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Introduction

Method Of Averaging

Method of averaging is a powerful tool to get information regarding approach to the limit cycle.Here

d2
Wf +w?r = eF(x,4,t)

Here € is a small term. Now we form anstaz.
z\ [ a(t)cos(wt + &(t))
x) \—wa(t)sin(wt + ¢(t))
we chose this ansatz because € is a very small term the dynamics will behave like harmonic oscillator
as € = 0, we will find a constant amplitude a and constant phase differnece ¢. This weak non linear
oscillator will behave like a harmonic oscillator as we do the near identity transforms near the fixed
points.
Now taking derrivative of the first part will make it
do da

& = —a(t)sin(wt + ¢(t))(w + E) + ECOS(Wt + é(t))

—wa(t)sin(wt + ¢(t)) = —wal(t)sin(wt + ¢(t)) — %a(t)sin(wt +o(t)) + d—acos(wt + o(t)

dt
—a(t) sin(wt + ¢(t))cjl—<f + %cos(u)t +o(t)=0 (1)
diffrentiating the second part we’ll get
i = —wa(t)cos(wt + ¢(t))(w + %) - w%sin(wt +¢)
; 9 do da .
& = —w?a(t)cos(wt + ¢(t)) — wa(t)cos(wt + ¢(t))% - wasm(wt + )

Now substituting everything into the weak oscillator equation we’ll get

—w?a(t)cos(wt + ¢(t)) — wa(t)cos(wt + qﬁ(t))% — wfl—zsm(wt + ¢) 4+ wa(t)cos(wt + ¢)

= eF(a(t)cos(wt + ¢(t)), —wa(t)sin(wt + ¢(t)),t)

—wa(t)cos(wt + (;S(t))% - w%sin(wt + ¢) = eF(a(t)cos(wt + ¢(t)), —wa(t)sin(wt + ¢(t)),t)

( —a(t)sin(wt + ¢(t))  cos(wt + qb(t))) (¢> _ ( 0 )
—wa(t)cos(wt + @(t)) —wsin(wt+ @)/ \a eF(a(t)cos(wt 4+ ¢(t)), —wa(t)sin(wt + ¢(t)),t)

(waa(ff))ségg%) Z:uossi(r?@» ((5) B (5F(a(t) cos O, (iwa(t) sin O, t)) (2)

—_



© = wt + ¢(t).

det = (—asin©)(—wsin ©) — (cos ©)(—wa cos O) (3)

= wa(sin? © + cos® O) (4)

— wa ()
—asin© cos® \ ' 1 [—wsin® —cos® 6
—wacos©® —wsinO " wa \wacos® —asin® (6)
#\ 1 [—wsin® —cos® 0 7

i) wa \wacos® —asin®) \eF (7)

j= 2 O-¢F 8
b= L[ coso.cp] ®
= —i cos(wt + @) F(acos(wt + ¢), —wasin(wt + ¢),t) (9)
.1 O F 10
a= a [—asin® - eF] (10)
- 75 sin(wt + ¢) F(a cos(wt + @), —wasin(wt + ¢), t) (11)

b= —i cos(wt + @) F(acos(wt + ¢), —wasin(wt + ¢),t),
(12)

a= —5 sin(wt + ¢) F'(a cos(wt + @), —wasin(wt + ¢), ).

Now we we’ll do the near identity transforms to get the averaged equations around the fixed points
a=a+ev; +O(e%)

= ¢+ evy + O(e?)
Substituting it into the eq 12 we’ll get the se of equations

a= —e(% + % sin(wt + ¢) F(acos(wt + ¢), —wsin(wt + ¢), t)
- (9’1}2 1 _ — .
o= _G(W + o cos(wt + @) F(acos(wt + ¢), —wasin(wt + ¢), t))

Now we’ll choose v and v, such that only the average of the equation is left inside both of the equation
SO

2
a= —e(L sin(wt + ¢) F(acos(wt + ¢), —wasin(wt + ¢), t)dt)
2mw Jq
. L . .
6= —¢( 5z /0 sin(wt + ¢) F(asin(wt + ¢), —wa sin(wt + ¢), t)dt)

and derrivatives of v; and vy were choosen as

0
<h>n=t

0
<h>p=

and after find all the values and integrating it back to the original near identity transforms we we’ll
get the averaged equations. This is how we generally perform the averaging using the near identity
transforms , now we’ll look at how it’s done for the multiple harmonics.



Fourier Averaging of Multi-Harmonics

Now what do we mean by multiple harmonics , the system with fundamental frequency w with the higher
harmonics with linear frequency 2w 3w ... this can be written as

z(t) = Z ayp, cos nt + by, sin nt
n

where the a,, and b,, and amplitude associated with the cosine and sine of nth harmonic.
For a general system :
mx + ct + kx + fnl = fert

For the first Harmonic

We can write the first harmonic as putting the values of n = 1.
z(t) = a1 cos Qt + by sin Qi

We can write the equations as:

r=u=(Car S0) (Zi)

i=v=(Ca Sq) (_OQ g) (ZI}

The matrix is the matrix orginates when we take the time derrivative of u. now we will use

0 Q
% %)
these equations to write the state space equations.

The state space equations are :

V=1

mv+cv+ku+fnl :.femt

o so) (S 0) () + o s () =co s (G 0) ()

(Ca Sq) (ZI) =0

We got our first state space eqaution , now we will use the general harmonic equation to find the other

one : o= (Co So) (_(?2 _%2) (Zi) +(Co  Sa) (_OQ §02> <Zi)

substituting the general equation becomes :

0 me) a k — QQm ) a fn a1 fezt,al o 0
(Ca  Sa) [(_mQ 0 > <b11) + ( cQ k— 92m> (b11> + <fnll,b1> a (fext,bl):| N <0>

we have both of our state space equations and now we can combine both of them to get
—mQSq mOCq a:1 n Ca Saq kE—Q%m ) a1 n Jay {0
Cq Sa by 0 0 c) E—Q2m /) \ b b, —\0
a:1 o L SQ —mQCQ CQ SQ Ra1
b1/ mQ \—-Cqa —mQSq 0 0 Ry,

ar _ 1 S20 1-Co (Ra,
b 2mQ \—-1—Caa  —S20 Ry,

Computing :



Now we have our coefficients of the first harmonic coefficients now we will do our near identity transfor-
mations to get our averaged dynamics.We will introduce a@; b; just like we did in our averaging part(refer
above).

ap = ay +eu + O(?)

by = by +ev+ 0(62)
Taking the time derrivative in order to fit it into the equations:

a1 = &1 +eu+ 0(82)

by = 31 +ev + 0(62)

substituting the set of equations into the state space equation we will get:
C?l - ¢ U + 1 SQQ 1-— OQQ Ral
by) v) " 2mQ \—1-Caa  —Soq Ry,

As we have seen above we will choose @ and © such that only the averaged term of the right side is left
, the only averaging will be done the sine and the cosine part so hence they’ll get averaged out and the

term becomes: )
ar\ _ 1 0 1 Ra,
bi)  2mQe \—-1 0/ \ Ry,
C?l _ 1 0 1 k— QQm ) @1 + fnl,(il _ fe:ct,?zl
51 - 2mSe -1 0 c k— QQm bl fnl,fn feztjn

a
here we have a set of diffrential equations and solving this equation will give us (b

1 .
) which we can
1

substitute it back to the near identity transforms now we have to get u and v which we can get from
using the method mentioned earlier , as we have substracted everything leaving only the averaged part.

wy _ 1 S0 1-Cho (Ray) _ _ _1 S0 1 =G (Ray )
) 2mQe \—1—-Caq  —S20 Ry, 2mQe \—1—-Coa  —S20 Ry,
1 Sse 1=Cag\ (0 1Y] (Ra,
T omQ |[\—1-Caa  —S2q -1 0 Ry,
wy 1 S2a —Caq) (Ra,
v)  2mQ \—Caa —Sa2 /) \ Ry,

here solving this differential equation we’ll get the u and v , the first order slowed dynamics and substi-
tuting the equations back to the near identity transformation we’ll get our averaged equations and we
can now look up to the jacobian of the linearized part to look up for the stability analysis.This is how
we’ll do the near identity transformation of any general harmonic to get our averaged dynamics but the
multiple harmonic case don’t give us the freedom of just taking out the inverse , we will use a trick , well
properties of fourier series to gather our information.

Method of Fourier Based Averaging of Multiple Harmonics

We have already discussed the averaging method and how to apply it in one harmonic case which seems
very straight forward to apply but in the multiple harmonic case we’ll use the orthogonality of sine
and cosines to get our desired harmonic because we just can’t plug out any nth harmonic from the
summation.I’ll show how it can be done.

Our general Harmonic as we know will be:

x(t) = Z an, cos nfdt + b, sin nQt

We can do the tranforming we can write : We can write the equations as:

z=u=Y (Cua Sug) (Z:)

n



Z 0 nd (07%
n nQ —n9 0 bn

n

—n20? 0 an 0 nQ\ (an
V= Z nQ SnQ ( 0 _nQQQ) (bn> JFZ (Cnﬂ SnQ) <—nQ 0 ) <bn>

forming the state space equations:
v =1

S s (g ) (10) S0 50 (F) =S 0w s (g ) (3)

n n n

X (Can Sa) (§7) =0

n

plugging the values into the general equation to form the other state space equation we will get:

0 Q 1 k — 292 Q n
nl,a1 ext,ar | __ 0
oo ) e )G

o femt,bl

Y (Coa Suq) <_n?2m nﬂm) ( >+Z ne Sno) <Z::> - (8)

n

we have our both of the state space equations now it’s time to combine and get to the result :

—nmfS,a nmQCLo Qn Cha  Sna Ran _ 0

n

taking out inverse of the rth matrix of a, b, it will come out to be So in

rmﬂ

_ STQ —’I"mQCTQ

—O,-Q —TmQST»Q
order to separate the rth harmonic we will multiply the whole eqation by this inverse which will factor
us out the rth harmonic.

ar) 1 Z Sra —rmQCq\ (—nmQS,a nmQCua\ (an) _
br rm$ Z _CTQ _TmQSrQ CnQ SnQ bn N
1 Sra —rmQCro Z Cha  Sno Ran
rmQ \—Cra —rmflS.q 0 0 Ry,
ar) 1 Z Sra —rmQCrq\ (—nmQSna  nmQCha\ (an) _
b, rmS) o —Cra  —1mQSq Cha Sna by, N
Z *TmQCrQ CnQ SnQ Ran + 1 SQT’Q 1-— C2T‘Q }zan
er Cra —rmfSrq 0 0 Ry, 2rmQ \—1—Csq —S2a Ry,
now we have our equations in term of the rth harmonic now here we can introduce the near identity

transformation of the rth coefficients and get the averaged dynamics and here we will use the properties
of the fourier series to factor out results.

Gy = Gy + €04, + 0(52)

by = by + b, + O(£?)

after choosing a, and Z;T we’
get the averaged equations of that particular a, and b, as because all the other sine and the cosine terms
are orthogonal they’ll get cancelled out

i\ 1 (0 -1\ (Ra
b,) 2rmQ\1 0 Ry,



0 —2rmSf) C?r ([ Ra,
2rm$) 0 b.)  \ Ry,

now we have the averaged differential equation , here we can solve the differential equation to get our
averaged equation. Now we have to get our first order slow dynamics:

AN H, 0 2@y (Ko,
<l}r> =3 z#: (Cro Sna) (Hb) - (2er 0 ) (Rbr>

now solving this differential equation we’ll get the equations of the linear slowed dynamics and plugging in
the values of the averaged and the slowed dynamics we’ll get the near identity dynamics of our equations
and we can do the stability and bifurcation analysis.




