

University of Stuttgart Institute of Aircraft Propulsion Systems

#18778: Response and Stability analysis of Self-Excited Systems with Non-Smooth Frictional Elements: A Fully Frequency-Domain Approach

Nidish Narayanaa Balaji¹ Malte Krack²

¹Department of Aerospace Engineering, IIT Madras

²Institute of Aircraft Propulsion Systems, University of Stuttgart

IMAC XLIII, Orlando, FL - February 10-13, 2025

Table of Contents

1. Introduction

• Self-excited oscillators: Dynamical systems with a negative source of damping

 $\ddot{x} - c \, \dot{x} + \omega_n^2 x = f_{ex}(t)$

• Aeroelastic flutter is a commonly encountered example; negative damping influence from aerodynamic interations

FSIPRO2D Multible Turbine Blade Flutter (2 Way Coupled) - YouTube

Introduction

1. Introduction

• Self-excited oscillators: Dynamical systems with a negative source of damping

 $\ddot{x} - c \, \dot{x} + \omega_n^2 x = f_{ex}(t)$

- Aeroelastic flutter is a commonly encountered example; negative damping influence from aerodynamic interations
 - Usually shows up as peaks close to a resonance

Hartung, Hackenberg, and Retze $(2017)\Omega_{rot}$ rpm

FSIPRO2D Multible Turbine Blade Flutter (2 Way Coupled) - YouTube

(n.d.)

Introduction

1. Introduction

• Self-excited oscillators: Dynamical systems with a negative source of damping

 $\ddot{x} - c \, \dot{x} + \omega_n^2 x = f_{ex}(t)$

- Aeroelastic flutter is a commonly encountered example; negative damping influence from aerodynamic interations
 - Usually shows up as peaks close to a resonance
- Vibrations often saturated by frictional joints

$$\ddot{x} - c\dot{x} + \omega_{\infty}^2 x + \int_{nl} f_{nl}(x) = \frac{F}{2} e^{j\Omega t} + \text{c.c.}$$

Hartung, Hackenberg, and Retze (2017)

FSIPRO2D Multible Turbine Blade Flutter (2 Way Coupled) - YouTube (n.d.)

IMAC XLIII 3/19

Balaji, Krack (IIT-M, Uni-S)

Introduction

1. Introduction

• Self-excited oscillators: Dynamical systems with a negative source of damping

 $\ddot{x} - c \dot{x} + \omega_n^2 x = f_{ex}(t)$

- Aeroelastic flutter is a commonly encountered example; negative damping influence from aerodynamic interations
 - Usually shows up as peaks close to a resonance
- Vibrations often saturated by frictional joints

Hartung, Hackenberg, and Retze (2017)

Balaji, Krack (IIT-M, Uni-S)

IMAC XLIII 3/19

1.1. Introduction

Problem Setting

We investigate the near-resonance forced self-excited oscillations of systems with frictional supports.

• Employing The elastic dry-friction element

$$\ddot{x} - 2\zeta\omega_n \dot{x} + \omega_n^2 x + f_{nl}(x) = \frac{F}{2}e^{-j\Omega t} + \text{c.c.}$$
$$f_{nl}(t_{\ell+1}) - f_{nl}(t_{\ell}) = \begin{cases} k_t(x(t_{\ell+1}) - x(t_{\ell})) + f_{nl}(t_{\ell}) & \text{stick} \\ \text{sgn}(f_{sp}(t_{\ell}))f_{sl} & \text{slip} \end{cases}.$$

Introduction

Introduction

Balaji, Krack (IIT-M, Uni-S)

IMAC XLIII

Introduction

Balaji, Krack (IIT-M, Uni-S)

IMAC XLIII

5/19

5/19

Balaji, Krack (IIT-M, Uni-S)

З

Excitation Frequency Ω (rad/s)

1.1. Problem Setting **Transient Forced Response** Introduction 2.5 2 (c) The S 2 $\dot{v}(t)$ Response x(t) (m) 0.5 Displacement (m) 1.5 (b) -2 -0.5 x(t)0 0.5 800

0.5

(a) $\Omega < \omega_0$

2

Frequ

-0.5

10⁰

10⁻⁵

0

Displacement (m)

200

Excitation Ω

600

Stuck-resonance ω_0

#18778

(b) $\Omega \sim \omega_0$

Frequency (rad/s)

IMAC XLIII

5/19

1.1. Problem Setting **Transient Forced Response** Introduction 2.5 2 (c) The S ockoff) 2 Response x(t) (m) 0.5 Displacement (m) 1.5 (b) -2 0.5 x(t)0 0.5 800 -0.5 200 600 200 400 600 Excitation Ω Excitation Frequency Ω (rad/s) Time (s) 10⁰ Away from resonance, the periodic solution Displacement (m) loses stability to give rise to quasi-periodic solutions: Neimark-Sacker Bifurcations • There is also a "transient drop-off" region close to resonance, indicating a **Fold** 10⁻⁵ Bifurcation. 0 2 2 Frequ Stuck-resonance ω_0 Frequency (rad/s) Frequency (rad/s) (b) $\Omega \sim \omega_0$ (a) $\Omega < \omega_0$ (c) $\Omega > \omega_0$

Balaji, Krack (IIT-M, Uni-S)

#18778

IMAC XLIII

5/19

6

 $-f_s$ k.

800

2. Stability of Periodic Solutions

2. Stability of Periodic Solutions

The Classical Approach

Stability \rightarrow Perturbation Behavior \rightarrow Linearization Methods

The Classical Approach

Stability \rightarrow Perturbation Behavior \rightarrow Linearization Methods

• Linearizing about a periodic solution leads to a **parametrically excited system**

$$\delta \ddot{x} + c(t)\delta \dot{x} + k(t)\delta x = 0 \rightarrow \boxed{\dot{X}} = \underline{\underline{A}}(t)\underline{X}.$$
 (1)

The behavior of the solutions to this system are governed by **Floquet Theorem**.

The Classical Approach

Stability \rightarrow Perturbation Behavior \rightarrow Linearization Methods

• Linearizing about a periodic solution leads to a **parametrically excited system**

$$\delta \ddot{x} + c(t)\delta \dot{x} + k(t)\delta x = 0 \rightarrow \left| \underline{\dot{X}} = \underline{\underline{A}}(t)\underline{X} \right|.$$
(1)

The behavior of the solutions to this system are governed by **Floquet Theorem**.

Floquet Theorem

Let $\underline{\underline{A}}(t)$ be a T-periodic continuous matrix function and denote by $\underline{\underline{\Phi}}$ a fundamental matrix solution of eq. (1). Then ..., there exists a real constant matrix $\underline{\underline{R}}$ and a real nonsingular, 2T-periodic, \mathcal{C}^1 matrix function $\underline{Q}(t)$ such that

$$\underline{\underline{\Phi}}\left(t\right) = \underline{\underline{Q}}\left(t\right) e^{\underline{\underline{R}}\,t}.$$

Balaji, Krack (IIT-M, Uni-S)

$$\underline{\underline{\Phi}}\left(t\right) = \underline{\underline{Q}}\left(t\right)e^{\underline{\underline{R}}\,t}.$$

Balaji, Krack (IIT-M, Uni-S)

Stability of Periodic Solutions: An Averaging Approach

The perturbation of a frictional system is a non-smooth parametrically-excited oscillator, where **Floquet theorem does not hold**.

- Strictly speaking, since the Jacobian/linearized system only exists in a weak sense, we seek to handle the system in a weak form:
 The Method of (Complexification) Averaging¹
- Under **CXA**, the response is written using

$$\underline{x}(t) := \underline{u}(t) = \frac{\hat{q}(t)}{\hat{q}(t)} e^{-i\Omega t} + c.c.,$$
$$\underline{\dot{x}}(t) := \underline{v}(t) = -i\Omega \hat{q}(t) e^{-i\Omega t} + c.c.$$

 1Manevitch, L. I. "Complex Representation of Dynamics of Coupled Nonlinear Oscillators". (1999).
 4 □ ▶

 Balaji, Krack (IIT-M, Uni-S)
 #18778
 IMAC XLIII
 7/19

Stability of Periodic Solutions: An Averaging Approach

The perturbation of a frictional system is a non-smooth parametrically-excited oscillator, where **Floquet theorem does not hold**.

- Strictly speaking, since the Jacobian/linearized system only exists in a weak sense, we seek to handle the system in a weak form:
 The Method of (Complexification) Averaging¹
- Under **CXA**, the response is written using

$$\underline{x}(t) := \underline{u}(t) = \frac{\hat{q}(t)}{\hat{q}(t)} e^{-i\Omega t} + \text{c.c.},$$
$$\underline{\dot{x}}(t) := \underline{v}(t) = -i\Omega \hat{q}(t) e^{-i\Omega t} + \text{c.c.}.$$
governed by $i2\Omega \underline{\underline{M}} \dot{\hat{q}} = \underline{\underline{E}} \hat{q} + \hat{f}_{nl} - \hat{f}$

¹Manevitch, L. I. "Complex Representation of Dynamics of Coupled Nonlinear Oscillators". (1999). 4 □ ▷ Balaji, Krack (IIT-M, Uni-S) #18778 IMAC XLIII 7/19

Stability of Periodic Solutions: An Averaging Approach

The perturbation of a frictional system is a non-smooth parametrically-excited oscillator, where **Floquet theorem does not hold**.

- Strictly speaking, since the Jacobian/linearized system only exists in a weak sense, we seek to handle the system in a weak form: The Method of (Complexification) Averaging¹
- Under **CXA**, the response is written using

$$\underline{x}(t) := \underline{u}(t) = \frac{\hat{q}(t)}{\hat{q}(t)} e^{-i\Omega t} + \text{c.c.},$$
$$\underline{\dot{x}}(t) := \underline{v}(t) = -i\Omega \hat{q}(t) e^{-i\Omega t} + \text{c.c.}.$$
governed by $i2\Omega \underline{M} \dot{\hat{q}} = \underline{E} \hat{q} + \hat{f}_{nl} - \hat{f}$

• The differential equation governing $\hat{q}(t)$ is **piece-wise continuous**:

¹Manevitch, L. I. "Complex Representation of Dynamics of Coupled Nonlinear Oscillators". (1999). 4 □ ▷ Balaji, Krack (IIT-M, Uni-S) #18778 IMAC XLIII 7/19

Stability of Periodic Solutions: An Averaging Approach

The perturbation of a frictional system is a non-smooth parametrically-excited oscillator, where **Floquet theorem does not hold**.

- Strictly speaking, since the Jacobian/linearized system only exists in a weak sense, we seek to handle the system in a weak form: The Method of (Complexification) Averaging¹
- Under **CXA**, the response is written using

$$\underline{x}(t) := \underline{u}(t) = \frac{\hat{q}(t)}{\hat{q}(t)} e^{-i\Omega t} + \text{c.c.},$$
$$\underline{\dot{x}}(t) := \underline{v}(t) = -i\Omega \hat{q}(t) e^{-i\Omega t} + \text{c.c.}.$$
governed by $\boxed{i2\Omega \underline{M} \dot{\dot{q}} = \underline{\underline{E}} \hat{q} + \hat{f}_{nl} - \hat{f}}$

• The differential equation governing $\hat{q}(t)$ is piece-wise continuous: Continuously differentiable *almost everywhere*.

¹Manevitch, L. I. "Complex Representation of Dynamics of Coupled Nonlinear Oscillators". (1999). 4 □ ▷ Balaji, Krack (IIT-M, Uni-S) #18778 IMAC XLIII 7/19

2.2. A New Averaging Based Stability Certificate

Stability of Periodic Solutions

The Averaged System

$$i2\Omega \underline{\underline{M}}\,\dot{\hat{q}} = \underline{\underline{E}}\,\hat{q} + \hat{f}_{nl} - \hat{f}$$

• Periodic solutions of the original system are **fixed points of the averaged system**.

2.2. A New Averaging Based Stability Certificate

Stability of Periodic Solutions

The Averaged System

 $i2\Omega \underline{\underline{M}}\,\dot{\hat{q}} = \underline{\underline{E}}\,\hat{q} + \hat{f}_{nl} - \hat{f}$

- Periodic solutions of the original system are **fixed points of the averaged system**.
- Lyapunov's Indirect Method: Linearized stability analysis is applicable for piecewise continuous systems.

Lyapunov's Indirect Method (local asymptotic stability)

Let $\underline{x} = 0$ be an equilibrium point for the nonlinear system $\underline{\dot{x}} = \underline{f}(\underline{x})$ where $\underline{f}: \mathcal{D} \to \mathbb{R}^n$ is <u>continuously differentiable</u> and $\mathcal{D} \subset \mathbb{R}^n$ is a neighborhood of the origin. Let $A = \frac{\partial \underline{f}}{\partial \underline{c}}(x) \Big| \qquad .$ Then,

$$\underline{\underline{A}} = \frac{\partial \underline{f}}{\partial \underline{x}}(\underline{x}) \Big|_{\underline{x}=\underline{0}}.$$
 Then,

- **(**) The origin is asymptotically stable if $\lambda_i < 0$ for all eigenvalues of <u>A</u>.
- **2** The origin is unstable if $\lambda_i > 0$ for one or more of the eigenvalues of <u>A</u>.

Stability of Periodic Solutions

The Averaged System

 $i2\Omega \underline{\underline{M}}\,\dot{\hat{q}} = \underline{\underline{E}}\,\hat{q} + \hat{f}_{nl} - \hat{f}$

Stability of Periodic Solutions

```
The Averaged System

i2\Omega \underline{\underline{M}} \, \dot{\underline{q}} = \underline{\underline{\underline{E}}} \, \hat{\underline{q}} + \hat{\underline{f}}_{nl} - \hat{\underline{f}}
```

• The RHS is the same the single harmonic HB residue: Fixed points are the SHB solutions!

Stability of Periodic Solutions

The Averaged System

 $i2\Omega \underline{\underline{M}}\,\dot{\hat{q}} = \underline{\underline{E}}\,\hat{q} + \hat{f}_{nl} - \hat{f}$

Linearized Evolution of $\delta \hat{q}(t)$

 $i2\Omega \underline{\underline{M}}\,\delta \dot{\underline{\hat{q}}} = [\underline{\underline{E}} + \underline{\underline{J}}_{nl}]\delta \hat{\underline{q}}.$

- The RHS is the same the single harmonic HB residue: Fixed points are the SHB solutions!
- The linearized system yields exactly 2d eigenpairs for a d-DoF model: The Eigenvalues are the Floquet exponents.
 - No need for filtering!

Stability of Periodic Solutions

The Averaged System

 $\mathrm{i}2\Omega\underline{\underline{M}}\,\dot{\hat{q}} = \underline{\underline{E}}\,\hat{q} + \hat{f}_{nl} - \hat{f}$

Linearized Evolution of $\delta \hat{q}(t)$

 $i2\Omega \underline{\underline{M}}\,\delta \dot{\underline{\hat{q}}} = [\underline{\underline{E}} + \underline{\underline{J}}_{nl}]\delta \hat{\underline{q}}.$

- The RHS is the same the single harmonic HB residue: Fixed points are the SHB solutions!
- The linearized system yields exactly 2d eigenpairs for a d-DoF model: The Eigenvalues are the Floquet exponents.
 - No need for filtering!
- The averaged system represents a slow-fast decomposition of the dynamics.

Stability of Periodic Solutions

Fold Bifurcations Exponential blow-up; Always applicable \checkmark .

Stability of Periodic Solutions

Fold Bifurcations Exponential blow-up; Always applicable \checkmark . **Hopf Bifurcations** Conditionally applicable; $\Omega_1 \sim \Omega_2$ necessary.

Stability of Periodic Solutions

Post-Bifurcation Analysis

• The eigenvectors associated with the instability can be used for branch-switching.

Fo

Ηc

aBalaji, N. N., Gross, J., and Krack, M. "Harmonic Balance for Quasi-Periodic Vibrations under Nonlinear Hysteresis". (2024).

Stability of Periodic Solutions

Post-Bifurcation Analysis

• The eigenvectors associated with the instability can be used for branch-switching.

Fo • Note that the bifurcated branch is **quasi-periodic**, requiring special marching methods^{*a*}.

Ηα

aBalaji, N. N., Gross, J., and Krack, M. "Harmonic Balance for Quasi-Periodic Vibrations under Nonlinear Hysteresis". (2024).

3. Solution Refinement

While the **single harmonic ansatz** has been critical for the averaged certification, this can be relaxed for the actual solution curve.

Numerical Results

$$\begin{array}{c} c = 0.02 \, \mathrm{Ns/m} & k = 4 \, \mathrm{N/m} \\ \hline \ddot{x} - c\dot{x} + kx + f_{nl}(x) = F \cos(\Omega t) \\ & k_t = 5 \, \mathrm{N/m} & f_{sl} = 2 \, \mathrm{N} \\ & F \in [0.5 \, \mathrm{N}, \, 4 \, \mathrm{N}] & \Omega \in [1 \, \mathrm{rad/s}, \, 5 \, \mathrm{rad/s}] \end{array}$$

Energy Balance: $\frac{\Omega}{\pi} \oint (EOM) \dot{x} dt$

$$-c \oint x^2 dt + \oint f_{nl} \dot{x} dt = F \oint \cos(\Omega t) \dot{x} dt$$
$$\oint f_{nl} \dot{x} dt = c \oint \dot{x}^2 dt + F \oint \cos(\Omega t) \dot{x} dt$$

$$\begin{array}{c} c = 0.02 \, \mathrm{Ns/m} & k = 4 \, \mathrm{N/m} \\ \hline \ddot{x} - c\dot{x} + kx + f_{nl}(x) = F \cos(\Omega t) \\ & k_t = 5 \, \mathrm{N/m} & f_{sl} = 2 \, \mathrm{N} \\ & F \in [0.5 \, \mathrm{N}, \, 4 \, \mathrm{N}] & \Omega \in [1 \, \mathrm{rad/s}, \, 5 \, \mathrm{rad/s}] \end{array}$$

Energy Balance:
$$\frac{\Omega}{\pi} \oint (EOM) \dot{x} dt$$

 $-c \oint \dot{x}^2 dt + \oint f_{nl} \dot{x} dt = F \oint \cos(\Omega t) \dot{x} dt$
 $\oint f_{nl} \dot{x} dt = c \oint \dot{x}^2 dt + F \oint \cos(\Omega t) \dot{x} dt$
 $E_{fric} = E_c + E_F$

$$\begin{array}{c} c = 0.02 \, \mathrm{Ns/m} & k = 4 \, \mathrm{N/m} \\ \hline \ddot{x} - c\dot{x} + kx + f_{nl}(x) = F \cos(\Omega t) \\ & k_t = 5 \, \mathrm{N/m} & f_{sl} = 2 \, \mathrm{N} \\ & F \in [0.5 \, \mathrm{N}, \, 4 \, \mathrm{N}] & \Omega \in [1 \, \mathrm{rad/s}, \, 5 \, \mathrm{rad/s}] \end{array}$$

Energy Balance:
$$\frac{\Omega}{\pi} \oint (EOM) \dot{x} dt$$

 $-c \oint \dot{x}^2 dt + \oint f_{nl} \dot{x} dt = F \oint \cos(\Omega t) \dot{x} dt$
 $\oint f_{nl} \dot{x} dt = c \oint \dot{x}^2 dt + F \oint \cos(\Omega t) \dot{x} dt$
 $E_{fric} = E_c + E_F$

$$\ddot{x} - c\dot{x} + kx + f_{nl}(x) = F\cos(\Omega t)$$

$$\begin{array}{ll} c = 0.02 \, {\rm Ns/m} & k = 4 \, {\rm N/m} \\ k_t = 5 \, {\rm N/m} & f_{sl} = 2 \, {\rm N} \\ F \in [0.5 \, {\rm N}, \, 4 \, {\rm N}] & \Omega \in [1 \, {\rm rad/s}, \, 5 \, {\rm rad/s}] \end{array}$$

Energy Balance:
$$\frac{\Omega}{\pi} \oint (EOM) \dot{x} dt$$

 $-c \oint \dot{x}^2 dt + \oint f_{nl} \dot{x} dt = F \oint \cos(\Omega t) \dot{x} dt$
 $\oint f_{nl} \dot{x} dt = c \oint \dot{x}^2 dt + F \oint \cos(\Omega t) \dot{x} dt$
 $E_{fric} = E_c + E_F$

Numerical Results

$$\ddot{x} - c\dot{x} + kx + f_{nl}(x) = F\cos(\Omega t)$$

Energy Balance:
$$\frac{\Omega}{\pi} \oint (EOM) \dot{x} dt$$

 $-c \oint \dot{x}^2 dt + \oint f_{nl} \dot{x} dt = F \oint \cos(\Omega t) \dot{x} dt$
 $\oint f_{nl} \dot{x} dt = c \oint \dot{x}^2 dt + F \oint \cos(\Omega t) \dot{x} dt$
 $E_{fric} = E_c + E_F$

Influence of Excitation 15 Cycle Averaged Energy (Js^{-1}) Main Branch 10 5 0 -5 $\rightarrow \rightarrow a_1 \leftarrow \leftarrow 10^0$ 10-1 10¹ 500 Efric Cycle Averaged Energy (Js^{-1}) É, $E_c^{-c} + E_{0.5N}$ $E_c^{-c} + E_{1.0N}$ 400 300 Isolated Branch 200 100 -100 $10^{-1} \rightarrow a_1 \leftarrow a_1 \leftarrow a_0$ $\leftarrow a_2 \xrightarrow{} 10^2$ 10¹ Displacement Amplitude |x|

Balaji, Krack (IIT-M, Uni-S)

$$\ddot{x} - c\dot{x} + kx + f_{nl}(x) = F\cos(\Omega t)$$

Energy Balance:
$$\frac{\Omega}{\pi} \oint (EOM) \dot{x} dt$$

 $-c \oint \dot{x}^2 dt + \oint f_{nl} \dot{x} dt = F \oint \cos(\Omega t) \dot{x} dt$
 $\oint f_{nl} \dot{x} dt = c \oint \dot{x}^2 dt + F \oint \cos(\Omega t) \dot{x} dt$
 $E_{fric} = E_c + E_F$

4.1. SDoF Oscillator: Forced Response with ASC $\,$

Numerical Results

Point A: Fold Bifurcation Point B: Neimark-Sacker Bifurcation

Balaji, Krack	(IIT-M, Uni-S)
---------------	----------------

IMAC XLIII 13/19

4.1. SDoF Oscillator: Forced Response with ASC $\,$

Numerical Results

Balaji, Krack (IIT-M, Uni-S)

IMAC XLIII

4.1. SDoF Oscillator: Forced Response with ASC

Numerical Results

Balaji, Krack (IIT-M, Uni-S)

IMAC XLIII

4.1. SDoF Oscillator: Stability Verification

- Two types of instability encountered on the isolated branch
- Small stable region also detected

4.1. SDoF Oscillator: Stability Verification

- Two types of instability encountered on the isolated branch
- Small stable region also detected

4.2. MDoF System

4.2. MDoF System

Numerical Results

The (Near-Resonant) Energy Balance Diagram

Balaji, Krack (IIT-M, Uni-S)

15/19

4.2. MDoF System: Forced Response Results

4.2. MDoF System: Forced Response Results

Numerical Results MDoF System

4.2. Stability Certification: Comparisons Against Frequency Domain Hill's Coefficients

MDoF System

- HB-Hill^a generates d(2H+1) eigenpairs. Sorting usually unreliable
- The averaging approach generates exactly 2*d* pairs and is reliable for the considered examples.

aVon Groll, G. and Ewins, D. "The Harmonic Balance Method with Arc-Length Continuation in Rotor/Stator Contact Problems". (2001).

5. Conclusions and Future Work

- A novel fully frequency-domain stability certification methodology developed through averaging.
- The methodology is used to study the **friction-saturated forced responses of self-excited oscillators**.
- Reliability of the methodology is established through
 - Comparison with the current alternative;
 - Transient validation;
 - Exhaustive post-bifurcation analysis.
- Several salient features of forced self-excited dynamics have also been highlighted.

Avenues	for	Future	Work

- The averaging methodology is fundamentally single-harmonic. Multi-harmonic generalizations?
- Further investigations into post-bifurcation behavior of friction-supported self-excited systems.

References I

- FSIPRO2D Multible Turbine Blade Flutter (2 Way Coupled) YouTube. URL: https://www.youtube.com/ (visited on 12/17/2024) (cit. on pp. 3-6).
- [2] A. Hartung, H.-P. Hackenberg, and U. Retze. "More Flexible Damping Systems for Blades and Vanes". Technische Mechanik - European Journal of Engineering Mechanics, 37,2-5 (2017), pp. 258-267. ISSN: 2199-9244. DOI: 10.24352/UB.0VGU-2017-102. URL: https://journals.ub.uni-magdeburg.de/index.php/techmech/article/view/615 (visited on 02/01/2023) (cit. on pp. 3-6).
- [3] L. I. Manevitch. "Complex Representation of Dynamics of Coupled Nonlinear Oscillators". In: Mathematical Models of Non-Linear Excitations, Transfer, Dynamics, and Control in Condensed Systems and Other Media. Ed. by L. A. Uvarova, A. E. Arinstein, and A. V. Latyshev. Boston, MA: Springer US, 1999, pp. 269-300. ISBN: 978-1-4615-4799-0. DOI: 10.1007/978-1-4615-4799-0_24. URL: https://doi.org/10.1007/978-1-4615-4799-0_24 (visited on 07/20/2020) (cit. on pp. 20-23).
- [4] N. N. Balaji, J. Gross, and M. Krack. "Harmonic Balance for Quasi-Periodic Vibrations under Nonlinear Hysteresis". Journal of Sound and Vibration, 590, (Nov. 2024), pp. 118570. ISSN: 0022-460X. DOI: 10.1016/j.jsv.2024.118570. URL: https://www.sciencedirect.com/science/article/pii/S0022460X2400333X (visited on 07/09/2024) (cit. on pp. 30-33, 62, 63).
- [5] J. Gross et al. "A New Paradigm for Multi-Fidelity Continuation Using Parallel Model Refinement". Computer Methods in Applied Mechanics and Engineering, 423, (Apr. 2024), pp. 116860. ISSN: 00457825. DOI: 10.1016/j.cma.2024.116860. URL: https://linkinghub.elsevier.com/retrieve/pii/S0045782524001166 (visited on 05/15/2024) (cit. on p. 34).
- [6] G. Von Groll and D. Ewins. "The Harmonic Balance Method with Arc-Length Continuation in Rotor/Stator Contact Problems". Journal of Sound and Vibration, 241,2 (Mar. 2001), pp. 223-233. ISSN: 0022460X. DOI: 10.1006/jsvi.2000.3298. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022460X093298X (visited on 12/17/2021) (cit. on p. 50).
- R. R. Leine. Bifurcations in Discontinuous Mechanical Systems of the Filippov-type. 2000. URL: https://research.tue.nl/en/publications/bifurcations-in-discontinuous-mechanical-systems-of-the-fillippovtype(1b99d74b-4471-4363-a58f-c2450486fe18).html (visited on 09/21/2024) (cit. on pp. 54-56).

7. Backup Slides

6 Backup Slides

- Non-Smooth Dynamical Systems
- Continuity of the Fourier Coefficients For the Elastic Dry Friction Element
- Consistency of Averaged Exponents and Floquet Exponents
- Quasi-Periodic Numerics and Nonlinear Hysteresis

7.1. Non-Smooth Dynamical Systems

Backup Slides

• For analysis purposes, non-smooth systems have been generalized through differential inclusions and formalized in Filippov Dynamical Systems².

$$\underline{\dot{x}} = \underline{f}(\underline{x}) \qquad \rightarrow \qquad \underline{\dot{x}} \in \underline{F}(\underline{x})$$

- Solution is continuous although the system is set-valued.
- The fundamental solution matrix is expected to show discontinuous jumps, and representation through a Floquet normal form is not justified.
- Eigenvalues of the mapping matrix \mathcal{M} relating perturbations across time-periods are referred to as **Floquet Multipliers**.

(a) continuous bifurcation

(b) discontinuous bifurcation

2Leine, R. R. Bifurcations in Discontinuous Mechanical Systems of the Fillippov-type. (2000).

Balaji, Krack (IIT-M, Uni-S)

#18778

7.1. Non-Smooth Dynamical Systems

Backup Slides

2Leine, R. R. Bifurcations in Discontinuous Mechanical Systems of the Fillippov-type. (2000).

Balaji, Krack (IIT-M, Uni-S)

#18778

IMAC XLIII 2 / 5

7.1. Non-Smooth Dynamical Systems

Backup Slides

7.2. Continuity of the Fourier Coefficients For the Elastic Dry Friction Element

Backup Slides

Under harmonic displacement $u(t) = u_C \cos \tau + u_S \sin \tau$, the Fourier coefficients of the reaction force for $f_{fr}(t) = F_C \cos \tau + F_S \sin \tau$ are

 10^{2}

 10^{4}

 10^{0}

10⁻²

7.2. Continuity of the Fourier Coefficients For the Elastic Dry Friction Element

Backup Slides

Under harmonic displacement $u(t) = u_C \cos \tau + u_S \sin \tau$, the Fourier coefficients of the reaction force for $f_{fr}(t) = F_C \cos \tau + F_S \sin \tau$ are

3/5

7.3. Consistency of Averaged Exponents and Floquet Exponents

Backup Slides

7.3. Consistency of Averaged Exponents and Floquet Exponents

Backup Slides

7.3. Consistency of Averaged Exponents and Floquet Exponenta Numerical Comparison for the Forced Van der Backup Slides **Pol Oscillator** Displ $\ddot{x} - c\dot{x} + kx + \mu x^2 \dot{x} = F \cos \Omega t$ Ve Coo ASC λ_1 · ASC λ_2 — TI λ_1 — TI λ_2 $\delta q(t) =$ Eigenvalue Imag Part, $\operatorname{Re}\{\lambda\}$ $\begin{bmatrix} \lambda_{\mathfrak{F}}(t) \\ -\lambda_{\mathfrak{F}}(t) \end{bmatrix} \otimes \underline{I}_{d} \left[\begin{bmatrix} \underline{\phi}_{\mathfrak{R}} \\ \underline{\phi}_{\mathfrak{F}} \end{bmatrix} \right]$ $\delta v(t) =$ 6 0 4 -1 • No refer 2 ipliers 0.01 0 Floquet 0 Mappin $\begin{pmatrix} \lambda_{\Im}T \\ T \end{pmatrix}$ $\otimes \underline{I_d}$ represer -2 -0.3 -0.2 -0.1 Eigenvalue Real Part, $\operatorname{Re}\{\lambda\}$

4/5

7.4. Quasi-Periodic Numerics and Nonlinear Hysteresis

- Time coordinates scaled as $\tau_1 = \Omega_1 t, \ \tau_2 = \Omega_2 t, \ldots$
- Fourier series written as

- Physical time flows along the vector $\begin{bmatrix} \Omega_1 & \Omega_2 \end{bmatrix}^T$ in torus space.
- Hysteretic marching must also be along this.

5/5

7.4. Quasi-Periodic Numerics and Nonlinear Hysteresis

