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Abstract:
Deterministic nonlinear oscillators provide a clear description of asymptotic behavior
through trajectories in phase space; however, in realistic physical systems, intrinsic or
external noise renders such descriptions incomplete. In the presence of stochastic forcing,
individual trajectories lose predictive meaning, and the system must instead be character-
ized in terms of probability density functions (PDFs). This shift in perspective motivates
the use of stochastic differential equations and their corresponding Fokker–Planck formu-
lations to study oscillator dynamics.

In this work, we analyze stochastic oscillators by deriving the Fokker–Planck equa-
tion in polar coordinates, which naturally separates amplitude and phase dynamics. Sta-
tionary solutions are obtained by exploiting the periodicity of the angular variable and
expressing the probability density as a Fourier series, leading to reduced equations for
the radial components. These solutions reveal nontrivial steady-state distributions and
associated probability currents in phase space. For the general, time-dependent case, the
evolution of the probability density is studied using characterization curves, providing
insight into the transport of probability beyond the stationary regime.

1 Introduction:
Nonlinear oscillators play a central role in many areas of physics, ranging from classical
mechanics and electronics to biological and chemical systems. In deterministic settings,
such systems are typically analyzed using phase-space trajectories, fixed points, and limit
cycles, which provide a clear description of long-time behavior [5]. However, real physical
systems are inevitably influenced by noise arising from thermal fluctuations, environ-
mental coupling, or internal degrees of freedom. In such cases, a purely deterministic
description becomes inadequate.

The Hopf oscillator serves as a canonical model for studying the onset of self-sustained
oscillations through a bifurcation mechanism. While its deterministic dynamics are well
understood, the inclusion of stochastic forcing leads to qualitatively new phenomena, such
as fluctuations in amplitude and phase, noise-induced shifts in stability, and persistent
probability currents. These effects cannot be fully captured by individual trajectories
and instead require a statistical description in terms of probability density functions [4].

To address this, stochastic Hopf oscillators are naturally studied using the Fokker–Planck
equation, which governs the time evolution of the probability density associated with
the underlying stochastic dynamics; in this work, attention is restricted to the drift-
dominated limit. Expressing the Fokker–Planck equation in polar coordinates allows for
a clear separation between radial and angular dynamics, making it particularly suitable
for oscillatory systems. This formulation provides direct access to steady-state distribu-
tions and probability currents in phase space, which are key indicators of nonequilibrium
behavior.



2 Background Concepts:

2.1 Hopf Bifurcation:

A fundamental mechanism for the emergence of limit cycles is the Hopf bifurcation, where
a stable fixed point loses stability as a control parameter is varied. Near the bifurcation,
the dynamics can be reduced to a universal normal form[5]. In Cartesian coordinates, this
describes the evolution of a complex amplitude, while in polar coordinates the dynamics
naturally separates into amplitude and phase equations,

ṙ = λr + αr3, θ̇ = ω + βr2. (1)

Here, λ controls the growth or decay of oscillations, with λ > 0 leading to a stable limit
cycle when α < 0. The parameter ω sets the base oscillation frequency, while β ac-
counts for amplitude dependent frequency shifts. This form highlights how nonlinearities
stabilize the oscillation amplitude while preserving phase dynamics.

2.2 Smooth and Non-smooth systems

Classical normal forms assume smooth vector fields and analyticity near the bifurcation
point. However, many physical systems involve non-smooth effects such as switching,
impacts, or threshold dynamics. In such cases, deterministic descriptions may be insuf-
ficient, particularly in the presence of noise, motivating a stochastic formulation that
remains meaningful beyond idealized smooth systems.

2.3 Stochastic Dynamics

To account for fluctuations, deterministic equations are extended to stochastic differential
equations (SDEs) by introducing noise [1]. These are commonly written in the Langevin
form,

ẋi = Ai(x) + ηi(t), (2)

where Ai represents the deterministic drift and ηi(t) is a stochastic force, typically mod-
eled as Gaussian white noise derived from a Wiener process. While different interpreta-
tions of stochastic calculus exist—most notably Itô and Stratonovich—their differences
are not essential for the present discussion and are treated briefly.

A key feature of SDEs is their Markov property: the future evolution of the system
depends only on its present state, not on its history. This property allows the dynamics
to be reformulated in terms of probability densities rather than individual trajectories.

3 Fokker–Planck Equation: Derivation and Interpreta-
tion

The evolution of stochastic dynamical systems can be described either at the level of
individual trajectories or, more generally, in terms of probability density functions. For
Markovian processes, the latter approach leads naturally to the Fokker–Planck equation.
In this section, we briefly outline its derivation starting from the Chapman–Kolmogorov
equation and the Kramers–Moyal expansion[4, 3].



3.1 Chapman–Kolmogorov Equation

Let p(x, t) be the probability of finding the system at state x at time t. For a Markov
process, the transition probabilities satisfy the Chapman–Kolmogorov equation,

p(x, t+∆t) =

∫
dx′ P (x, t+∆t | x′, t) p(x′, t), (3)

where P (x, t+∆t|x’, t) is the conditional transition probability. This equation expresses
the conservation of probability and the absence of memory beyond the present state.

3.2 Kramers–Moyal Expansion

To obtain a differential equation for p(x, t), the transition probability is expanded for
small ∆t. Introducing the increment ξ = x−x’, the Chapman–Kolmogorov equation can
be expanded in moments of ξ, leading to the Kramers–Moyal expansion,

∂tp(x, t) =
∞∑
n=1

(−1)n

n!

∑
i1···in

∂n

∂xi1 · · · ∂xin

[
M

(n)
i1···in(x) p(x, t)

]
, (4)

where the Kramers–Moyal coefficients are defined as

M
(n)
i1···in(x) = lim

∆t→0

1

∆t
⟨ξi1 · · · ξin⟩ . (5)

These coefficients encode the statistical properties of the stochastic increments and de-
termine the structure of the evolution equation.

3.3 Liouville Equation (Deterministic Limit)

In the absence of noise, only the first-order moment survives, and higher-order terms
vanish. Retaining only the first term of the expansion yields the Liouville equation,

∂tp(x, t) = −∇ · (A(x) p(x, t)) , (6)

where A(x) is the deterministic drift field. This equation describes the transport of
probability along deterministic trajectories and reflects strict conservation of probability
in phase space.

3.4 Classical Fokker-Planck Equation

For stochastic systems driven by Gaussian noise, the Kramers–Moyal expansion truncates
at second order, in accordance with Pawula’s theorem. Retaining terms up to n = 2 leads
to the Fokker–Planck equation,

∂tp(x, t) = −∇ · (A(x) p(x, t)) +∇∇ : (D(x) p(x, t)) , (7)

where D is the diffusion tensor associated with the second-order moments of the noise.
The first term represents deterministic drift, while the second accounts for the spreading
of probability due to stochastic fluctuations.



The Fokker–Planck equation can be written in the form of a continuity equation,

∂tp+∇ · J = 0, (8)

with probability current
J = Ap−∇ · (Dp). (9)

This formulation emphasizes probability conservation and provides a natural framework
for studying steady states, probability currents, and non-equilibrium behavior in stochas-
tic oscillatory systems.

4 Transformation into polar coordinates:
Consider the Liouville/drift part of Fokker-Planck equation in Cartesian coordinates,[4]

∂p

∂t
= −

[
∂

∂x
(Axp) +

∂

∂y
(Ayp)

]
= −∇ · (Ap), (10)

where,
A = (Ax, Ay). (11)

In polar coordinates (r, θ), the gradient operator is

∇ = r̂
∂

∂r
+

1

r
θ̂
∂

∂θ
. (12)

The drift vector is decomposed as

A = Arr̂+ Aθθ̂, (13)

The polar unit vectors are related to Cartesian ones by

r̂ = cos θ î+ sin θ ĵ, (14)

θ̂ = − sin θ î+ cos θ ĵ. (15)

Their derivatives satisfy

∂r̂

∂r
= 0,

∂θ̂

∂r
= 0, (16)

∂r̂

∂θ
= θ̂,

∂θ̂

∂θ
= −r̂. (17)

Using these relations, the divergence term becomes

∇ · (Ap) =
∂

∂r
(Arp) +

1

r
Arp+

1

r

∂

∂θ
(Aθp). (18)

Hence, the evolution equation in polar coordinates is,

∂p

∂t
= −

[
∂

∂r
(Arp) +

1

r
Arp+

1

r

∂

∂θ
(Aθp)

]
. (19)



∂p

∂t
= −1

r

∂(rArp)

∂r
− 1

r

∂Aθp

∂θ
(20)

5 Fourier Reduction in Polar Coordinates:
Having transformed the Fokker–Planck equation into polar coordinates, we now exploit
the periodicity of the angular variable θ to reduce the problem using a Fourier expansion.
This method allows a systematic separation of angular and radial dynamics and plays a
central role in analyzing stationary and near-stationary solutions.

5.1 Angular Fourier Expansion

Since the probability density p(r, θ, t) is 2π periodicity in θ, it admits a Fourier Series
representation,

p(r, θ, t) = a0(r, t) +
∞∑

m=1

[
am(r, t) e

imθ + a∗m(r, t) e
−imθ

]
. (21)

To obtain a reduced description, we retain only the lowest nontrivial angular modes,

p(r, θ, t) = a0(r, t) + a1(r, t) e
iθ + a∗1(r, t) e

−iθ. (22)

From the continuity form of the Fokker–Planck equation,

∂tp = −1

r

[
∂

∂r
(rArp) +

∂

∂θ
(Aθp)

]
, (23)

we define the residual operator

R(r, θ, t) ≡ ∂tp+
1

r

[
∂

∂r
(rArp) +

∂

∂θ
(Aθp)

]
. (24)

For the Hopf oscillator, the deterministic drift components are

Ar(r) = λr + αr3, (25)
Aθ(r) = ω + βr2. (26)

Importantly, both drift terms are independent of θ, which greatly simplifies the angular
projections.

5.2 Zeroth Fourier Mode

To extract the equation governing the radial density a0(r, t), we project R onto the zeroth
Fourier mode,

1

2π

∫ π

−π

R(r, θ, t) dθ = 0. (27)



Using orthogonality of the Fourier modes,

1

2π

∫ π

−π

eimθ dθ = δm0, (28)

all angular derivative terms vanish upon integration. This yields

∂ta0 +
1

r

∂

∂r
(rAra0) = 0. (29)

Substituting the Hopf drift Ar = λr + αr3,

∂ta0 = −1

r

∂

∂r

[
r(λr + αr3) a0

]
. (30)

This equation governs the evolution of the radial probability density.

5.3 First Fourier Mode

To obtain the equation for the first angular mode, we project onto eiθ

1

2π

∫ π

−π

R(r, θ, t) e−iθ dθ = 0. (31)

Evaluating each term yields

∂ta1 +
i

r
Aθa1 +

1

r

∂

∂r
(rAra1) = 0. (32)

Substituting the Hopf normal form,

∂ta1 = − i

r
(ω + βr2)a1 −

1

r

∂

∂r

[
r(λr + αr3) a1

]
. (33)

6 Steady-State Probability Density of the Hopf Oscil-
lator

6.1 Zeroth Fourier Mode

In the steady state, ∂ta0 = 0, and the equation reduces to

1

r

d

dr

[
r(λr + αr3)a0(r)

]
= 0. (34)

Integrating once with respect to r yields

r(λr + αr3)a0(r) = C0, (35)

where C0 is a constant of integration. Solving for a0(r), we obtain

a0(r) =
C0

r2|λ+ αr2|
. (36)



This expression represents the radial probability density in the steady state and ex-
hibits a divergence at the deterministic limit-cycle radius r0 =

√
−λ/α, as expected for

the deterministic Fokker–Planck equation.

6.2 First Fourier Mode

In the steady state, ∂ta1 = 0, giving

1

r

d

dr

[
r(λr + αr3)a1(r)

]
+

i

r
(ω + βr2)a1(r) = 0. (37)

Multiplying through by r and expanding the derivative leads to

(λr2 + αr4)
da1
dr

+ (2λr + 4αr3)a1 = −i(ω + βr2)a1. (38)

Dividing by λr2 + αr4 and separating variables, we obtain

1

a1

da1
dr

= −2λr + 4αr3

λr2 + αr4
− i

ω + βr2

λr2 + αr4
. (39)

Integrating, the real part determines the amplitude,

a1(r) =
C1

r2|λ+ αr2|
, (40)

while the imaginary part determines the phase. For the supercritical Hopf case (α < 0),
the phase can be written in a real-valued form using a hyperbolic arctangent,

ϕ(r) =
ω

λr
− 2

√
−α

λ
tanh−1

(
r

√
−α

λ

)(
ω

2λ
− β

2α

)
(41)

Combining amplitude and phase, the steady-state first Fourier mode is

a1(r) =
C1

r2|λ+ αr2|
exp[iϕ(r)] . (42)

The phase is defined up to an additive constant, reflecting the freedom associated
with angular probability currents in the steady state.

6.3 Reconstruction of the Probability Density

Having obtained the steady-state solutions for the zeroth and first angular Fourier modes,
the full probability density can be reconstructed by truncating the Fourier expansion at
first order. The angular Fourier representation reads

p(r, θ) = a0(r) + a1(r)e
iθ + a∗1(r)e

−iθ. (43)

This expression is real-valued by construction. Writing the first mode in polar form,

a1(r) = |a1(r)| eiϕ(r), (44)



the probability density takes the explicit form

p(r, θ) = a0(r) + 2|a1(r)| cos[θ + ϕ(r)] . (45)

Here, a0(r) determines the isotropic radial distribution, while the first Fourier mode
introduces angular modulation through a phase-shifted cosine term. This form makes
the presence of angular probability currents explicit and is particularly convenient for
visualization in polar or Cartesian coordinates.

Substituting the steady-state expressions for the radial amplitudes,

a0(r) =
C0

r2|λ+ αr2|
, (46)

a1(r) =
C1

r2|λ+ αr2|
, (47)

the reconstructed probability density becomes

p(r, θ) =
1

r2|λ+ αr2|
[C0 + 2C1 cos(θ + ϕ(r))] . (48)

Figure 1: Steady State Probability Density
α = −0.8, β = 0.5, ω = 2.8, λ = 0.5



7 Stream Function and Probability Currents
In the steady state, the Fokker–Planck equation assumes the form of a continuity equation
for the probability current,

∂tp+∇ · J = 0. (49)

For a stationary distribution, ∂tp = 0, implying

∇ · J = 0. (50)

Thus, the probability current is divergence-free and admits a stream-function represen-
tation.

7.1 Probability Current in Polar Coordinates

In polar coordinates, the probability current [4] associated with the deterministic drift is
given by,

J = (Jr, Jθ) = (Arp,Aθp) , (51)

where Ar and Aθ are the radial and angular drift components, respectively.
The condition of probability conservation in the steady state reads

1

r

∂

∂r
(rJr) +

1

r

∂Jθ
∂θ

= 0. (52)

7.2 Definition of the Stream Function

Since the probability current is divergence-free, there exists a scalar stream function
Φ(r, θ) such that

Jr =
1

r

∂Φ

∂θ
, Jθ = −∂Φ

∂r
. (53)

In terms of the probability density and drift fields, this implies

∂Φ

∂r
= −Aθp,

1

r

∂Φ

∂θ
= Arp. (54)

These relations define the stream function up to an additive constant and ensure that
∇ · J = 0 identically.

7.3 Physical Interpretation

The stream function Φ(r, θ) provides a geometric description of probability flow in phase
space. Contours of constant Φ correspond to streamlines of the probability current, along
which probability circulates without accumulation or loss.

In systems with detailed balance, the probability current vanishes identically and the
stream function is constant. In contrast, for the stochastic Hopf oscillator considered
here, the angular drift generates non-vanishing probability currents, leading to closed
streamlines in phase space. The existence of a nontrivial stream function therefore signals
the breakdown of detailed balance and characterizes the non-equilibrium nature of the
steady state.



7.4 Relation to the Fourier Representation

Using the truncated Fourier expansion

p(r, θ) = a0(r) + a1(r)e
iθ + a∗1(r)e

−iθ, (55)

the stream function naturally inherits the same angular structure. The zeroth mode
produces no angular current, while the first Fourier mode generates circulating probability
flow. Consequently, the stream function provides a compact way of visualizing the angular
modulation and rotational probability currents encoded in a1(r).

Although the stream function need not be evaluated explicitly for all purposes, its
existence offers a useful conceptual framework for understanding the geometry of proba-
bility transport in the steady state.

8 Time-Dependent Analysis via the Method of Char-
acteristics

To gain insight into the transient dynamics of the probability density, we analyze the
full non-stationary Fokker–Planck equation using the method of characteristics [2]. This
approach provides a geometric interpretation of probability transport in phase space and
clarifies how the steady state emerges from the underlying deterministic flow.

8.1 Characteristic Equations

In polar coordinates, neglecting diffusion, the Fokker–Planck equation can be written as

∂tp+
1

r

∂

∂r
(rArp) +

1

r

∂

∂θ
(Aθp) = 0, (56)

where the drift components for the Hopf normal form are

Ar(r) = λr + αr3, Aθ(r) = ω + βr2. (57)

The corresponding characteristic equations are

dr

dt
= Ar(r), (58)

dθ

dt
= Aθ(r), (59)

dp

dt
= −p∇ ·A. (60)

These equations describe, respectively, the radial motion, angular evolution, and the
change in probability density along characteristic curves in phase space.

8.2 Solutions of the Characteristic Curves

The radial characteristic equation,

dr

dt
= λr + αr3, (61)



can be integrated to give
1

2λ
ln

∣∣∣∣ r2

λ+ αr2

∣∣∣∣ = t+ C1, (62)

where C1 is a constant labeling different radial characteristics.
Eliminating time between Eqs. (58) and (59) yields the equation for the angular

characteristic curves,
dr

dθ
=

r2(λ+ αr2)

ω + βr2
. (63)

Integration leads to the implicit relation

− ω

λr
+

√
α

λ
ln

∣∣∣∣∣r −
√
−λ/α

r +
√

−λ/α

∣∣∣∣∣
(

β

2α
− ω

2λ

)
= θ + C2, (64)

where C2 labels distinct angular characteristics.
Finally, the evolution of the probability density along a characteristic is governed by

dp

dr
=

−2p(λ+ 2αr2)

r(λ+ αr2)
(65)

which integrates to

p =
C3

r2|λ+ αr2|
, (66)

where C3 is a constant along each characteristic curve.

(a) r(t) along characteristic curves. (b) Radial probability density p(r) for differ-
ent C3.

Figure 2: Characteristic behavior of the non-stationary Fokker–Planck equation.

Figure 2(a) Radial trajectories converge to the analytical limit-cycle radius r0 =√
−λ/α ≈ 0.790569., while Fig. 2(b) illustrates the corresponding probability accumu-

lation.



Before visualizing the angular characteristic curves, it is useful to rewrite Eq. (64) in
a form that makes its connection to the Fourier-mode analysis explicit. Equation (64)
can be expressed as

θ(r) = − ω

λr
+ 2

√
−α

λ
tanh−1

(
r

√
−α

λ

)(
ω

2λ
− β

2α

)
− C2. (67)

This expression is identical, up to an additive constant, to the phase appearing in the first
angular Fourier mode of the steady-state probability density. Thus, the angular charac-
teristic curves encode the same phase structure that governs the angular modulation of
the steady-state distribution.

Figure 3: Angular characteristic curves θ(r) plotted in the x–y plane. Here α = −0.8, β =
2, λ = 20, ω = 2.8

8.3 Interpretation and Relation to the Steady State

The characteristic curves describe the flow of probability in phase space. Radially, tra-
jectories are attracted toward the deterministic limit cycle, r0 =

√
−λ/α, while angular

motion proceeds with a radius-dependent frequency. Along these curves, the probability
density is amplified or depleted according to the local phase-space contraction rate.

The form of p(r) obtained from the characteristic analysis coincides with the radial
dependence of the steady-state solution derived earlier. Similarly the Angular character-
istic curves is same as the phase of the First Fourier mode of the steady-state probability
density. This demonstrates that the stationary distribution arises naturally from the ac-
cumulation of probability along characteristic curves and provides a geometric foundation
for the steady-state and stream function analysis presented in previous sections.



9 Conclusion
In this work, the stochastic Hopf oscillator was analysed within the Fokker–Planck frame-
work to understand the structure of its probability dynamics beyond individual trajecto-
ries. Starting from the time-dependent Fokker–Planck equation, the problem was refor-
mulated in polar coordinates, allowing a clear separation of radial and angular dynamics.
Exploiting the periodicity of the angular variable, a Fourier-mode reduction was employed
to obtain closed-form expressions for the leading modes of the steady-state probability
density.

The steady-state analysis revealed a divergence of the probability density near the
deterministic limit cycle, reflecting the accumulation of probability induced by radial at-
traction. The first angular Fourier mode was shown to generate non-vanishing probability
currents, indicating a breakdown of detailed balance and confirming the non-equilibrium
nature of the stationary state. The introduction of a stream-function formulation pro-
vided a geometric interpretation of these currents, with closed streamlines circulating
around the limit cycle.

Complementary insight was obtained from the method of characteristics applied to
the full non-stationary equation. The characteristic curves demonstrated how probability
is transported in phase space and how the steady-state structure emerges dynamically. In
particular, the angular characteristic solution was shown to coincide with the phase of the
first Fourier mode, establishing a direct connection between time-dependent probability
flow and stationary angular modulation.

Several extensions of the present work are natural. The inclusion of diffusion would
regularize the singularities observed in the deterministic steady state. Higher angular
Fourier modes could be incorporated to capture finer angular structure, and the approach
may be generalized to coupled oscillators or systems exhibiting non-smooth or noise-
induced bifurcations. These directions offer promising routes for further exploration of
non-equilibrium phenomena in stochastic nonlinear oscillators.
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