩ SnΩ

)(fext,a1

fext,b1

)
=

(
0
0

)
∑
n

(
CnΩ SnΩ

)( 0 nΩm
−nΩm 0

)(
ȧn
ḃn

)
+
∑
n

(
CnΩ SnΩ

)(Ran

Rbn

)
=

(
0
0

)
we have our both of the state space equations now it’s time to combine and get to the result :∑

n

(
−nmΩSnΩ nmΩCnΩ

CnΩ SnΩ

)(
ȧn
ḃn

)
+
∑
n

(
CnΩ SnΩ

0 0

)(
Ran

Rbn

)
=

(
0
0

)

taking out inverse of the rth matrix of ȧn ḃn it will come out to be −1
rmΩ

(
SrΩ −rmΩCrΩ

−CrΩ −rmΩSrΩ

)
So in

order to separate the rth harmonic we will multiply the whole eqation by this inverse which will factor
us out the rth harmonic.(

ȧr
ḃr

)
− 1

rmΩ

∑
n̸=r

(
SrΩ −rmΩCrΩ

−CrΩ −rmΩSrΩ

)(
−nmΩSnΩ nmΩCnΩ

CnΩ SnΩ

)(
ȧn
ḃn

)
=

1

rmΩ

(
SrΩ −rmΩCrΩ

−CrΩ −rmΩSrΩ

)∑
n

(
CnΩ SnΩ

0 0

)(
Ran

Rbn

)
(
ȧr
ḃr

)
− 1

rmΩ

∑
n̸=r

(
SrΩ −rmΩCrΩ

−CrΩ −rmΩSrΩ

)(
−nmΩSnΩ nmΩCnΩ

CnΩ SnΩ

)(
ȧn
ḃn

)
=

1

rmΩ

∑
n̸=r

(
SrΩ −rmΩCrΩ

−CrΩ −rmΩSrΩ

)(
CnΩ SnΩ

0 0

)(
Ran

Rbn

)
+

1

2rmΩ

(
S2rΩ 1− C2rΩ

−1− C2rΩ −S2rΩ

)(
Ran

Rbn

)
now we have our equations in term of the rth harmonic now here we can introduce the near identity
transformation of the rth coefficients and get the averaged dynamics and here we will use the properties
of the fourier series to factor out results.

ar = ār + εâr +O(ε2)

br = b̄r + εb̂r +O(ε2)

after choosing âr and b̂r we’
get the averaged equations of that particular ar and br as because all the other sine and the cosine terms
are orthogonal they’ll get cancelled out(

˙̄ar
˙̄br

)
=

1

2rmΩ

(
0 −1
1 0

)(
Rār

Rb̄r

)
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(
0 −2rmΩ

2rmΩ 0

)(
˙̄ar
˙̄br

)
=

(
Rār

Rb̄r

)
now we have the averaged differential equation , here we can solve the differential equation to get our
averaged equation. Now we have to get our first order slow dynamics:(

˙̂ar
˙̂
br

)
=

1

rmΩ

∑
n̸=r

(
CnΩ SnΩ

)(Hār

Hb̄r

)
−
(

0 −2rmΩ
2rmΩ 0

)(
Rār

Rb̄r

)
now solving this differential equation we’ll get the equations of the linear slowed dynamics and plugging in
the values of the averaged and the slowed dynamics we’ll get the near identity dynamics of our equations
and we can do the stability and bifurcation analysis.
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