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Introduction

1. Introduction

Self-excited oscillators: Dynamical systems
with a negative source of damping

ẍ −c ẋ+ ω2
nx = fex(t)

Aeroelastic flutter is a commonly encountered
example; negative damping influence from
aerodynamic interations

Usually shows up as peaks close to a resonance

Vibrations often saturated by frictional joints

ẍ− cẋ+ ω2
∞x+ fnl(x) =

F

2
ejΩt + c.c..

FSIPRO2D Multible Turbine Blade

Flutter (2 Way Coupled) - YouTube

(n.d.)

Hartung, Hackenberg, and Retze (2017)
Hartung, Hackenberg, and Retze (2017)

Periodic excitation
often present
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ẍ −c ẋ+ ω2
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Introduction Problem Setting

1.1. Introduction

Problem Setting

We investigate the near-resonance forced self-excited oscillations of systems with
frictional supports.

Employing The elastic dry-friction element

ẍ− 2ζωnẋ+ ω2
nx+ fnl(x) =

F

2
e−jΩt + c.c.

fnl(tℓ+1)− fnl(tℓ) =

{
kt(x(tℓ+1)− x(tℓ)) + fnl(tℓ) stick

sgn(fsp(tℓ))fsl slip
.
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Introduction Problem Setting

1.1. Problem Setting
Introduction

The Synchronization Phenomenon (Lockin-Lockoff)
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(b) Ω ∼ ω0

0 200 400 600 800

-0.5

0

0.5

785 800

-0.4

-0.2

0

0.2

0.4

0 2 4 6
10

-5

10
0

(c) Ω > ω0

Excitation Ω

Stuck-resonance ω0

Transient Forced Response

Away from resonance, the periodic solution
loses stability to give rise to quasi-periodic
solutions: Neimark-Sacker Bifurcations

There is also a “transient drop-off” region
close to resonance, indicating a Fold
Bifurcation.
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Stability of Periodic Solutions

2. Stability of Periodic Solutions

The Classical Approach

Stability → Perturbation Behavior → Linearization Methods

Linearizing about a periodic solution leads to a parametrically excited
system

δẍ+ c(t)δẋ+ k(t)δx = 0 → Ẋ = A (t)X . (1)

The behavior of the solutions to this system are governed by Floquet
Theorem.

Floquet Theorem

Let A (t) be a T-periodic continuous matrix function and denote by Φ a
fundamental matrix solution of eq. (1). Then ..., there exists a real constant matrix
R and a real nonsingular, 2T -periodic, C1 matrix function Q (t) such that

Φ (t) = Q (t)eR t.

Derivatives of the Elastic Dry-Friction Element
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0

2

Continuous derivatives exist only in a weak sense.

df
d
u
=
k t

df
du

= 0
Derivatives of the Elastic Dry-Friction Element
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2

Continuous derivatives exist only in a weak sense.

df
d
u
=
k t

df
du

= 0

v ∈ L2 s.t.
∮
g df
du =

∮
gv.
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The behavior of the solutions to this system are governed by Floquet
Theorem.

Floquet Theorem

Let A (t) be a T-periodic continuous matrix function and denote by Φ a
fundamental matrix solution of eq. (1). Then ..., there exists a real constant matrix
R and a real nonsingular, 2T -periodic, C1 matrix function Q (t) such that

Φ (t) = Q (t)eR t.

Derivatives of the Elastic Dry-Friction Element

-0.5 0 0.5

-2

-1

0

1

2

0 2 4 6

-2

0

2

Continuous derivatives exist only in a weak sense.

df
d
u
=
k t

df
du

= 0
Derivatives of the Elastic Dry-Friction Element

-0.5 0 0.5

-2

-1

0

1

2

0 2 4 6

-2

0

2

Continuous derivatives exist only in a weak sense.

df
d
u
=
k t

df
du

= 0

v ∈ L2 s.t.
∮
g df
du =

∮
gv.

Balaji, Krack (IIT-M, Uni-S) #18778 IMAC XLIII 6 / 19



Stability of Periodic Solutions

2. Stability of Periodic Solutions

The Classical Approach

Stability → Perturbation Behavior → Linearization Methods

Linearizing about a periodic solution leads to a parametrically excited
system
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Stability of Periodic Solutions The Non-Smooth Case

2.1. The Non-Smooth Case
Stability of Periodic Solutions: An Averaging Approach

The perturbation of a frictional system is a non-smooth parametrically-excited
oscillator, where Floquet theorem does not hold.

Strictly speaking, since the Jacobian/linearized system only exists in a
weak sense, we seek to handle the system in a weak form:
The Method of (Complexification) Averaging1

Under CXA, the response is written using

x(t) := u(t) = q̂(t) e−iΩt + c.c.,

ẋ(t) := v(t) = −iΩq̂(t)e−iΩt + c.c..

governed by i2ΩM ˙̂q = E q̂ + f̂nl − f̂ .

The differential equation governing q̂(t) is piece-wise continuous:

Continuously differentiable almost everywhere.

1Manevitch, L. I. “Complex Representation of Dynamics of Coupled Nonlinear Oscillators”. (1999).
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Stability of Periodic Solutions A New Averaging Based Stability Certificate

2.2. A New Averaging Based Stability Certificate
Stability of Periodic Solutions

The Averaged System

i2ΩM ˙̂q = E q̂ + f̂nl − f̂

Periodic solutions of the original system are fixed points of the
averaged system.

Lyapunov’s Indirect Method: Linearized stability analysis is
applicable for piecewise continuous systems.

Lyapunov’s Indirect Method (local asymptotic stability)

Let x = 0 be an equilibrium point for the nonlinear system ẋ = f(x) where
f : D → Rn is continuously differentiable and D ⊂ Rn is a neighborhood of the
origin. Let

A =
∂f

∂x
(x)

∣∣∣∣
x=0

.Then,

1 The origin is asymptotically stable if λi < 0 for all eigenvalues of A .

2 The origin is unstable if λi > 0 for one or more of the eigenvalues of A .

Balaji, Krack (IIT-M, Uni-S) #18778 IMAC XLIII 8 / 19



Stability of Periodic Solutions A New Averaging Based Stability Certificate

2.2. A New Averaging Based Stability Certificate
Stability of Periodic Solutions

The Averaged System

i2ΩM ˙̂q = E q̂ + f̂nl − f̂

Periodic solutions of the original system are fixed points of the
averaged system.

Lyapunov’s Indirect Method: Linearized stability analysis is
applicable for piecewise continuous systems.

Lyapunov’s Indirect Method (local asymptotic stability)

Let x = 0 be an equilibrium point for the nonlinear system ẋ = f(x) where
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Stability of Periodic Solutions A New Averaging Based Stability Certificate

2.2. Properties of the Averaged System
Stability of Periodic Solutions

The Averaged System

i2ΩM ˙̂q = E q̂ + f̂nl − f̂

Linearized Evolution of δq̂(t)

i2ΩM δ ˙̂q = [E + J nl]δq̂.

1 The RHS is the same the single harmonic HB residue:
Fixed points are the SHB solutions!

2 The linearized system yields exactly 2d eigenpairs for a d-DoF model:
The Eigenvalues are the Floquet exponents.

No need for filtering!

3 The averaged system represents a slow-fast decomposition of the
dynamics.
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Stability of Periodic Solutions Bifurcation Treatment

2.3. Bifurcation Treatment
Stability of Periodic Solutions

Fold Bifurcations Exponential blow-up; Always applicable ✓.

Hopf Bifurcations Conditionally applicable; Ω1 ∼ Ω2 necessary.

Post-Bifurcation Analysis

The eigenvectors associated with the instability can be used for
branch-switching.

Note that the bifurcated branch is quasi-periodic, requiring special
marching methodsa.

aBalaji, N. N., Gross, J., and Krack, M. “Harmonic Balance for Quasi-Periodic Vibrations under
Nonlinear Hysteresis”. (2024).

τ1 = Ω1t
τ2 = Ω2t
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Solution Refinement

3. Solution Refinement

While the single harmonic ansatz has been critical for the averaged certification,
this can be relaxed for the actual solution curve.

Parallelized Solution Refinementa

aGross, J. et al. “A New Paradigm for Multi-
Fidelity Continuation Using Parallel Model Refine-
ment”. (2024).

Overall Procedure

SHB Solution

Averaged
Stability

Certification

Multi-Harmonic
Solution Refinement

SH Post-
Bifurcation
Analysis
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Numerical Results SDoF Oscillator

4.1. SDoF Oscillator
Numerical Results

ẍ− cẋ+ kx+ fnl(x) = F cos(Ωt)
c = 0.02Ns/m k = 4N/m
kt = 5N/m fsl = 2N

F ∈ [0.5N, 4N] Ω ∈ [1 rad/s, 5 rad/s]

Energy Balance: Ω
π

∮
(EOM) ẋdt

−c

∮
ẋ2dt+

∮
fnlẋdt=F

∮
cos(Ωt)ẋdt∮

fnlẋdt = c

∮
ẋ2dt+F

∮
cos(Ωt)ẋdt

Efric = Ec + EF
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fnlẋdt = c

∮
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Efric = Ec + EF
10

-1
10

0
10

1
10

2

-100

0

100

200

300

400

500

10
-1

10
0

0

0.05

10
-1

10
0

10
1

-5

0

5

10

15

Influence of Excitation

Main Branch

Isolated Branch

Forced Response

0.4 0.6 0.8 1 1.2 1.4 1.6

10
0

10
2

0.66 0.68 0.7

10
1

10
2

Balaji, Krack (IIT-M, Uni-S) #18778 IMAC XLIII 12 / 19



Numerical Results SDoF Oscillator

4.1. SDoF Oscillator
Numerical Results
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ẋ2dt+F

∮
cos(Ωt)ẋdt
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Numerical Results SDoF Oscillator

4.1. SDoF Oscillator: Forced Response with ASC
Numerical Results
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Numerical Results SDoF Oscillator

4.1. SDoF Oscillator: Stability Verification
Numerical Results
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Numerical Results MDoF System

4.2. MDoF System
Numerical Results

A Fixed-Free beam with Frictional Supports

5 10 15 20 25

0

10

20

30

40

50

60

1 2 3 4 5

-0.5

0

0.5

1

1.5

The (Near-Resonant) Energy Balance Diagram

10
-6

10
-4

0

0.05

0.1

0.15

0.2

10
-6

10
-5

10
-4

0

5
10

-5

10
-5

10
-4

10
-3

-5

0

5

10
10

-3

Balaji, Krack (IIT-M, Uni-S) #18778 IMAC XLIII 15 / 19



Numerical Results MDoF System

4.2. MDoF System
Numerical Results

A Fixed-Free beam with Frictional Supports

5 10 15 20 25

0

10

20

30

40

50

60

1 2 3 4 5

-0.5

0

0.5

1

1.5

The (Near-Resonant) Energy Balance Diagram

10
-6

10
-4

0

0.05

0.1

0.15

0.2

10
-6

10
-5

10
-4

0

5
10

-5

10
-5

10
-4

10
-3

-5

0

5

10
10

-3

Balaji, Krack (IIT-M, Uni-S) #18778 IMAC XLIII 15 / 19



Numerical Results MDoF System

4.2. MDoF System: Forced Response Results
Numerical Results

F = 0.1N F = 0.2N

F = 0.3N F = 0.4N

Complete Forced Response

0.6 0.8 1 1.2 1.4

10
-5

10
-4

10
-3

0.81 0.82 0.83
10

-4

10
-3

Balaji, Krack (IIT-M, Uni-S) #18778 IMAC XLIII 16 / 19



Numerical Results MDoF System

4.2. MDoF System: Forced Response Results
Numerical Results

F = 0.1N F = 0.2N

F = 0.3N F = 0.4N

Complete Forced Response

0.6 0.8 1 1.2 1.4

10
-5

10
-4

10
-3

0.81 0.82 0.83
10

-4

10
-3

Balaji, Krack (IIT-M, Uni-S) #18778 IMAC XLIII 16 / 19



Numerical Results MDoF System

4.2. Stability Certification: Comparisons Against
Frequency Domain Hill’s Coefficients
MDoF System

HB-Hilla generates
d(2H + 1) eigenpairs.
Sorting usually unreliable

The averaging approach
generates exactly 2d pairs
and is reliable for the
considered examples.

aVon Groll, G. and Ewins, D. “The Har-
monic Balance Method with Arc-Length Con-
tinuation in Rotor/Stator Contact Problems”.
(2001).
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Conclusions and Future Work

5. Conclusions and Future Work

A novel fully frequency-domain stability certification
methodology developed through averaging.

The methodology is used to study the friction-saturated forced
responses of self-excited oscillators.

Reliability of the methodology is established through

Comparison with the current alternative;
Transient validation;
Exhaustive post-bifurcation analysis.

Several salient features of forced self-excited dynamics have also been
highlighted.

Avenues for Future Work

The averaging methodology is fundamentally single-harmonic. Multi-harmonic
generalizations?

Further investigations into post-bifurcation behavior of friction-supported
self-excited systems.
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For analysis purposes, non-smooth systems have been generalized through
differential inclusions and formalized in Filippov Dynamical
Systems2. ẋ = f(x) → ẋ ∈ F (x)

Solution is continuous although the system is set-valued.
The fundamental solution matrix is expected to show discontinuous jumps,
and representation through a Floquet normal form is not justified.

Eigenvalues of the mapping matrix M relating perturbations across
time-periods are referred to as Floquet Multipliers.
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Under harmonic displacement u(t) = uC cos τ + uS sin τ , the Fourier
coefficients of the reaction force for ffr(t) = FC cos τ + FS sin τ are[
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]
=
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Displacement-
Velocity

Coordinates

δq(t) = ℜ{δq̂e−iτ}

δv(t) = ℜ{−iΩδq̂e−iτ}

Eigen Perturbation

(λ, ϕ)[
δq(t)
δv(t)

]
= ηe

λℜt
([

cos((Ω − λℑ)t) sin((Ω − λℑ)t)
−Ω sin((Ω − λℑ)t) Ω cos((Ω − λℑ)t)

]
⊗ I d

) [
ϕℜ
ϕℑ

]

Monodromy Matrix, Multipliers

M = eλℜt

([
cos(λℑT ) − 1

Ω
sin(λℑT )

Ω sin(λℑT ) cos(λℑT )

]
⊗ Id

)
µ = e(λℜ±λℑ)T

No reference to
Floquet normal form

Mapping behavior
represented in average.

Numerical Comparison for the Forced Van der
Pol Oscillator
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7.4. Quasi-Periodic Numerics and Nonlinear Hysteresis
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Time coordinates scaled as
τ1 = Ω1t, τ2 = Ω2t, . . .

Fourier series written as

u(t) =
∑
h∈H

q̂(h) exp(h1τ1+h2τ2+. . . ).

Physical time flows along the

vector
[
Ω1 Ω2

]T
in torus space.

Hysteretic marching must also be
along this.

Marching in 2-Da

aBalaji, N. N., Gross, J., and Krack, M. “Harmonic Balance for Quasi-Periodic Vibra-
tions under Nonlinear Hysteresis”. (2024).
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