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Solid Section Torsion

1. Solid Section Torsion

Basic Setup

AEs

Section
Boundary
\/ T

62

~ Section
S
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o We assume:
@ No direct stresses applied:

o011 =022 =033 =0
@ Sections “rotate rigidly”:
Y23 =0 = o023 = 0.

@ Body is at equilibrium under constant
torque applied at right end.

o We will denote the section by S and the
section-boundary by I'.

o The words “torque” and “twisting
moment” will be used interchangeably.
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Solid Section Torsion  Stress Formulation (Equilibrium Considerations)

1.1. Stress Formulation (Equilibrium Considerations)

Solid Section Torsion

@ Since we assume o011 = 022 = 033 = 023 = 0, the equilibrium equations read,
012,2 +0133 =0, 0121 =0, o131 =0.

e We introduce the Prandtl Stress Function ¢(X>2, X3) (no dependence on X1) such
that

o2 =¢3, o13=—¢2.
This satisfies equilibrium by definition.

o In terms of strains the above assumptions imply that we only have Ej2 and Ej3 active.
Recall that Strain compatibility is ¢,k €nit Eij,mn = 0 (see Module 3).

@ The non-trivial compatibility equations read,
E12,23 — E1322 =0 332 + ¢ 222 =0
’ ’ = 2 ¢, = | V26 = constant |.
F1233 — F1323 =0 ¢,333 +p322 =0

e This PDE is a Poisson problem. What about Boundary Conditions?
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1.1. Stress Formulation (Equilibrium Considerations)

Solid Section Torsion

@ Since we assume o011 = 022 = 033 = 023 = 0, the equilibrium equations read,
012,2 +0133 =0, 0121 =0, o131 =0.

e We introduce the Prandtl Stress Function ¢(X>2, X3) (no dependence on X1) such
that
o12 =63, 013 =—¢2.

This satisfies equilibrium by definition.

o In terms of strains the above assumptions imply that we onpetbaua Eua and E.a actiu,

Recall that Strain compatibility is €y, jk€nit Eij,mn = 0 (seq Kinematic considerations
will give us this “constant”.

@ The non-trivial compatibility equations read,
E12,23 — E1322 =0 332 + ¢ 222 =0

’ ’ = 2 ¢, = | V26 = constant |.
F1233 — F1323 =0 ¢,333 +p322 =0
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Solid Section Torsion  Stress Formulation (Equilibrium Considerations)

1.1. Stress Formulation (Equilibrium Considerations)

Solid Section Torsion

e e In order to express the stress free boundary
A=2 condition on the section boundaries, it is
necessary to express the unit vectors
appropriately. For convenience we define eg

e and ey.
o We derive the coordinate transformation on
the boundary as follows:
dXze, + dXze; = dse, + dne,,
. |ds| _ |esre2 eseal |dXz
dn en-€2 en-ez| dX3
AE3 and, [&] = [esre2 es-ea] [e
o En En €2 En €3] €3
Xos  Xazs| |es
//\ T [ Xen X3l |es
gQ Ty i o Considering 2D construction of normal
\\ o 2€2 i) yectors, we will also have
— S|
€s = X2,s§2 + XS,ség
e, = —X3s€; + Xos€5 |:§S‘:| — |: X)?_vn 7)}X2,n:| |:§2i| .
Convention: e, X e5 = e, X e, =€, En T3, 2,8 €3
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1.1. Stress Formulation (Equilibrium Considerations)

Solid Section Torsion

e e In order to express the stress free boundary
2 condition on the section boundaries, it is
necessary to express the unit vectors

appropriately. For convenience we define eg
and eg.

&

=1

o We derive the coordinate transformation on
the boundary as follows:

that we will invoke as convenient. \—) = [Xz,s Xa,S] [22}

dXse, +dX3ze; = dse, + dne,,
. ds| _|es-e2 es-e3| [dX2
dn| = |en-e2 en-e3| |[dX3
These are two alternate but equiv- and, [75} = [Qi €2 Ean 91} [22]
—| alent representations for e, and ¢,, En En €2 En-€3] |E3

X2 X3 e
/ \ € 292 0Xaes N e
52 S e Cpnsidering 2D construction of normal
= 0X2€5  (ohiward worma) .
a vegtors, we will also have
= S|
€s = X2,s§2 + XS,ség
e, = =Xz 5e5 + X2 s¢; €| _ | Xam  —Xom| l&|
n €n _XS,S X2,s €3
Convention: e, X e3 = ¢, X e, =¢;
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Solid Section Torsion  Stress Formulation (Equilibrium Considerations)

1.1. Stress Formulation (Equilibrium Considerations)

Solid Section Torsion

€9

o Let us enforce stress-free boundary
condition now. The outward normal is

n = —ep. So we have,
n=-e,
0 o012 o013 0 0
o12 0 0 X35 | =10
o3 0 0 —Xas 0

= 012X3,s —013X2,5s =0

e
pes (6,530 + 62X2.) = 6,0 = 0
o That is, on the section-boundary, the
/ B stress function is constant, set to 0
>2 w.l.o.g.:
ey = KXo s€y + X3 €3 _ i on T
e, = — Xz s + Xo €3 ¢ = constail”

Convention: e, X e3 = ¢, X e, =¢;
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Solid Section Torsion  Stress Formulation (Equilibrium Considerations)

1.1. Stress Formulation (Equilibrium Considerations)

Solid Section Torsion

We have invoked
e, = —X3 ey + Xo seq here.

=n

€9

o Let us enforce stress-free boundary
condition now. The outward normal is

n = —ep. So we have,
n=-e,
0 o012 o013 0 0
o12 0 0 X35 | =10
o3 0 0 —Xas 0

= 012X3,s —013X2,5s =0

e
pes (6,530 + 62X2.) = 6,0 = 0
o That is, on the section-boundary, the
/ e stress function is constant, set to 0
>2 w.l.o.g.:

N Py 0
ey = KXo s€y + X3 €3 _ i on T
e, = — Xz s + Xo €3 ¢ = constail”

Convention: e, X e3 = ¢, X e, =¢;
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Solid Section Torsion

Displacement Formulation (Kinematic Considerations)

1.2. Displacement Formulation (Kinematic Considerations)

Solid Section Torsion

€

Let uy = ul(Xl,Xg,Xg)
U2 = 79X3
us = 0X2

€2

Balaji, N. N.
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o The strains are,

E11 =u1,1 =0

Ezg = 79,2X3 =0

E33 = 03X =0

Vo3 =6 —0 =0
(e

Y12 = ui,2 — 0,1 X3= g = ¢Cf
o

Y13 = w13 + 0,1 Xo= g = _¢Cf

o Differentiating the strain expressions for
o12 and 013 above allows us to write:

=507}

which gives us the “constant” required for
the Poisson problem from before (along
with the B.C. ¢ =0onT).
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Solid Section Torsion

1.2. Displacement Formulation (Kinematic Considerations)

Solid Section Torsion

€

Let ui = u1 (X1, X2, X3)

U2 = 79X3
us = 0X2

0N &

Balaji, N. N.
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o The strains are,

E11 =u1,1 =0

Ezg = 79,2X3 =0

£33 = 03X —0

Y23 =0 — 0 =0
(e

Y12 = ui,2 — 0,1 X3= g =
J13

— i 40 Xe= 23— _
Y13 1,3 ,1A82 G

Displacement Formulation (Kinematic Considerations)

¢.2

G

o Differentiating the strain expressions for
o12 and 013 above allows us to write:

=507}

which gives us the “constant” required for
the Poisson problem from before (along

with the B.C. ¢ =0onT).
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Solid Section Torsion Section Moment

1.3. Section Moment

Solid Section Torsion

€

@ The non-trivial shear stresses are:
o12=¢3 =G(ui2— X361)
o013 = —p,2 = G(u1,3 + X20,1)

o The moment about e; is

My =/(X20'13 7X3a'12)dA 8
S

Let w1 = wy (X1, Xa, X3) ° Smc'e 012 an'd 013 are' e'xpressed in terms
of kinematic quantities as well as the

- uz = —0X; stress function ¢, we will write down
7 uz =0X relationships with both before proceeding.
’ 0 ""\ 22 @ Since o12,2 + 013,3 = 0, we can also say

=]
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Solid Section Torsion Section Moment

1.3. Section Moment

Solid Section Torsion

€

@ The non-trivial shear stresses are:
o12=¢3 =G(ui2— X361)
o013 = —p,2 = G(u1,3 + X20,1)

o The moment about e; is

My =/(X20'13 7X3a'12)dA 8
S

Let w1 = wy (X1, Xa, X3) ° Sinc'e 012 an'd 013 are' e'xpressed in terms
of kinematic quantities as well as the
> uz = —0X; stress function ¢, we will write down
7 > uz = 60X relationships with both before proceeding.
f 05| &9 @ Since 0122 + 013,3 = 0, we can also say
This is the governing equa-

tion in terms of the section- ).

axial displacement field.
—
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Solid Section Torsion Section Moment

1.3. Section Moment

Solid Section Torsion

In terms of stress function

My = / (X2013 — X3012)dA
s

=~ [ ouxuda = [ @X0). - 2604
S S

:/SzabdAfﬂéM (A = nxex)

s
$»=0o0n 88

M1:2/¢dA‘
S
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Solid Section Torsion Section Moment

1.3. Section Moment

Solid Section Torsion

In terms of kinematic description

M1 :G/ (X2u1,3 — X3U1,2)dA
S
In terms of stress function

+G/(X§+X§)dA9,1
N
My = / (Xo013 — X3012)dA I11
S
:G1119,1+G/ €1‘kX"u.11de
=_/ ¢ xXpdA = —/(qﬁXk),k ~ 26dA s TR
S S
. =G111911+G\/ El'k(X'ul),de
:/2¢»dA74’4M (A = nwew) (X
S S
$=00n 9S8 ” _G/MuldA
S

M, = 2/ ddA | M,y :Glne,l +G/ elijjnku1d|s|

S a8

<

M, = G1119,1 +G/ (l X Q)luld\s| N

a8

y
o
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Solid Section Torsion Section Moment

1.3. Section Moment

Solid Section Torsion
In terms of kinematic description

M1 :G/ (X2u1,3 — X3’u,1,2)dA
S

In terms of stress function 5 5
+ G/ (X2 4+ X2)dA0,
N
M1 = / (X20'13 — Xga’lz)dA Iy
s L
dA
— _/ bk XpdA = — /(¢Xk) e — 20dA This term is clearly zero for |*
s /s a perfectly circular section.
- / 2¢dA 7% (A = nyer) What about other types? )wdd
s 3
N e— 4
s ey ~G [ coptzrinda
M, = 2/ ddA | M,y :Glne,l +G/ €15k jnku1d|s|
s as
o ~
M1:G111911+G/ (XXQ)luld‘:”"
as
y
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Solid Section Torsion Section Moment

1.3. Section Moment

Solid Section Torsion
In terms of kinematic description

Ml :G/ (X2u1,3 — X3’u,1,2)dA
S

In terms of stress function 5 5
+ G/ (X2 + X2)dA 6,
N
M1 = / (X20'13 — Xga’lz)dA Iy
s L
dA
— / bk XpdA = — / ($X1) .k — 2pdA This term is clearly zero for |*
/s /s a perfectly circular section.
- / 2¢dA 7% (= nrer) What about other types? )wdd
s 5 -
N e— 4
movnos ~G [ coptzrinda
My = 2/ PdA | Not zero in the general case. f
s Y
v . ~
Ml:G1119,1+G/ (&Xg)luld\:ﬂ
25
y
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Solid Section Torsion Section Moment

1.3. Section Moment: Saint-Venant’s Warping Function

Solid Section Torsion

e For a “pure twist” condition u; can not depend on X1 (011 =0 = &1 =u1,1 =0). It
also makes sense that u; has to be proportional to the twist § somehow (no/little
twist = no/little axial deformation).

e Saint-Venant introduced a warping function ¥ (X2, X3) such that

‘ uy = 0,19(X2, X3) ‘

(recall that 6 depends on X1, but 61 is a constant)

o Under this definition, the effective moment M; can be given as,

M, =G (111 -‘r/(& X Q)ld)d|s|> 971 = GJ@J N
r

J

e J is known as the Torsion Constant (GJ is Torsional Rigidity).

o In terms of section integral, J can be expressed as

J=In+ / Xoth5 — Xath 2dA.
S
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Solid Section Torsion Membrane Analogy

1.4. Membrane Analogy

Solid Section Torsion

The governing equations in terms of Prandtl Stress function is

@k +2G0 1 =0, ¢ =0onl', along withM; = 2/ PdA.
S
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Solid Section Torsion Membrane Analogy

1.4. Membrane Analogy

Solid Section Torsion

The governing equations in terms of Prandtl Stress function is
@k +2G0 1 =0, ¢ =0onl', along withM; = 2/ PdA.
S

Transverse Deflections of a Membrane under Isotropic Linear Tension Density 7 and
Uniform Pressure P

@ The displacement field
up =0, wux=0, uz=w(Xi,Xs)
@ The strain Field (von Karman)
w? w%
E11 = =, &2 = 5 M2 E=waws
@ The Stress Field

1 1
o1 = -1, o022 =-T.

@ Strain Energy Density (Integrated over
thickness)

u:%(w?1+w?2)T+Pw

@ Equations of Motion (Euler-Ostrogradsky):
s au_ _ ou _ .

X, dw, | ow

‘T(w,u +w,22)7P:0‘
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1.4. Membrane Analogy

Solid Section Torsion

The governing equations in terms of Prandtl Stress function is

Transverse Deflections of a Membrane under Isotropic Linear Tension Density 7 and

@ The displacement field
up =0, wupx=0, uz=w(X,Xs)

@k +2G0 1 =0, ¢ =0onl', along withM; = 2/ PdA.
S

Uniform Pressure P

The strain Field (§

11 = —,
The Stress Field

g11 H

Strain Energy Den

The governing equations, there-
fore, are identical to that of an
isotropically tensed mem-
brane undergoing deformation
under the action of a uni-
form transverse pressure.

thickness)

u:%(w?1+w?2)T+Pw

Equations of Motion (Euler-Ostrogradsky):
s au_ _ ou _ .

X, dw, | ow

‘ T (w11

+w,22)*P:0‘
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Solid Section Torsion Membrane Analogy

1.4. Membrane Analogy: Governing Equations of u; (Warping)

Solid Section Torsion

o The governing equations in terms of u; is the Laplace equation:
uy, gk = 0,
and its boundary conditions (Neumann B.C.s) are written as (again based on zero
traction at free end:
G ((u1,2 — X36,1)e, + (u1,3 + X260 1)eg,¢e,) =0

= (u1,2e, + u1,3e5, X2 ne, + X3 nes)
—0,1(X3ey — Xaeg, — X356y + Xa5e5) =0

01 d 2 2
= U= -2 (X2 +X3> =0, | X3Xa., —Xo X5
2 ds —— ——
- o
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Solid Section Torsion Membrane Analogy

1.4. Membrane Analogy: Governing Equations of u; (Warping)

Solid Section Torsion

e The governing equatio Note: We have used two differ- on:

ent representations of e here:

e, = X2 ney + X3 neg, and
and its boundary cond e, = — X355+ Xo sy as (again based on zero

. £n
traction at free end:
Also, we are represent-

G ((u1,2 ing the outward normal as

= (u1,2¢, N = noe, +nze; = —e, .

—0,1(X38; — X263, ~X3,:€; T X2,:63) = U

01 d 2 2
= U= -2 (X2 +X3> =0, | X3Xa., —Xo X5
2 ds —— ——
—ng —n3
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Solid Section Torsion Membrane Analogy

1.4. Membrane Analogy

Solid Section Torsion

Equations in the Stress Function Equations in Warping
V3¢ = 2G04, VZur =0,
=0onT, o
¢) on % = 971 (X3’I’L2 — ing) onl.
mn
M1:2/Sd>dA. M, = GJ6,

Relating the two
@ Once we find ¢, we can integrate the

following to get wuy:

1
“ s = uis — X356
G¢,3 u1,2 301

1
—647,2 =uy,3+ X201
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Solid Section Torsion

1.4. Membrane Analogy

Solid Section Torsion

Equations in the Stress Function

V2= —2G6 1,
¢ =0onl,

2/5 $dA.

My

Membrane Analogy

Equations in Warping

V2U1 = 07

1%}

ﬂ = 971 (X3n2 — X2n3)0n I.
on
M; = GJ@yl

Relating the two

@ Once we find ¢, we can integrate the

following to get u;

1¢>
[Eh

i¢
Iel ,2

If interested, you can see
the FreeFem scripts in
the website for numerical
implementations of these.
You need to know just a
little bit about weak forms

=wu12 — X301

=wu1,3+ X201

Balaji, N. N. (AE, IITM) AS

to understand the code,
it is very straightforward.

(not for exam)
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Solid Section Torsion  Tutorial: Elliptical Section

1.5. Tutorial: Elliptical Section

Solid Section Torsion

o Let us consider an elliptical section and choose the stress function as

e The Laplacian of ¢ evaluates as,

1 1 212
v2¢720< +—):—2G0,1:>C:— b

a
GOy ———.
b TaZ 102

o Let us first compute the total resultant twisting moment M; that this represents:

ma3b Trab3

M1:2/¢>:2C /XQdA+b2/X3dA /dA = —Crab
S
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Solid Section Torsion  Tutorial: Elliptical Section

1.5. Tutorial: Elliptical Section

Solid Section Torsion

o Let us consider an elliptical section and choose the stress function as

e The Laplacian of ¢ evaluates as,

1 1 212
v2¢720< +—>:—2G0,1:>C:— b

a
GOy ———.
b TaZ 102

o Let us first compute the total resultant twisting moment M; that this represents:

ma3b Trab3
M1:2/¢:QC /XQdA+b2/X3dA /dA = —Cmab
S

The torsional rigidity reads,

My =G———0, ma®b®
) J =
a2 + b2 G Ga2 T2
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Solid Section Torsion  Tutorial: Elliptical Section

1.5. Tutorial: Elliptical Section

Solid Section Torsion

e For the axial deflection we have two equations (by equating shear stress expressions),

2a2 a? — b2
=0 =————01X3+01X3=———-01X
ur2 =012 LS 3+0,1X3 PEETAARE
202 a® —b?
=9 = ———-01X2—-01X2 =———-0:1X
u1,3 1.3 2oz 0. PECLERE

o Integrating them separately we have,

a? —b?
=2 7% p.x X
uy a2+b20’1 2+ f1(X3)

a27b2

—me,lXQ + f2(X2)

o f1 and f2 have to be constant. Setting it to zero we have,

a2 _ b2 a2 _ b2
m€71X2X3 = — 3M1X2X3 8

= Gradh

Balaji, N. N. (AE, IITM) AS3020%* September 23, 2025
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Solid Section Torsion  Tutorial: Elliptical Section

1.5. Tutorial: Elliptical Section

Solid Section Torsion

Stress Function

Section Warping

(=]
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Solid Section Torsion  Tutorial: Elliptical Section

1.5. Tutorial: Elliptical Section

Solid Section Torsion

Stress Function

Section Warping

General Sections

@ Torsion is amenable to analysis when the solid section boundary can be expressed in closed form AND its
Laplacian evaluates to a constant. (See Chapter 9 in Sadd 2009)

@ Every assumed form of ¢ will give us a warping field. For an application wherein the section warping is also
constrained, this solution is not exact. (Saint-Venant’s principle can be invoked, however).

@ Several analytical techniques exist (check Sadd 2009 and references therein).

Fully numerical approaches are also possible, see the FreeFem scripts in the website.

=}
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Solid Section Torsion  Tutorial: Elliptical Section

1.5. Tutorial: Elliptical Section: Results in 3D

Solid Section Torsion

Here is a 3D FE Result. o o5
(Salome_Meca HDF Files in website) oo

s 0 61004

0.0005

Displacement - Magnitude

-

CopE aster

salome_meca2023 M
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Solid Section Torsion  Tutorial: Elliptical Section

1.5. Tutorial: Elliptical Section: Results in 3D

Solid Section Torsion

. -
Here is a 3D FE Result. o o5
(Salome_Meca HDF Files in website)
T 0
3.7e-06
3e-6
2e6

Displacement - DX

COpE aster

salome_meca2023 ¥ s

=}
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1.5. General Sections

Solid Section Torsion

Square Section

Solid Section Torsion

Triangular Section

Tutorial: Elliptical Section

Balaji, N. N.

(AE, IITM)

AS3020%*
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Solid Section Torsion  Tutorial: Elliptical Section

1.5. General Sections

Solid Section Torsion

An Arbitrary Hand-drawn Section

Square Section

J

(=]
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Solid Section Torsion  Tutorial: Elliptical Section

1.5. General Sections

Solid Section Torsion

e St Sections with Holes

The validity of the governing equations extend beyond singly
connected sections. Nothing stops us from applying it for multiply
connected sections also for the warping formulation. (Some
additional considerations necessary for the stress function, see sec.
9.3.3 in Sadd 2009).

v

(=]
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Solid Section Torsion Rectangular Sections

1.6. Rectangular Sections

Solid Section Torsion

@ Rectangular sections are slightly more involved, in general. But an important
simplifcation is achieved for thin sections.

e Let us look at some numerical results for motivation (FreeFem code b_rectangle.edp).

=1

L[
N
ool

t
h

A
~

t
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Solid Section Torsion Rectangular Sections

1.6. Rectangular Sections

Solid Section Torsion

o Rectangular sections are slightly more involved, in general. But an important

simplifcation| For the thin cases, we will ap-
o Let us look 4 proximate the shear function as rectangle.edp).
t 1 L
h 8 16
A

%

This will form the basis for the study of thin sections.
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Solid Section Torsion Rectangular Sections

1.6. Rectangular Sections: Thin Strip Idealization

Solid Section Torsion

o Idealizing the rectangle as a “strip” (t/h is very small), we can write the stress function
Poisson problem as,

t t h h
:72G9,7 ith =0at X a5 A 7X — a5 A )
?,22 wi o) a 26{ 5 2} 36{ 5 2}

2
solved by | (X2, X3) = —G¢’ <X22 - (%) ) .

e This implies the following shear stress and resultant moment: 7
.3 —b2 ~ N
~~ — ht®
oi2= 0, 013 = 2G X20", My, =2 d)dA:G?G.
S

o The shear strain is 13 = u1,3 + u3,1 = u1,3 + X260 1, which implies as

the warping field (setting integration constant to zero).
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Solid Section Torsion Rectangular Sections

1.6. Rectangular Sections: Thin Strip Idealization

Solid Section Torsion

o Ideali Warping Profile }s function

Poissc

solvec

@ This i

o The s 2 X3 | as
the w

(=]
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Torsion of Thin-Walled Sections

2. Torsion of Thin-Walled Sections

o Using the same notation as in Module 4, the equilibrium equations, for a thin-walled
section undergoing pure torsion (011 = 0ss = opn = osn = 0) can be written as

MO+ o1s,s =0, o151 =0, (Uln ~ 0)~

e This implies, when in “pure torsion”, o1, is constant along the section arc.

e Since g(s) = folSan, this shows that shear flow is constant across the section
(along es) under pure torsion.

o The resultant moment of a shear flow distribution ¢(s) can be given by

Ml—/XX s)dse,) = /pds7
S

where p is the perpendicular distance to the point on the skin under consideration.
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Torsion of Thin-Walled Sections

2. Torsion of Thin-Walled Sections

o Using the same notation as in Module 4, the equilibrium equations, for a thin-walled
section undergoing pure torsion (011 = 0ss = opn = osn = 0) can be written as

An important simplification occurs
when S is a closed section. This

- . leads to the Bredt-Batho Formula: .
e This implies, whe tion arc.

e Since g(s) = fols My = 2Aq. hcross the section
(along es) under pure torsion.

o The resultant moment of a shear flow distribution ¢(s) can be given by

Ml—/XX s)dse,) = /pds7
S

where p is the perpendicular distance to the point on the skin under consideration.
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Torsion of Thin-Walled Sections Coordinate Transformations

2.1. Transformation of Displacement Field to Skin-local Coordinates

Torsion of Thin-Walled Sections

We will consider the
bending-torsion com-
bined displacement field:
us = v — X360

uz = w + X306, 1

and transform this to the skin
local coordinate system.

€3

//—\ 3
\ e, = Xa.ee + Xsee5

€, = —Xjsey + Xo €4

Balaji, N. N. (AE, IITM)

o The section displacement field transforms as,
us| _ | X2,s X35 |uz2
Un X2,n X3,n u3
— X3,n _X2,n u2
—X3,s  Xos | |uz|’
o The tangential component of displacement

along the boundary I" can be written as,

Ug = XQ’S(U — X39) + X3’S(’UJ + X29)
=Xo v+ X3 5w+ 0 (X3, X2 — X2 s X3)
—_—

—Xn=p

= |us =pb +vXo s +wX3; |
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Torsion of Thin-Walled Sections Coordinate Transformations

2.1. Transformation of Displacement Field to Skin-local Coordinates

Torsion of Thin-Walled Sections

o The transformed displacement field combining bending and torsion is:

ur = —X3v' = Xow' +6'y w1 (unchanged)
uy =v— X360 = us =pl+vXos+wXss
uz = w+ X0 Un :X597UX373+UJX2’S

o The shear strain along a thin section between the e, e, directions is

T q\s
Yis = Ul,s + Us,1 = Ul,s +p9, + X2,S'U, + X3,sw, = 6 = %

o Integrating this over the skin, we get

%dw =(u1(s) —ul(O))+0//pdw+v//Xg,l.dzr-i-w//‘Xg,mdw
0 0 0 0

= (u1(s) — u1(0)) + 0'2A405(s) + v' (Xa(s) — X2(0)) = (Xsls) — X5(0)).

q(s) /
ds = 246
at ¢

@ Over a completely closed section we have,
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Torsion of Thin-Walled Sections Closed Sections

2.2. Closed Sections: Bredt-Batho Theory

Torsion of Thin-Walled Sections

o For closed sections under pure torsion, we will set v =w = 0.

@ So g is constant over the section and is written with the Bredt-Batho Formula based on

the resultant twisting moment M; as

My
My =2A¢ = q¢= —.
1 q q oA

@ The shear flow integral reacsls,

. B

q | =—da = (ui(s) — ui(0)) + 6’ /pdz .
J Gt .

& — NI
Sos(s) 2A05(s)

For the whole section, this becomes

1 q 1
~a :9’2A=>0’:—7{—d.
q?{Gts 2A )

e So we can write the warping as g6
—~
M6

ui(s) —u1(0) = oA (

505(3) 'AOS (8))
é A
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Torsion of Thin-Walled Sections Closed Sections

2.2. Closed Sections: Bredt-Batho Theory

Torsion of Thin-Walled Sections

o For closed sections under pure torsion, we will set v =w = 0.

@ So g is constant over the section and is written with the Bredt-Batho Formula based on

the resultant twisting moment M; as

My
My =2Aq = q= —.
1 q q oA
o The shear flow integral reads
The integration constant uj(0) can be found by enforcing o11 = 0 on
the section after assuming 011 o< uj. So ful (s)ds = 0 in the section,
leading to:

B $uio(s)tds
Fo “wO= e

where u10(s) is the warping distriution assuming u1(0) = 0.

q)uau.)—un v—ﬂfaua.

e So we can write the warping as 5
—~=
wr (s) (o) M0 (505(8) B A075(8)>
2A 3 A
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Torsion of Thin-Walled Sections Closed Sections

2.2. Closed Sections: Bredt-Batho Theory

Torsion of Thin-Walled Sections

o For closed sections under pure torsion, we will set v =w = 0.

@ So g is constant over the section and is written with the Bredt-Batho Formula based on

the resultant twisting moment M; as

@ The shear flow integral reacsls,

L B

q | =—da = (ui(s) — ui(0)) + 6’ /pdw .
J Gt

& — NI
Sos(s) 2A054(s)

For the whole section, this becomes

1
—ds =024 —=|6' =
q%Gts

e So we can write the warping as g6
M15 505(8) AOs(s)
—_ 0) = ——
(e —m(0) =57 ( 5 A
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Torsion of Thin-Walled Sections Closed Sections

2.2. Closed Sections: Bredt-Batho Theory

Torsion of Thin-Walled Sections

o For closed sections under pure torsion, we will set v =w = 0.

@ So g is constant over the section and is written with the Bredt-Batho Formula based on

t

e resnltant twistine moment My a

o 1

Combining these two, we

get the torsional rigidity:
My =2Aq
_4A2

70/
5 .

For constant G, t, we get,

4A2
M| = —Gtb' = GJo
Iy
4tA?
— | J =
|

[T'| is the section circumference.

u1(0)) + 0" [ pdw .
i

N’
2A05(s)
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Torsion of Thin-Walled Sections Closed Sections

2.2. Closed Sections: The Neuber Beam

Torsion of Thin-Walled Sections

@ A natural question arises: what should I do if I want to minimize/eliminate warping?
e We want to set ui(s) — u1(0) =0, Vs € I'. This implies:

603 (s) -AOs (3)

§ A
which is satisfied iff
dzi%s(s)
~~
1 1 P
5§ Gt 24

e This implies that the quantity pGt (modulus as well as thickness can vary along section)
has to be a constant:

2.4
Gt = 22
P 5

o It is known as a Neuber Beam if this is satisfied. (eg., circular sections)
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Torsion of Thin-Walled Sections Closed Sections

2.2. Closed Sections: The Shear Center

Torsion of Thin-Walled Sections

o Based on relating the kinematics to stress (through linear elastic constitutive
relationships), we have written the shear flow integral as:

q(s;82,83) _ ’
f Tds =2A6".

e Suppose, for a closed section, we evaluated the shear flow by the approach in Module 4.
Recall that we required the resultant nzol{’negnt’j M to be zero for this:
q(s;€2,83

?{p(%(s;fm&g) +qo(&2,€3))ds = 0.

e We can not take it for granted that the section does not twist when no moment is
applied. So we add this additional consideration in our definition of shear center. We
posit that the resultant twist angle must also be zero when the shear resultants act
along the shear center:

0 =0 — 7{%(8;52763)6;:- qo(§27§3)d5 —0

e Considering V2, V3 separately, we can get 3 equations in the 3 unknowns and can solve it.
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Torsion of Thin-Walled Sections Closed Sections

2.2. Closed Sections: The Shear Center

Torsion of Thin-Walled Sections

One possible sequence of analysis is this (for shear):
@ We choose some convenient point as origin, say O.

© We first obtain the “baseline” shear flow ¢, (s) using some arbitrary starting point for
the shear flow integral.

@ We estimate go by requiring zero twist:

%(5 ds
7{%(8)+qods:0:> PR $ Grds)
Gt § a7ds

@ We write down the resultant moment as
 p(an(5) +a0(5))ds = Va(—€) + Va(6a).

The shear center coordinates (£2,£3) are estimated by comparing the coefficients of V2 &
V3 in the above.
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Torsion of Thin-Walled Sections Closed Sections

2.2. Closed Sections: The Shear Center

Torsion of Thin-Walled Sections

One possible sequence of analysis is this (for shear):
@ We choose some convenient point as origin, say O.

© We first obtain the “baseline” shear flow ¢, (s) using some arbitrary starting point for
the shear flow integral.

@ We estimate o by Question: We never required
the zero twist condition for
open sections. Does this mean 90(5) g
open sections can undergo | Gt " |
twisting even when M; = 07 éds

@ We write down the resultant moment as
 p(an(5) +a0(5))ds = Va(—€) + Va(6a).

The shear center coordinates (£2,£3) are estimated by comparing the coefficients of V2 &
V3 in the above.
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Torsion of Thin-Walled Sections Closed Sections

2.2. Closed Sections: Tutorial on Rectangular Closed Sections

Torsion of Thin-Walled Sections

o Consider this rectangular Section:
€2
B

(@)
C D

o We will write out the warping quantity 2;%0’ (u(s) —u(0)) = % — AOTS@) as a table
in the following fashion:

Section | dos(s) Aos(s) 60%@ — AOTS(S) ﬁlel(uend — Ustart)
5 —X2 b —b —b
A—B ‘i 1(5 —X2) Ta(arn) (3 — X2) T(atd)
B—C %—X3 a/b X- a—b b X a—b
- Gt 7G5 =X3) | —mary (3 —X3) ~ZTa(ath)
F+Xo b —b —b
C=D i Gt Z(% + X2) 4a‘2a+b) (% + X2) 4acéa+b)
5+X3 b —b b —b
D—A : Gt %(5 + Xj) 4(Lcéa+b) (5 +Xs) — 4acz’a+b)
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Torsion of Thin-Walled Sections Closed Sections

2.2. Closed Sections: Tutorial on Rectangular Closed Section

Torsion of Thin-Walled Sections

o Letting uy be some constant, we have the following:

a—>b

C=uyu, = 240" ———.
u UL, UD =UA+ 1(a+0)

= 240’ 2,
UB = uA + atb)

o In each member, the warping function is distributed linearly in each member such that
the warped shape looks like:

D
Pigures from Megson 2013
o Imposing zero net translation of section we get,

a—2>b 0 —» a—2>b
= Up = ————.
4 AT T 8(a+b)

%u(s)ds =wua2(a+0b)+
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Torsion of Thin-Walled Sections Closed Sections

2.2. Closed Sections: Tutorial on Rectangular Closed Section

Torsion of Thin-Walled Sections

o Letting uy be some constant, we have the following;:

a—>b a—>b

= 240" C=wuy, = 240 ———.
up =up + 1 u UA, UD =UuUA+ Hatb)

(a+b)’

o In each member, the warping function is distributed linearly in each member such that
the warped shape looks like:

Figures from Megson 2013

e Imposing zero net translation of section we get,

a—2>b 0 a—2>b
=0 = uy=——-—.
A7 T8+ b)

%u(s)ds =wua2(a+0b) +

Balaji, N. N. (AE, IITM) AS3020%* September 23, 2025 29 /43



Torsion of Thin-Walled Sections Open Sections

2.3. Open Sections

Torsion of Thin-Walled Sections

o We will invoke the thin-strip idealization for this. The main results from the idealization

are:
12 ht3
¢=-GO' (X3 —=); M =G—_0;
4 3
o12 =0, o13= QGXQGI, up = 9/X2X3.
o For general thin-walled sections, the torsion constant J is generalized as,

1
J = 7/ t3ds, st. M =GJo'.
3Js

Thin Section Kinematics

The kinematics of thin sections can be given as
Xp=—
Us = —Xn0 + vXo,5 + wXg s =E=Eop0 + vX2 s + wX5 s

Up = X0 —vX3 s +wXao s g 50 —vX3 s +wXo .
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Torsion of Thin-Walled Sections Open Sections

2.3. Open Sections: Warping

Torsion of Thin-Walled Sections

o Along the centerline o1, = 015 = 0 (Note: shear flow is zero under the idealization!).
So we have (on the centerline),

Y1s =0 = Ul,s + Us,1 = UL s +P9/7

where p is the perpendicular distance to the point on the skin. This can be integrated to
S

ui(s) —ui(0) = —0" [ pds = —20" Aps(s).
/

@ u1(0) can be fixed based on enforcing the zero straight-stress (o11 =0, 011 o< u1)
assumption which leads to

/Ful(s)dszo = u1(0) = ﬁ29 /Aos(s

|| is the total circumference.
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Torsion of Thin-Walled Sections Open Sections

2.3. Open Sections

Torsion of Thin-Walled Sections

o For points off of the centerline, we consider o1, = 0, which implies,

/ !
Yin =Uln + Un,1 =Ul,n + 50" =0 = uyp = —s6',

where s is the position of the point along the skin (measured relative to the central line).

o This can be integrated to
up = —0'ns +u1(n = 0),

where n is the position with respect to the centerline along e,, .

e Note that while e, X e = e,, we have e, X e, = e,. Hence the negative sign in
comparison to the thin-strip expression.

o ui(n=0)=mwup— 20" Aps(s) from the centerline considerations above.
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Torsion of Thin-Walled Sections Open Sections

2.3. Open Sections

Torsion of Thin-Walled Sections

o In summary, the warping can be written in terms of section-local coordinates as,

up = ug — 2A405(5)0" —0'ns |.
—_———

u1(n=0)

o The first term in the above, representing center-line warping, is known as primary
warping, and the second term, representing section warping, is known as secondary
warping.

o For sufficiently thin sections, the latter is usually neglected.
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Torsion of Thin-Walled Sections

2.3. Open Sections Tutorial: C-Section

Torsion of Thin-Walled Sections

e Let us consider the C-Section from

Module 4.

o We will shift the origin to the shear
center and consider the integrals.

o The torsional rigidity is given by:

Gt3 2b
e
e Warping is worked out as,

A05(5) end
B— A %(b‘f'gs_X?) %
A=C | —&(h—X3) | —&h
C—D | bxy-¢) b

Balaji, N. N. (AE, IITM)

Open Sections

€3
_ (h® +6bh?)t 5
A $5 o & 12 +0()
hitVs
¢ a54(X2) = 5710~ X2)
<2 v, B\ | tVa
) € qac(Xg)=—5— <b+ ) +2x2
1 &— }QLIV 205
X = 3(h—
. o2 gep(Xz) “oh, (b—X2)
2 b2h2tV,
M, = ?{pqd.s = _Tn = —V3&s
b2
&% e 00

AS3020%*

o Using the table we can write:

Bb+&— X2) B — A
up(s) = —0" ¢ 8 — ¢ (b —X3) A C.
h_B(Xy-2¢,) C—D
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Torsion of Thin-Walled Sections Open Sections

2.3. Open Sections Tutorial: C-Section I

Torsion of Thin-Walled Sections

@ Since warping is linear in each segment, it is sufficient to look at points A, B,C, D to
visualize it completely.

o Here we have:

bh bh €s bh £s
=0 =0 = =0 = (1-2>2 =0 = (2-22).
up , uA 5 uc 5 ( b > s UD 2

@ The integral of warping over the complete section comes out to be

2 2 2
/“”ds ol (M c Pty PR 74§))
r 4 2

b 4 b
bh(h + 2b s
— ,g’g 1— i
2 b
@ Requiring fF uds = 0 implies, since u = uy, + uo,
bh s
ug = —— upds = 0 — (1—6—‘>
Tl Jr 2 b

@ Notice that u, is exactly the negative of the warping at the mid-point between points A and
C (marked O in figure). The warping at this point is given by:

ua + uc ,bh< fs)
up = ——— = —60 — .
2 2
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Torsion of Thin-Walled Sections Open Sections

2.3. Open Sections Tutorial: C-Section II

Torsion of Thin-Walled Sections

@ This implies that the section warps in such a manner as to ensure that point O does not move
at all (uo + uo = 0).

@ Finally the warping function at the corner points come out to be,

Warped Section

)
Twist direction
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Torsion of Thin-Walled Sections Open Sections

2.3. Open Sections Tutorial: C-Section

Torsion of Thin-Walled Sections

o Let us also illustrate the above with exact (numerical) results.

Warping Distribution

Stress Function Distribution

(=]

Balaji, N. N. (AE, IITM) AS3020%* September 23, 2025 37 /43



Torsion of Thin-Walled Sections Open Sections

2.3. Open Sections Tutorial: C-Section

Torsion of Thin-Walled Sections

o Let us also illustrate the above with exact (numerical) results.

Warping Distribution

Stress Function Distribution

Primary Warping

—[ Secondary Warping ]7
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Torsion of Thin-Walled Sections Open Sections

2.3. Open Sections Tutorial: C-Section

Torsion of Thin-Walled Sections

o Let us also illustrate the above with exact (numerical) results.

Warping Distribution

Stress Function Distribution

Primary Warping

—[ Secondary Warping ]7

Balaji, N. N. (AE, IITM) AS3020%* September 23, 2025 37 /43




Torsion of Thin-Walled Sections Combined Cells

2.4. Combined Cells

Torsion of Thin-Walled Sections

e It is instructive to now take stock of what we have obtained so far. The moment-twist

relationship is generically written by
My, = GJo,

with J being the torsion constant.

Solid Sections Closed Sections Open Sections

; 4t A? 5 3|1
J=1 +/Xw—Xz/;dA = —— = —
1t fgX2vs 3V,2 7| 3
o
AS3020%* September 23, 2025 38 /43
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Torsion of Thin-Walled Sections Combined Cells

2.4. Combined Cells

Torsion of Thin-Walled Sections

e It is instructive to now take stock of what we have obtained so far. The moment-twist
relationship is generically written by

M =GJY,
with J being the torsion constant.
Solid Sections Closed Sections Open Sections
_4tA? 5 3|0
.1:111+/S Xot 3 — X34 9dA = n ==

Let us consider the implications on a Circular Section of radius R.
4

Solid Section J, = I3 = 4.
242

Closed Section J. = % = 2R3t

3
Open Section J, = %27rR = 2?7']%153
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Torsion of Thin-Walled Sections Combined Cells

2.4. Combined Cells

Torsion of Thin-Walled Sections
e It is instructive to now take stock of what we have obtained so far. The moment-twist
relationship is generically written by

My =GJo,

with J being the torsion constant.
Closed Sections Open Sections

Solid Sections
4t.A? 3|1
J=Ti1+ /s Xo,g3 — X3z pdA = T J = -
Let us consider the implications on a Circular Section of radius R.
4
Solid Section J, = I3 = T2,
2,2
Closed Section[Jc = 74”2(:;‘ = = 27rR3tJ For Jo — Js, we need
= IR = 025R.

3
Open Section J, = %27rR = 2?7']%153

September 23, 2025 38 /43
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Torsion of Thin-Walled Sections Combined Cells

2.4. Combined Cells

Torsion of Thin-Walled Sections

e It is instructive to now take stock of what we have obtained so far. The moment-twist

relationship is generically written by

My =GJo,
with J being the torsion constant.
Solid Sections Closed Sections Open Sections
4t A* 3|1

J:Iu+/$ Xot 3 — X3 2dA = T J = 5
Let us consider the implications on a Circular Section of radius R.

4
Solid Section J, = I3 = =&,

242
Closed Section J, = 2XED" _ o5 p3y For J, = Js, we need

27 R

t = {3R ~ 091R.

Open Section[Jo = ?27‘1’]{ = %’Rtﬂ
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Torsion of Thin-Walled Sections Combined Cells

2.4. Combined Cells

Torsion of Thin-Walled Sections

e It is instructive to now take stock of what we have obtained so far. The moment-twist

relationship is generically written by

My =GJo,
with J being the torsion constant.
Solid Sections Closed Sections Open Sections
4t A* 3|1
J:Iu+/$ Xot 3 — X3 2dA = T J = 5
Let us consider the implications on a Circular Section of radius R.
Solid Section J, = I;; = &%,
Closed Section[Jc _ 4t><2(:§2)2 _ 27rR3tJ JFor algive: tl;ickness,
Open Section[Jo = ?27‘1’]{ = %’Rﬁr jz = 3 (E) = O(t2)~
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Torsion of Thin-Walled Sections Combined Cells

2.4. Combined Cells

Torsion of Thin-Walled Sections

e It is instructive to now take stock of what we have obtained so far. The moment-twist
relationship is generically written by

My =GJo,

with J being the torsion constant.

Solid Sections So open sections can safely be

N N Open Sections
ignored for torsion calcula-

tions in the combined context! 3|17
J:Ill‘*'/SX?w,s—X:s,Q ) T J:73
Let us consider the implications on a Circular Section of radius R.
4
Solid Section J, = I3 = =&,
2,2 3 3 aQ
Closed Section J. = % — 21 R3t For a given tlQllenebs,
3 Jo 1 [t — o
Open Section J, = %27rR = %“Rﬁ o3\ w) = ().
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2.4. Combined Cells

Torsion of Thin-Walled Sections

e It is instructive to now take stock of what we have obtained so far. The moment-twist
relationship is generically written by

My =GJo,

with J being the torsion constant.

Solid Sections So open sections can safely be

N N Open Sections
ignored for torsion calcula-

tions in the combined context! 3|17
.J:Iu+/sx2wys—x372 ® Tl J:T
For shear, we can follow ex-
. ) actly the same procedure as in
Let us consider the im) module 4 for combined sections.
Solid Section J, = Iy = "2~
2,2 3 3 aQ
Closed Section J. — 4t><2(77rr]};c )? _ 9 R3¢ For a given tl;lcknebs,
3 Jo 1 [t o2
Open Section J, = %27rR = Q%Rﬁ TC ~“3\Rr/) ~ (%)
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Summary of Final Expressions

3. Summary of Final Expressions

Closed Sections

Soli i 4A2
olid Sections aJ — A
1)
= — ) Aos
J I, + /; Xg’l/},g, Xs’l,ZJ,QdA ul(s) = wuo + 2‘/49/ ( O;(S) _ OA(S)>
ur = 0'9(X2, X3)
Open Sections
Thin Strip Idealization 1 5
GJ = —/ Gt ds
ht® 3Js
J=—
3 ui(s) = uo — 20" Aos(s)—0'ns
uy = X2 X350 ri 1
bos(8) = | =—dz; Aps(s) = 7/ dx
Os( ) /Gt 5 Os( ) B P
0 0

(=]
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Example: Shear Center of Closed Section

4. Example: Shear Center of Closed Section

o Let us consider the “inverted D” section with radius R as shown.

The shear center lies on the e, axis due to symmetry so we only consider the shear flow
distribution due to resultant Vse;.

£3
v S
t
e So we have, | ¢(s) = qo — s /ngs . 4
122 ]
€9
e Starting integration at A we have,
(s) " tVs [2R2cosd A — B
s) = —
B =0T o \R2-x2 B A B

ap (s)

e Enforcing zero twist we get,

4AR3tV-
Fats)ds =l + § an(s)ds = ao(r + 2R~ T2
3120
N 4R2tV3
o= 3(m + 2) 122 ’
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Example: Shear Center of Closed Section

4. Example: Shear Center of Closed Section

e Now we have the complete shear flow distribution:

4R%t tVz3 [2R?cos® A — B
a(s) = ¥

3(r+ 2l R2—X2 B A’

o We now take the moment about the point O and write it as follows. Note that the shear
flow on the vertical member B — A does not contribute to moment about O.

X
RtV
Mozqojfpder]{quds:wR?qur S/RXCOSHXRdH
N—— s
2A 3
Ar R 2Rt 2R (r+6
= 3 — V3 =— ( )V3E§2V3~
3(m + 2) 122 I2o 3l (m+2)

@ The second moment of area of the section I2o is written as Ioo = %R:“t.
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Example: Shear Center of Closed Section

4. Example: Shear Center of Closed Section

@ The shear center coordinate &3 simplifies as,

2R (r+6) _ 2R 6 1 (7+6)
3l (m+2) 3 3n+4R3t(n+2)
4(m +6)

=—-————""——R~ —0.53R.
(3m+4)(7+2)

&=

which shows that the shear center is approximately at the mid-point of the horizontal,
inside the section.

o The shear center is marked with a red star in this figure:
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Example: Shear Center of Closed Section
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