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Introduction

1. Introduction

e Self-excited oscillators: Dynamical systems
with a negative source of damping
i —cd+wir = fo(t)
@ Aeroelastic flutter is a commonly encountered

example; negative damping influence from
aerodynamic interations

FSIPRO2D Multible Turbine Blade
Flutter (2 Way Coupled) - YouTube
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Introduction Problem Setting

1.1. Introduction

Problem Setting

We investigate the near-resonance forced self-excited oscillations of systems with
frictional supports.

@ Employing The elastic dry-friction element

. . 2 _F o

7 — 2Cwnt + wpx + fu(z) = 56 + c.c.
kq (.’.E(te+1) — .'E(tg)) + fnl(té) stick
sgn(fsp(te)) foi slip

fnl(tf+1) - fnl(tg) = {
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Introduction

The Synchronization Phenomenon (Lockin-LockofT)
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Introduction Transient Forced Response
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Introduction Transient Forced Response
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2. Stability of Periodic Solutions

The Classical Approach
Stability — Perturbation Behavior — Linearization Methods J
e Linearizing about a periodic solution leads to a parametrically excited
system
83 +c(t)0i + k(t)dzr =0 — | X = A(H)X | (1)

The behavior of the solutions to this system are governed by Floquet
Theorem.
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e Linearizing about a periodic solution leads to a parametrically excited
system
83 +c(t)0i + k(t)dzr =0 — | X = A(H)X | (1)

The behavior of the solutions to this system are governed by Floquet
Theorem.

Floquet Theorem

Let A(t) be a T-periodic continuous matrix function and denote by @ a
fundamental matrix solution of eq. (1). Then ..., there exists a real constant matrix
R and a real nonsingular, 27-periodic, C ! matrix function Q (t) such that

D (1) = Q (t)eltt.
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o Continuous derivatives exist only in a weak sense.

Let A(t) be a T-periodic continuous matrix functi| , ¢ 12 g. 359 df _ = § gu.
fundamental matrix solution of eq. (1). Then ..., t

R and a real nonsingular, 27-periodic, C! matrix function Q (t) such that

D (1) = Q (t)eltt.
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2.1. The Non-Smooth Case

Stability of Periodic Solutions: An Averaging Approach

The perturbation of a frictional system is a non-smooth parametrically-excited
oscillator, where Floquet theorem does not hold.

@ Strictly speaking, since the Jacobian/linearized system only exists in a
weak sense, we seek to handle the system in a weak form:
The Method of (Complexification) Averaging'

e Under CXA, the response is written using
z(t) == u(t) = §(t) e ¥ +c.c.,
&(t) == v(t) = —iQ4(t)e ¥ + c.c..

1Manevitch, L. I. “Complex Representation of Dynamics of Coupled Nonlinear Oscillators”. (1999).
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oscillator, where Floquet theorem does not hold.

@ Strictly speaking, since the Jacobian/linearized system only exists in a
weak sense, we seek to handle the system in a weak form:
The Method of (Complexification) Averaging'

e Under CXA, the response is written using

z(t) == u(t) = §(t) e ¥ +c.c.,
(t) == v(t) = —iQG4(t)e " + c.c..

5.

governed by iQQ%é = QQ—FIAEL—f: .

@ The differential equation governing ¢(¢) is piece-wise continuous:
Continuously differentiable almost everywhere.

1Manevitch, L. I. “Complex Representation of Dynamics of Coupled Nonlinear Oscillators”. (1999).
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Stability of Periodic Solutions A New Averaging Based Stability Certificate

2.2. A New Averaging Based Stability Certificate

Stability of Periodic Solutions

The Averaged System

20M G=Eq+ fu — f

@ Periodic solutions of the original system are fixed points of the
averaged system.
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Stability of Periodic Solutions A New Averaging Based Stability Certificate

2.2. A New Averaging Based Stability Certificate

Stability of Periodic Solutions

The Averaged System
20M G=Eq+ fu — f J

@ Periodic solutions of the original system are fixed points of the
averaged system.

e Lyapunov’s Indirect Method: Linearized stability analysis is
applicable for piecewise continuous systems.

Lyapunov’s Indirect Method (local asymptotic stability)

Let = 0 be an equilibrium point for the nonlinear system & = f(z) where
f:D — R" is continuously differentiable and D C R" is a neighborhood of the
origin. Let of

A= a—g(g) ng'Then’

© The origin is asymptotically stable if A; < 0 for all eigenvalues of A.

© The origin is unstable if A\; > 0 for one or more of the eigenvalues of A.
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2.2. Properties of the Averaged System

Stability of Periodic Solutions

The Averaged System J

i20M = Eq+ fu — f

Balaji, Krack (IIT-M, Uni-S) #18778 IMAC XLIII

9/19



Stability of Periodic Solutions A New Averaging Based Stability Certificate

2.2. Properties of the Averaged System

Stability of Periodic Solutions

i20M = Eq+ fu — f

@ The RHS is the same the single harmonic HB residue:
Fixed points are the SHB solutions!

The Averaged System J
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Stability of Periodic Solutions A New Averaging Based Stability Certificate

2.2. Properties of the Averaged System

Stability of Periodic Solutions

i20M = Eq+ fu — f

@ The RHS is the same the single harmonic HB residue:
Fixed points are the SHB solutions!

The Averaged System Linearized Evolution of §g(t)
J i20M 6 = [E + J n]d4. ]

@ The linearized system yields exactly 2d eigenpairs for a d-DoF model:
The Eigenvalues are the Floquet exponents.

e No need for filtering!
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Stability of Periodic Solutions A New Averaging Based Stability Certificate

2.2. Properties of the Averaged System

Stability of Periodic Solutions

The Averaged System J Linearized Evolution of §4(t) J

20M§=Eq+ fu—f i20M 6¢ = [E + L u]0d.

@ The RHS is the same the single harmonic HB residue:
Fixed points are the SHB solutions!
@ The linearized system yields exactly 2d eigenpairs for a d-DoF model:
The Eigenvalues are the Floquet exponents.
e No need for filtering!
@ The averaged system represents a slow-fast decomposition of the
dynamics.

Slow Component

Signal 1

A

No clear time-scale separation

Fast Component
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Stability of Periodic Solutions Bifurcation Treatment

2.3. Bifurcation Treatment

Stability of Periodic Solutions

Stable Im{)\} Unstable
A=+i%
A= +i€

Re{\}

521 Secondary Hopf
¢ Period}Doubling

Fold Bifurcations Exponential blow-up; Always applicable v'.
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2.3. Bifurcation Treatment

Stability of Periodic Solutions

Stable Im{)\} Unstable
A= +i2
A= +i€
Re{\}
A=0
&%
A= —i&
i, % Secondary Hopf

¢ Period}Doubling

Fold Bifurcations Exponential blow-up; Always applicable v'.
Hopf Bifurcations Conditionally applicable; 2 ~ €5 necessary.
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Stability of Periodic Solutions Bifurcation Treatment

2.3. Bifurcation Treatment

Stability of Periodic Solutions

Post-Bifurcation Analysis

@ The eigenvectors associated with the instability can be used for
branch-switching.

A
[N
z 7
= ~ —~—
=%
©n
Q
[a=d
~4
<
)
(a8 —
° True Bifurcation Point
(unknown)
>
>

Excitation Frequency

Fo
Hc

aBalaji, N. N., Gross, J., and Krack, M. “Harmonic Balance for Quasi-Periodic Vibrations under

Nonlinear Hysteresis”.  (2024).
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2.3. Bifurcation Treatment

Stability of Periodic Solutions

Post-Bifurcation Analysis

@ The eigenvectors associated with the instability can be used for

branch-switching.
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Fo © Note that the bifurcated branch is quasi-periodic, requiring special
H marching methods®.
C

aBalaji, N. N., Gross, J., and Krack, M. “Harmonic Balance for Quasi-Periodic Vibrations under
Nonlinear Hysteresis”.  (2024).
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Solution Refinement

3. Solution Refinement

While the single harmonic ansatz has been critical for the averaged certification,
this can be relaxed for the actual solution curve. )
. . Overall Procedure
Parallelized Solution Refinement®
G ,  J. t 1. “A New Paradi £ Multi- .
;‘idrglsiiy ConfinuZtion Usiueg Pafal?ellg;\r/llodg; Refl:ne‘— [ SHB SOlutlon J
ment”. (2024).
5 4 already computed @ refinement
‘g solution curve of of selected v
> | low-fidelity model solution pts. Averaged SH Post-
z "o o . .
S > \w o Stability Bifurcation
= , Fo i . . .
] o Y b solution curve of Certification Analysis
5 ¢ e i high-fidelity model
= < e
é ..’;ae "o .. Y
A L Multi-Harmonic
parameter Solution Refinement
v
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Numerical Results SDoF Oscillator

4.1. SDoF Oscillator

Numerical Results

¢ =0.02Ns/m
& —ct + kx + fn(x) = F cos(2t) ky =5N/m
F €[0.5N, 4N]

Energy Balance: £ § (EOM)idt

—c?{:Eth + ?{ fnla':dt:chos(Qt)idt
f frddt = ¢ 7{ B2t +F ?f cos(Qt)@dt
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Numerical Results

4.1. SDoF Oscillator

Numerical Results

& —ct + kx4 fr(z) = F cos(Q)

Energy Balance: £ § (EOM)idt

—c%:ﬁdt + % fnla':dt:F%cos(Qt)a':dt
f frddt = ¢ 7{ B2t +F }[ cos(Qt)@dt

Efrz'c = E. + Er
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Numerical Results SDoF Oscillator

4.1. SDoF Oscillator: Forced Response with ASC

Numerical Results
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4.1. SDoF Oscillator: Forced Response with ASC

Numerical Results
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SDoF Oscillator

4.1. SDoF Oscillator: Stability Verification

Numerical Results
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e Two types of instability encountered on the isolated branch
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4.2. MDoF System: Forced Response Results

Numerical Results
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MDoF System

4.2. Stability Certification: Comparisons Against
Frequency Domain Hill’s Coefficients

MDoF System

o HB-Hill* generates
d(2H + 1) eigenpairs.
Sorting usually unreliable
e The averaging approach
generates exactly 2d pairs
and is reliable for the

considered examples.
aVon Groll, G. and Ewins, D. “The Har-
monic Balance Method with Arc-Length Con-

tinuation in Rotor/Stator Contact Problems”.
(2001).
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5. Conclusions and Future Work

@ A novel fully frequency-domain stability certification
methodology developed through averaging.

@ The methodology is used to study the friction-saturated forced
responses of self-excited oscillators.
@ Reliability of the methodology is established through

o Comparison with the current alternative;
e Transient validation;
e Exhaustive post-bifurcation analysis.

@ Several salient features of forced self-excited dynamics have also been
highlighted.

Avenues for Future Work

@ The averaging methodology is fundamentally single-harmonic. Multi-harmonic
generalizations?

@ Further investigations into post-bifurcation behavior of friction-supported
self-excited systems.
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7.1. Non-Smooth Dynamical Systems
Backup Slides
e For analysis purposes, non-smooth systems have been generalized through

differential inclusions and formalized in Filippov Dynamical
2
Systems=~. i= f(z) N i€ F(z)

e Solution is continuous although the system is set-valued.
e The fundamental solution matrix is expected to show discontinuous jumps,
and representation through a Floquet normal form is not justified.
e Higenvalues of the mapping matrix M relating perturbations across
time-periods are referred to as Floquet Multipliers.
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7.2. Continuity of the Fourier Coefficients For the
Elastic Dry Friction Element
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Under harmonic displacement u(t) = uc cos T + ug sin 7, the Fourier
coefficients of the reaction force for f,.(t) = Fo cosT + FssinT are
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7.3. Consistency of Averaged Exponents and Floquet
Exponents
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7.4. Quasi-Periodic Numerics and Nonlinear Hysteresis
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e Time coordinates scaled as @ Physical time flows along the
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7.4. Quasi-Periodic Numerics and Nonlinear Hysteresis
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e Time coordinates scaled as @ Physical time flows along the
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71 = Marching in 2-D® space.
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