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Solid Section Torsion

1. Solid Section Torsion
Basic Setup

We assume:
1 No direct stresses applied:

σ11 = σ22 = σ33 = 0

2 Sections “rotate rigidly”:

γ23 = 0 =⇒ σ23 = 0.

3 Body is at equilibrium under constant
torque applied at right end.

We will denote the section by S and the
section-boundary by ∂S.
The words “torque” and “twisting
moment” will be used interchangeably.
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Solid Section Torsion Stress Formulation (Equilibrium Considerations)

1.1. Stress Formulation (Equilibrium Considerations)
Solid Section Torsion

Since we assume σ11 = σ22 = σ33 = σ23 = 0, the equilibrium equations read,

σ12,2 + σ13,3 = 0, σ12,1 = 0, σ13,1 = 0.

We introduce the Prandtl Stress Function ϕ(X2, X3) (no dependence on X1) such
that

σ12 = ϕ,3, σ13 = −ϕ,2.

This satisfies equilibrium by definition.

In terms of strains the above assumptions imply that we only have E12 and E13 active.
Recall that Strain compatibility is ϵmjkϵnilEij,mn = 0 (see Module 3).

The non-trivial compatibility equations read,

E12,23 − E13,22 = 0

E12,33 − E13,23 = 0

}
=⇒

ϕ,332 + ϕ,222 = 0

ϕ,333 + ϕ,322 = 0

}
=⇒ ∇2ϕ = constant .

This PDE is a Poisson problem. What about Boundary Conditions?

Kinematic considerations
will give us this “constant”.
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Solid Section Torsion Stress Formulation (Equilibrium Considerations)

1.1. Stress Formulation (Equilibrium Considerations)
Solid Section Torsion

In order to express the stress free boundary
condition on the section boundaries, it is
necessary to express the unit vectors
appropriately. For convenience we define es
and en.

We derive the coordinate transformation on
the boundary as follows:

X2e2 +X3e3 = Xses +Xnen

=⇒
[
Xs
Xn

]
=

[
es · e2 es · e3
en · e2 en · e3

] [
X2

X3

]
and,

[
es
en

]
=

[
es · e2 es · e3
en · e2 en · e3

] [
e2
e3

]
=

[
X2,s X3,s

X2,n X3,n

] [
e2
e3

]
Considering 2D construction of normal
vectors, we will also have[

es
en

]
=

[
X3,n −X2,n

−X3,s X2,s

] [
e2
e3

]
.

Convention: e2 × e3 = es × en = e1

These are two alternate but equiv-
alent representations for es and en
that we will invoke as convenient.
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Solid Section Torsion Stress Formulation (Equilibrium Considerations)

1.1. Stress Formulation (Equilibrium Considerations)
Solid Section Torsion

Let us enforce stress-free boundary
condition now. The outward normal is
n̂ = −en. So we have,

 0 σ12 σ13
σ12 0 0
σ13 0 0


n̂=−en︷ ︸︸ ︷ 0
X3,s

−X2,s

 =

00
0


=⇒ σ12X3,s − σ13X2,s = 0

(ϕ,3X3,s + ϕ2X2,s) = ϕ,s = 0

That is, on the section-boundary, the
stress function is constant, set to 0
w.l.o.g.:

ϕ =����: 0
constant on Γ.

Convention: e2 × e3 = es × en = e1

We have invoked
en = −X3,se2 + X2,se3 here.
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Solid Section Torsion Displacement Formulation (Kinematic Considerations)

1.2. Displacement Formulation (Kinematic Considerations)
Solid Section Torsion

The strains are,

E11 = u,1 = 0

E22 = −θ,2X3 = 0

E33 = θ,3X2 = 0

γ23 = θ − θ = 0

γ12 = u,2 − θ,1X3=
σ12

G
=
ϕ,3

G

γ13 = u,3 + θ,1X2=
σ13

G
= −

ϕ,2

G

Differentiating the strain expressions for σ12 and
σ13 above allows us to write:

ϕ,kk = −2Gθ,1 ,

which gives us the “constant” required for the
Poisson problem from before (along with the B.C.
ϕ = 0onΓ).

Since σ12,2 + σ13,3 = 0 (from equilibrium), we can
also say

u,kk = 0 .

=⇒ θ(X1), u(X2, X3)

This is the governing equa-
tion in terms of the section-
axial displacement field.
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Solid Section Torsion Section Moment

1.3. Section Moment
Solid Section Torsion

The traction vector on the section is written ast1t2
t3

 =

 0 σ12 σ13
σ12 0 0
σ13 0 0

10
0

 =

 0
σ12
σ13

 =

 0
ϕ,3
−ϕ,2

 = G

 0
u,2 −X3θ,1
u,3 +X2θ,1

 .
The resultant moment of this traction can be written as the integral of the cross product
X × t over the section S.

X × t = (X2e2 +X3e3)× (σ12e2 + σ13e3) = (X2σ13 −X3σ12)e1.

Since the traction is purely in-plane for the pure torsion case, the moment will be purely
out of plane (along e1) and we will call this the “twisting moment”.

This twisting moment (M1) is written as

M1 =

∫
S
(X2σ13 −X3σ12)dA .

Since σ12 and σ13 are expressed in terms of kinematic quantities as well as the stress
function ϕ, we shall write down relationships using both before proceeding.
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Solid Section Torsion Section Moment

1.3. Section Moment
Solid Section Torsion

In terms of stress function

M1 =

∫
S
(X2σ13 −X3σ12)dA

= −
∫
S
ϕ,kXkdA

= −
∫
S
(ϕXk),k − 2ϕdA

=

∫
S
2ϕdA−������∫

∂S
ϕXknkds︸ ︷︷ ︸

ϕ=0 on ∂S

(n̂ = nkek)

M1 = 2

∫
S
ϕdA

In terms of kinematic description

M1 =G

∫
S
(X2u,3 −X3u,2)dA

+G

∫
S
(X

2
2 +X

2
3 )dA︸ ︷︷ ︸

I11

θ,1

=GI11θ,1 +G

∫
S
ϵ1jkXju,kdA

=GI11θ,1 +G

∫
S
ϵ1jk(Xju),kdA

−G

∫
S
���ϵ1jkδjkudA

M1 =GI11θ,1 +G

∫
∂S

ϵ1jkXjnkuds

M1 =GI11θ,1 +G

∫
∂S

(X × n)1uds

M1 = GI11θ,1 −G

∫
∂S

Xsuds .

This term is clearly zero for
a perfectly circular section.
What about other types?

Not zero in the general case.
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Solid Section Torsion Saint-Venant’s Warping Function

1.4. Saint-Venant’s Warping Function
Solid Section Torsion

For a “pure twist” condition u can not depend on X1 (σ11 = 0 =⇒ E11 = u,1 = 0). It
also makes sense that u has to be proportional to the twist θ somehow (no/little
twist =⇒ no/little axial deformation).

Saint-Venant introduced a warping function ψ(X2, X3) such that

u = θ,1ψ(X2, X3) .

(recall that θ depends on X1, but θ,1 is a constant for pure twist)

Under this definition, the effective moment M1 can be given as,

M1 = G

(
I11 −

∫
∂S

Xsψds

)
︸ ︷︷ ︸

J

θ,1 = GJθ,1 .

J is known as the Torsion Constant and GJ together is Torsional Rigidity.

In terms of section integral, J can be expressed as

J = I11 +

∫
S
X2ψ,3 −X3ψ,2dA.
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Solid Section Torsion Saint-Venant’s Warping Function

1.4. Saint-Venant’s Warping Function: Governing Equations
Solid Section Torsion

The governing equations in terms of u is the Laplace equation:

u,kk = 0 =⇒ ψ,kk = 0 .

For enforcing traction free boundaries at the outer boundaries of the section (n̂ = −en)
we express the traction ast1t2

t3

 =

 0 σ12 σ13
σ12 0 0
σ13 0 0

 0
X3,s

−X2,s

 =

X2,sσ13 −X3,sσ12
0
0

 .
Substituting the kinematic quantities (σ12 = G(ψ,2 −X3)θ,1, σ13 = G(ψ,3 +X2)θ,1),
stating t1 = 0 implies:

(X2,sX2 +X3,sX3)︸ ︷︷ ︸
Xs

+X2,sψ,3 −X3,sψ,2 = 0

Xs +X3,nψ,3 +X2,nψ,2︸ ︷︷ ︸
ψ,n

= 0 =⇒
∂ψ

∂Xn
= −Xs .

Note that we have used the coordinate transformations Xs = X2,sX2 +X3,sX3 and
Xn = −X3,sX2 +X2,sX3 = X2,nX2 +X3,nX3 are the coordinates of any given point on
the boundary in the skin-local coordinate system (es, en, see coordinate transformations
slide above).

Note: The boundary condition
is more commonly written as

∂ψ

∂n
= Xs

with dn = −dXn being the
outward normal increment (en

points “inwards” in our convention).
Observe that the warping function ψ is com-

pletely specified by the section properties alone!
So ψ may be thought of as another geometric property of a section, much like the
area, second moments, circumference, etc., except that ψ is a spatial function.

The analysis here suggests that this function of the section is very funda-
mental to torsion along with the polar second moment of area (a scalar).
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Solid Section Torsion Saint-Venant’s Warping Function

1.4. Saint-Venant’s Warping Function: Warping Equations
Solid Section Torsion

The governing equations w.r.t. the warping function ψ can be summarized as

∇2ψ = 0, on S, s.t.
∂ψ

∂n
= Xs, on ∂S .

For solvability, we will also enforce
∫
S ψdA = 0, enforcing no net axial motion of the

section.
Recall that the Torsion Constant J is written as

J = I11 −
∫
∂S

Xsψds.

Since the boundary conditions above enforce ∂ψ
∂n

= Xs, the above simplifies to

J = I11 −
1

2

∫
∂S

∂ψ2

∂n
ds .

Interpretation of J − I11 from above

Intuitively, warping ψ increases radially outwards from the centroid of the section, and we expect

ψ2 to be increasing along en. So the derivative ∂ψ2

∂n is expected to be positive. Therefore, the
second term above is expected to be positive, i.e., J < I11 always.
The warping effect reduces the torsional rigidity of a section.

Note: This reasoning may be incorrect, contact me if you have a better explanation/if you can show that this fails.
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Solid Section Torsion Membrane Analogy

1.5. Membrane Analogy
Solid Section Torsion

The governing equations in terms of Prandtl Stress function is

ϕ,kk + 2Gθ,1 = 0, on S, ϕ = 0on ∂S, along with M1 = 2

∫
S
ϕdA.

Transverse Deflections of a Membrane under Isotropic Linear Tension Density T and
Uniform Pressure P

The displacement field
u1 = 0, u2 = 0, u3 = w(X1, X2)

The strain Field (von Karman)

E11 =
w2
,1

2
, E22 =

w2
,2

2
, γ12 = w,1w,2

The Stress Field

σ11 =
1

t
T, σ22 =

1

t
T.

Strain Energy Density (Integrated over thickness)

U =
1

2

(
w

2
,1 + w

2
,2

)
T + Pw

Equations of Motion (Euler-Ostrogradsky):
∂

∂Xk

∂U
∂w,k

− ∂U
∂w = 0:

T (w,11 + w,22) − P = 0

The governing equations, there-
fore, are identical to that of an
isotropically tensed mem-

brane undergoing deformation
under the action of a uni-
form transverse pressure.
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Solid Section Torsion Membrane Analogy

1.5. Membrane Analogy
Solid Section Torsion

Equations in the Stress Function

∇2
ϕ = −2Gθ,1,

ϕ = 0 onΓ,

M1 = 2

∫
S
ϕdA.

Equations in Warping

∇2
ψ = 0,

∂ψ

∂n
= Xs = (X3n2 −X2n3) on Γ.

M1 = GJθ,1, u = θ,1ψ.

Relating the two

Once we find ϕ, we can integrate the following to
get ψ and u:

1

G
ϕ,3 = (ψ,2 −X3)θ,1

−
1

G
ϕ,2 = (ψ,3 +X2)θ,1

If interested, you can see
the FreeFem scripts in

the website for numerical
implementations of these.
You need to know just a

little bit about weak forms
to understand the code,

it is very straightforward.

(not for exam)
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Solid Section Torsion Classical Example: Elliptical Section

1.6. Classical Example: Elliptical Section
Solid Section Torsion

Let us consider an elliptical section given by S =

{
(X2, X3)

∣∣∣∣X2
2
a2

+
X2

3
b2

= 1

}
and choose

the stress function as

ϕ = C

(
X2

2

a2
+
X2

3

b2
− 1

)
(Note that ϕ = 0 on ∂S by definition).

The Laplacian of ϕ evaluates as,

∇2ϕ = 2C

(
1

a2
+

1

b2

)
:= −2Gθ,1 =⇒ C = −Gθ,1

a2b2

a2 + b2
.

Let us now compute the total resultant twisting moment M1 that this represents:

M1 = 2

∫
S
ϕ = 2C

 1

a2

πa3b
4︷ ︸︸ ︷∫

S
X2

2dA+
1

b2

πab3

4︷ ︸︸ ︷∫
S
X2

3dA−

πab︷ ︸︸ ︷∫
S
dA

 = −Cπab

M1 = G
πa3b3

a2 + b2
θ,1 .

The torsional rigidity reads,

GJ = G
πa3b3

a2 + b2
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Solid Section Torsion Classical Example: Elliptical Section

1.6. Classical Example: Elliptical Section
Solid Section Torsion

For the axial deflection we have two equations (by equating shear stress expressions),

u,2 = θ,1ψ,2 = −
2a2

a2 + b2
θ,1X3 + θ,1X3 = −

a2 − b2

a2 + b2
θ,1X3

u,3 = θ,1ψ,3 =
2b2

a2 + b2
θ,1X2 − θ,1X2 = −

a2 − b2

a2 + b2
θ,1X2

Integrating them separately we have,

ψ = −
a2 − b2

a2 + b2
X2X3 + f1(X3)

= −
a2 − b2

a2 + b2
X2X3 + f2(X2)

f1 and f2 have to be constant. Setting it to zero we have,

u = −θ,1
a2 − b2

a2 + b2
X2X3 = −M1

a2 − b2

Gπa3b3
X2X3 .
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Solid Section Torsion Classical Example: Elliptical Section

1.6. Classical Example: Elliptical Section
Solid Section Torsion

Stress Function

Section Warping

General Sections

Torsion is amenable to analysis when the solid section boundary can be expressed in closed form AND its
Laplacian evaluates to a constant. (See Chapter 9 in Sadd 2009)

Every assumed form of ϕ will give us a warping field. For an application wherein the section warping is
constrained at the ends, this solution is not exact. (Saint-Venant’s principle can be invoked, however,
recall discussions on shear lag from Module 4).

Several analytical techniques exist for other types of sections (check Sadd 2009 and references therein).

Fully numerical approaches are also possible (see the FreeFem scripts in the website for a sample).
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Solid Section Torsion Classical Example: Elliptical Section

1.6. Classical Example: Elliptical Section: Results in 3D
Solid Section Torsion

Here is a 3D FE Result.
(Salome Meca HDF Files in website)

Mid-Section Warping
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Solid Section Torsion Classical Example: Elliptical Section

1.6. Stress and Warping Functions of General Sections
Solid Section Torsion

Square Section Triangular Section
An Arbitrary Hand-drawn SectionSections with Holes

The validity of the governing equations extend beyond singly
connected sections. Nothing stops us from applying it for multiply
connected sections also for the warping formulation. (Some
additional considerations necessary for the stress function, see sec.
9.3.3 in Sadd 2009).
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Solid Section Torsion Rectangular Sections

1.7. Rectangular Sections
Solid Section Torsion

Rectangular sections are slightly more involved, in general (for the curious: see the
Fourier series approach in Sadd 2009). But an important simplification is achieved for
thin sections.

Let us look at some numerical results for motivation (FreeFem code b rectangle.edp).

t
h
= 1 1

2
1
4

1
8

1
16

t

h

For the thin cases, we will ap-
proximate the shear function as

This will form the basis for the study of thin sections.

≈
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Solid Section Torsion Rectangular Sections

1.7. Rectangular Sections: Thin Strip Idealization
Solid Section Torsion

Idealizing the rectangle as a “strip” (t/h is very small), we can write the stress function
Poisson problem as,

ϕ,22 = −2Gθ,1, with ϕ = 0 at X2 ∈
{
−
t

2
,
t

2

}
, X3 ∈

{
−
h

2
,
h

2

}
,

solved by ϕ(X2, X3) = −Gθ,1

(
X2

2 −
(
t

2

)2
)

.

This implies the following shear stress and resultant moment:

σ12 =

ϕ,3︷︸︸︷
0 , σ13 =

−ϕ,2︷ ︸︸ ︷
2Gθ,1X2, M1 = 2

∫
S
ϕdA = G

J︷︸︸︷
ht3

3
θ,1.

The shear strain is γ13 = u,3 + u3,1 = u,3 +X2θ,1, which implies u = θ,1X2X3 as the

warping field (setting integration constant to zero).

Stress Distribution
Warping Profile
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Torsion of Thin-Walled Sections Kinematics and Coordinate Transformations

2.1. Kinematics and Coordinate Transformations
Torsion of Thin-Walled Sections

Recall that points on the section transform into the
section skin-local coordinate system as[
Xs
Xn

]
=

[
X2,s X3,s

−X3,s X2,s

] [
X2

X3

]
=

[
X2X2,s +X3X3,s

−X2X3,s +X3X2,s

]
The section displacement field transforms as,[
us
un

]
=

[
X2,s X3,s

−X3,s X2,s

] [
v −X3θ
w +X2θ

]
=

[
vX2,s + wX3,s − θ(−X2X3,s +X3X2,s)
−vX3,s + wX2,s + θ(X2X2,s +X3X3,s)

]
[
us
un

]
=

[
vX2,s + wX3,s −Xnθ
−vX3,s + wX2,s +Xsθ

]
Note that the coordinate Xn = −p, i.e., negative of
the perpendicular distance (since en points
“inwards”). So the tangential displacement is
written as

us = pθ + vX2,s + wX3,s.

We will consider the gen-
eral displacement field:

u1 = θ2X3 − θ3X2 + θ,1ψ

u2 = v −X3θ

u3 = w +X3θ,

and transform this to the

skin local (curvilin-

ear) coordinate system.
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Torsion of Thin-Walled Sections Kinematics and Coordinate Transformations

2.1. Kinematics and Coordinate Transformations: “Pure Twist”
Torsion of Thin-Walled Sections

The in-plane deformation field of the skin read

u1 = X3θ2 −X2θ3 + θ,1ψ

u2 = v −X3θ

u3 = w +X2θ

 =⇒
u1 (unchanged)
us = −Xnθ + vX2,s + wX3,s

un = Xsθ − vX3,s + wX2,s

Under “pure” twist condition we posit that there exists some point
XR = XR2

e2 +XR3
e3 about which the deformations may simply be written as

(θe1)× (X −XR): the section is “purely” rotating about the point XR.

(θe1)× ((Xs −XRs )es + (Xn −XRn )en) = −(Xn −XRn )θes + (Xs −XRs )θen

= −(Xn −XR2X2,n −XR3X3,n)θes + (Xs −XR2X2,s −XR3X3,s)en

= −(Xn +XR2
X3,s −XR3

X2,s)θes + (Xs −XR2
X2,s −XR3

X3,s)en.

Equating this to the general expressions above leads to :

−(Xn −XR3
X2,s +XR2

X3,s)θ = −Xnθ + vX2,s + wX3,s

(Xs −XR2
X2,s −XR3

X3,s)θ = Xsθ + wX2,s − vX3,s,

which leads to:
v = θXR3

, w = −θXR2
.

Since θ,1 is a constant, it’s more common to
express this Center of Twist coordinates as

XR2
= −

w,1

θ,1
, XR3

=
v,1

θ,1
.

Choosing the CoT as the origin, the displacement field may be written as

u1 = θ,1ψ −X2θ3 +X3θ2

us = −Xnθ
un = Xsθ

We shall continue to use Xs and Xn but note
that these are written w.r.t. the CoT henceforth.
Note: You can use reciprocity principles to argue
that the CoT must coincide with the shear center.
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Torsion of Thin-Walled Sections Kinematics and Coordinate Transformations

2.1. Transformation of Displacement Field to Skin-local Coordinates
Torsion of Thin-Walled Sections

Starting from the displacement field w.r.t. the CoT,

u1 = θ,1ψ −X2θ3 +X3θ2

us = pθ +X2,sv +X3,sw

un = Xsθ −X3,sv +X2,sw

The shear strain along a thin section between the e1, es directions is

γ1s = u1,s + us,1 = ψ,sθ,1 +X2,s(v,1 − θ3) +X3,s(w,1 − θ2) + pθ,1 =
σ1s

G
=

q

Gt
.

Integrating this over the skin, we get

s∫
0

q(s)

Gt
ds = θ,1(ψ(s) − ψ(0)) + θ,1

s∫
0

pds+
[
X2(s) −X20 X3(s) −X30

] [v,1 − θ3
w,1 + θ2

]
(Kirchhoff Assumption) =θ,1(ψ(s) − ψ(0)) + θ,12AOs(s),

showing that the warping is completely governed by the twisting when the Kirchhoff
assumption (zero shears, θ2 = −w,1, θ3 = v,1) is valid.

Over a completely closed section we have (we don’t even need Kirchhoff assumptions to
hold for this), ∮

q(s)

Gt
ds = 2Aθ,1

So if we want to enforce “pure shear” for a closed
section, we should enforce zero twist rate, i.e.,∮

q(s)

Gt
ds = 0.

This is enforced easier than M1 =
∫
S pq(s)ds := 0 that we used in

Module 4 because setting M1 := 0 implicitly assumes that the point
with which the moment is taken is the Center of Twist, i.e., the
Shear Center already.

Specifically, this is enforced easier since
∮ q(s)

Gt
ds is a line integral

along the skin, so the origin doesn’t matter.

Once this is done, we can then take the twisting moment about any
point and equate that to (ξ2e2 + ξ3e3)× (V2e2 + V3e3) to find the
shear center for closed sections (See slides below).
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Torsion of Thin-Walled Sections Kinematics and Coordinate Transformations

2.1. Transformation of Displacement Field to Skin-local Coordinates
Torsion of Thin-Walled Sections

Starting from the displacement field w.r.t. the CoT (for the pure twist case),

u1 = θ,1ψ�������:pure twist

−X2θ3 +X3θ2

us = −Xnθ =⇒ us = pθ (p = −Xn)
un = Xsθ

Let us now consider the stress σ1n, which must be zero from our thin-walled
assumptions.

γ1n = θ,1ψ,n +Xsθ,1 =
σ1n

G
:= 0.

Integrating the above we get an expression for the secondary warping (warping along
the skin-thickness):

ψ(n)− ψ0 = −XsXn .
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Torsion of Thin-Walled Sections Closed Sections

2.2. Closed Sections
Torsion of Thin-Walled Sections

Using the same notation as in Module 4, the equilibrium equations, for a thin-walled
section undergoing pure torsion (σ11 = σss = σnn = σsn = 0) can be written as

��: 0σ11,1 + σ1s,s + σ1n,n = 0, σ1s,1 = 0, σ1n,n = 0.

This implies, when in “pure torsion”, σ1s is constant along the span X1 (as in the
bending case).

Note that σ1n is not zero.

Integrating the above over thickness we have,

t
2∫

− t
2

σ1s,sdXn +

�
�
�
�
��t

2∫
− t

2

σ1n,ndXn = 0 =⇒
d

ds


t
2∫

− t
2

σ1sdXn

 = 0.

The last equality holds because we understand that σ1s has to be an even function in
Xn s.t. σ1s(−Xn) = −σ1s(Xn) (from membrane analogy).

Since q(s) =
∫
σ1sdXn, this implies that shear flow is constant across the section

(along es) under pure torsion.

Prandtl Stress Function for Section with Linearly Varying Thickness
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Torsion of Thin-Walled Sections Closed Sections

2.2. Closed Sections
Torsion of Thin-Walled Sections

The resultant moment of a shear flow distribution q(s) can be given by

M =

∫
Ss
X × (q(s)dses) = q

∫
Ss

(Xses +Xnen)× (dses)

M1e1 = q

∫
Ss

(−Xn)dse1 =⇒ M1 = q

∫
Ss
pds .

where p = −Xn is the perpendicular distance to the point on the thin-walled section’s
mean plane under consideration from the CoT.

The symbol Ss denotes the 1 dimensional “mean line” along the thin wall.

An important simplification occurs
when S is a closed section. This

leads to the Bredt-Batho Formula:

M1 = 2Aq ,

where A is the area contained
“within” the thin-walled sec-

tion measured from the CoT.
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Torsion of Thin-Walled Sections Closed Sections

2.2. Closed Sections: Bredt-Batho Theory
Torsion of Thin-Walled Sections

So q is constant over the section and is written with the Bredt-Batho Formula based on
the resultant twisting moment M1 as

M1 = 2Aq =⇒ q =
M1

2A
.

The shear flow integral reads,

q

s∫
0

1

Gt
dx

︸ ︷︷ ︸
δOs(s)

= θ,1(ψ(s) − ψ(0)) + θ,1

s∫
0

pdx

︸ ︷︷ ︸
2AOs(s)

+
[
X2(s) −X20 X3(s) −X30

]
���

��*
0[

v,1 − θ3
w,1 + θ2

]
,

where AOs(s) is the swept area from the CoT, and the δOs(s) is the swept integral
of 1

Gt
(proportional to swept circumference if Gt is constant).

For the whole section, the above becomes

q

∮
1

Gt
ds︸ ︷︷ ︸

δ

= θ,12A =⇒ θ,1 =
qδ

2A
.

So we can write the warping as

ψ(s)− ψ(0) = 2A
(
δOs(s)

δ
−

AOs(s)
A

)

(Kirchhoff Assumption)The integration constant ψ(0) can be found by enforcing that there is
no net average movement in the e1 direction. So

∮
ψ(s)ds = 0 in the

section, leading to:

ψ(0) =

∮
ψb(s)tds∮
tds

,

where ψb(s) is the “baseline” warping distribution assuming ψ(0) =
0.

Combining these two, we
get the torsional rigidity:

M1 = 2Aq

=
4A2

δ
θ,1.

For constant G, t, we get,

M1 = G
4A2t

|Ss|
θ,1 = GJθ,1

=⇒ J =
4A2t

|Ss|
.

|Ss| is the section circumference.
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get the torsional rigidity:

M1 = 2Aq

=
4A2

δ
θ,1.

For constant G, t, we get,

M1 = G
4A2t

|Ss|
θ,1 = GJθ,1

=⇒ J =
4A2t

|Ss|
.

|Ss| is the section circumference.
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2.2. Closed Sections: The Neuber Beam
Torsion of Thin-Walled Sections

A natural question arises: what should I do if I want to minimize/eliminate warping?

We want to set ψ(s)− ψ(0) = ψb(s) = 0, ∀ s ∈ Γ, i.e., 2A
(
δOs(s)
δ

− AOs(s)
A

)
= 0. This

implies:
δOs(s)

δ
=

AOs(s)
A

=⇒
∫ s

0

(
1

δ

1

Gt
−

1

2A
p

)
ds = 0,

which is satisfied iff the terms inside the integral equate to zero.

This implies that the quantity pGt (modulus as well as thickness can vary along section)
has to be a constant:

pGt =
2A
δ
.

It is known as a Neuber Beam if this is satisfied. (eg., circular sections, equilateral
triangles, square sections, rectangular sections of appropriate thickness, etc.)
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2.2. Closed Sections: Computing The Shear Center
Torsion of Thin-Walled Sections

Based on relating the kinematics to stress (through linear elastic constitutive
relationships), we have written the shear flow integral as:∮

q(s; ξ2, ξ3)

Gt
ds = 2Aθ,1.

Suppose, for a closed section, we evaluated the shear flow by the approach in Module 4.
Recall that we required the resultant moment M1 to be zero for this:∮

p

q(s;ξ2,ξ3)︷ ︸︸ ︷
(qb(s; ξ2, ξ3) + q0(ξ2, ξ3)) ds = 0.

We can not take it for granted that the section does not twist when no moment is
applied. So we add this additional consideration in our definition of shear center. We
posit that the resultant twist angle must also be zero when the shear resultants act
along the shear center:

θ,1 = 0 =⇒
∮

qb(s; ξ2, ξ3) + q0(ξ2, ξ3)

Gt
ds = 0

Considering V2, V3 separately, we can get 3 equations in the 3 unknowns and can solve it.
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2.2. Closed Sections: Computing The Shear Center
Torsion of Thin-Walled Sections

One possible sequence of analysis is this (for shear):

1 We choose some convenient point as origin, say O.

2 We first obtain the “baseline” shear flow qb(s) using some arbitrary starting point for
the shear flow integral.

3 We estimate q0 by requiring zero twist:

∮
qb(s) + q0

Gt
ds = 0 =⇒ q0 = −

∮ qb(s)
Gt

ds∮
1
Gt
ds

.

4 We write down the resultant moment (about any point) as∮
p(qb(s) + q0(s))ds = V2(−ξ3) + V3(ξ2).

The shear center coordinates (ξ2, ξ3) are estimated by comparing the coefficients of V2 &
V3 in the above.
(ξ2, ξ3) are the coordinates of the shear center with respect to the point chosen for the
moment calculation.

Question: We never required
the zero twist condition for

open sections. Does this mean
open sections can undergo

twisting even when M1 = 0?
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Torsion of Thin-Walled Sections Closed Sections

2.2. Closed Sections: Tutorial on Rectangular Closed Sections
Torsion of Thin-Walled Sections

Consider this rectangular Section:

A(a, b)B(−a, b)

C(−a,−b) D(a,−b)

e2

O

e2

We will write out the warping quantity 1
2A (ψ(s)− ψ(0)) =

δOS(s)
δ

− AOS(s)
A as a table

in the following fashion:

Section δOs(s)− δ0 AOs(s)−A0
δOs(s)−δ0

δ
− AOs(s)−A0

A
δ1−δ0
δ

− A1−A0
A

A→B a−X2
Gt

(a−X2)b
2

(a−X2)(a−b)
8a(a+b)

a−b
4(a+b)

B→C b−X3
Gt

(b−X3)a
2

− (b−X3)(a−b)
8b(a+b)

− a−b
4(a+b)

C→D a+X2
Gt

(a+X2)b
2

(a+X2)(a−b)
8a(a+b)

a−b
4(a+b)

D→A b+X3
Gt

(b+X3)a
2

− (b+X3)(a−b)
8b(a+b)

a−b
4(a+b)
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2.2. Closed Sections: Tutorial on Rectangular Closed Section
Torsion of Thin-Walled Sections

Letting ψA be some constant, we have the following:

ψB = ψA + 2A
a− b

4(a+ b)
= ψA + 2

ab(a− b)

a+ b
, ψC = ψA, ψD = ψB .

In each member, the warping function is distributed linearly in each member such that
the warped shape looks like:

e1

e2

e3

A
B

C
D

A
B

C
D

A
B

C
Dθ1

Imposing zero net translation of section we get,∮
ψ(s)ds = ψA2(a+ b) +

a− b

4
:= 0 =⇒ ψA = −

a− b

8(a+ b)
.
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Torsion of Thin-Walled Sections Open Sections

2.3. Open Sections
Torsion of Thin-Walled Sections

We will invoke the thin-strip idealization for this. The main results from the idealization
are:

ϕ = −Gθ,1
(
X2

2 −
t2

4

)
; M1 = G

ht3

3
θ,1;

σ12 = 0, σ13 = 2GX2θ,1, ψ1 = X2X3.

For general thin-walled sections, the torsion constant J is generalized as,

J =
1

3

∫
Sc
t3ds, s.t. M1 = GJθ,1.

Thin Section Kinematics

Recall that the kinematics of thin sections can be written in the skin-local coordinate system as

u1 = θ,1ψ +X3θ2 −X2θ3

us = −Xnθ + vX2,s + wX3,s
Xn=−p
======⇒pθ + vX2,s + wX3,s

un = Xsθ − vX3,s + wX2,s.
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2.3. Open Sections: Warping
Torsion of Thin-Walled Sections

Along the centerline σ1n = σ1s = 0 (Note: shear flow is zero under the idealization!).
So we have (on the centerline),

γ1s = u1,s + us,1 = θ,1 (ψ,s + p) +
[
X2,s X3,s

] [(v,1 − θ3)
(w,1 + θ2)

]
:= 0,

where p is the perpendicular distance to the point on the skin. This can be integrated to

θ,1 (ψ(s)− ψ(0)) = −θ,1
s∫

0

pds−
[
X2(s)−X20 X3(s)−X30

] [(v,1 − θ3)
(w,1 + θ2)

]
.

Considering Kirchhoff kinematic assumptions (shear strains negligible), the above can be

approximated as ψ(s)− ψ(0) = −2AOs(s) .

ψ(0) can be fixed based on enforcing zero net axial deformation which leads to∫
Sc
ψ(s)ds = 0 =⇒ ψ(0) =

2

|Sc|

∫
Sc

AOs(s)ds.

|Sc| is the total circumference.
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2.3. Open Sections: Secondary Warping
Torsion of Thin-Walled Sections

For points off of the centerline, we consider σ1n = 0, which implies,

γ1n = u1,n + un,1 = θ,1 (ψ,n +Xs) := 0.

This can be integrated to θ,1 (ψ(n)− ψ(0)) = −θ,1

Xn∫
0

sdn .

Invoking Kirchhoff kinematic simplifications, this simplifies to ψ(n)− ψ(0) = −nXs ,

where n is the normal coordinate relative to the mean plane of the skin (along en).
Notice that if we set u1 = 0 and compare this with the thin strip idealization, this has an
additional negative sign. This is because of the coordinate system definition: our thin
strip was along e3 - had it been along e2 in the first place, we’ll get the negative sign
there too .

We fix ψ(0) here by equating ψ(n = 0) with the primary warping distribution at the
mean plane (remember ψ(Xs, Xn)).

Balaji, N. N. (AE, IITM) AS3020* October 7, 2025 36 / 49



Torsion of Thin-Walled Sections Open Sections

2.3. Open Sections
Torsion of Thin-Walled Sections

In summary, the warping can be written in terms of section-local coordinates as,

ψ = ψ0 − 2AOs(s)︸ ︷︷ ︸
ψ(n=0)

−nXs .

The first term in the above, representing center-line warping, is known as primary
warping, and the second term, representing section warping, is known as secondary
warping.

For sufficiently thin sections, the latter is usually neglected.
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The Center of Twist Reviewed

3. The Center of Twist Reviewed

We defined the shear center in Module 4 by asking the question: What is the point
through which the resultant shear force developed from a given shear flow
distribution corresponding to “pure shear”?

We equate resultant twisting moments to obtain the shear center.

Through reciprocity, the converse also holds: A twisting moment applied through
the shear center will result in a “pure twist” deformation field.

The shear center, therefore, is also known as the Center of Twist (CoT).

Please ALWAYS Remember This!

All the calculations of the resultant area A and AOs(s) in the torsion module must,
hereby, be taken with respect to the center of twist. This is because these formulae come
from the moment expressions, each of which are meant to be taken w.r.t. the center of twist.
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Examples The C Section

4.1. The C Section
Examples

Let us consider the C-Section from
Module 4.

The torsional rigidity is given by:

GJ =
Gt3

3

∫
Sc
ds = G

t3(h+ 2b)

3
;

so given any twisting moment M1 we can
now find the twist rate θ,1.

For warping we work out the moment
balance about O as
ψ(s)− ψ0 = −2AOs(s).

AOs(s) end

A→ B h
2
(b+ ξs −X2)

bh
2

B → C −ξs(h2 −X3) −ξsh
C → D h

2
(X2 − ξs)

bh
2

Using the table we can write:

ψb(s) = −


h
2 (b+ ξs −X2) A → B
bh
2 − ξs(

h
2 −X3) A → C

bh
2 − h

2 (X2 − 2ξs) C → D

.
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Examples The C Section

4.1. The C Section I
Examples

Since warping is linear in each segment, it is sufficient to look at points A,B,C,D to
visualize it completely.

Here we have:

ψB = 0, ψA = −
bh

2
, ψC = −

bh

2

(
1 − 2

ξs

b

)
, ψD = −

bh

2

(
2 − 2

ξs

b

)
.

The integral of warping over the complete section comes out to be∫
Sc
ψbds = −

(
b2h

4
+
bh2

2
(1 −

ξs

b
) +

b2h

4
(3 − 4

ξs

b
)

)

= −
bh(h+ 2b)

2

(
1 −

ξs

b

)
Requiring

∫
Sc
ψds = 0 implies, since ψ = ψb + ψ0,

ψ0 = −
1

|Sc|

∫
Sc
ψbds =

bh

2

(
1 −

ξs

b

)
.

Finally the warping function at the corner points come out to be,

ψB =
bh

2

(
1 −

ξs

b

)
, ψA = −

ξsh

2
, ψC =

ξsh

2
, ψD = −

bh

2

(
1 −

ξs

b

)
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Examples The C Section

4.1. The C Section: Warping Profile
Examples

ψB =
bh

2

(
1−

ξs

b

)
, ψA = −

ξsh

2
,

ψC =
ξsh

2
, ψD = −

bh

2

(
1−

ξs

b

)

e1

e2

e3

θ1

A
B

C
D

A Visualization of the Warping Profile
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Examples The C Section

4.1. The C Section
Examples

Let us also illustrate the above with exact (numerical) results.

Stress Function Distribution

Warping Distribution

Primary Warping

Secondary Warping

Balaji, N. N. (AE, IITM) AS3020* October 7, 2025 42 / 49



Examples The C Section

4.1. The C Section
Examples

Let us also illustrate the above with exact (numerical) results.

Stress Function Distribution

Warping Distribution

Primary Warping

Secondary Warping

Balaji, N. N. (AE, IITM) AS3020* October 7, 2025 42 / 49



Examples The C Section

4.1. The C Section
Examples
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Primary Warping

Secondary Warping
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Examples The D Section

4.2. The D Section
Examples

Let us consider the “inverted D” section with radius R as shown.

The shear center lies on the e2 axis due to symmetry so we only consider the shear flow
distribution due to resultant V3e3.

So we have, q(s) = q0 −
tV3

I22

s∫
0

X3ds .

Starting integration at A we have,

q(s) = q0 +
tV3

2I22

{
2R2 cos θ A→ B

R2 −X2
3 B → A︸ ︷︷ ︸

qb(s)

Enforcing zero twist we get,∮
q(s)ds = q0|Sc|+

∮
qb(s)ds = q0(π + 2)R−

tV3

I22

4R3

3
= 0.

=⇒ q0 =
tV3

I22

4R2

3(π + 2)
.

e3

O

e2

B

A

Xc

Xc = − 2R
π+2

≈ −0.4R
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4.2. The D Section
Examples

Now we have the complete shear flow distribution:

q(s) =
tV3

I22

4R2

3(π + 2)
+
tV3

I22

{
R2 cos θ A→ B
R2−X2

3
2

B → A
.

We now take the moment about the point O and write it as follows. Note that the shear
flow on the vertical member B → A does not contribute to moment about O.

MO = q0

∮
pds︸ ︷︷ ︸

2A

+

∮
pqbds = πR2q0 +

tV3

I22

3π
2∫
π
2

R×R2 cos θ ×Rdθ

=
tV3

I22

(
4πR4

3(π + 2)
− 2R4

)
= −

tV3

I22

2R4(π + 6)

3(π + 2)
≡ −ξsV3.

The second moment of area of the section I22 = 3π+4
6

R3t. Substituting this, the shear
center location becomes:

ξs =
4(π + 6)

(π + 2)(3π + 4)
R ≈ 0.53R

e3

O

e2

B

A

ξs
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A Retrospective

5. A Retrospective

It is instructive to now take stock of what we have obtained so far. The moment-twist
relationship is generically written by

M1 = GJθ,1,

with J being the torsion constant. For constant G, t,

Solid Sections

J = I11 −
1

2

∫
S

∂ψ2

∂n
dA

Closed Sections

J =
4tA2

|Sc|

Open Sections

J =
t3|Sc|

3

Let us consider the implications on a Circular Section of radius R.

Solid Section Js = I11 = πR4

2
.

Closed Section Jc =
4t×(πR2)2

2πR
= 2πR3t

Open Section Jo = t3

3
2πR = 2π

3
Rt3

For Jc = Js, we need
t = 1

4
R = 0.25R.

For Jo = Js, we need

t = 3
√

3
4
R ≈ 0.91R.

For a given thickness,

Jo

Jc
=

1

3

(
t

R

)2

= O(t2).

So open sections can safely be
ignored for torsion calcula-

tions in the combined context!

For shear, we can follow ex-
actly the same procedure as in
module 4 for combined sections.
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R ≈ 0.91R.

For a given thickness,

Jo

Jc
=

1

3

(
t

R

)2

= O(t2).

So open sections can safely be
ignored for torsion calcula-

tions in the combined context!

For shear, we can follow ex-
actly the same procedure as in
module 4 for combined sections.
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A Retrospective Summary of Final Expressions

5.1. Summary of Final Expressions
A Retrospective

Solid Sections

J = I11 −
1

2

∫
∂S

∂2ψ

∂n
ds

∇2
ψ = 0, on S,

∂ψ

∂n
= Xs, on ∂S.

u1 = θ,1ψ(X2, X3)

Thin Strip Idealization

J =
ht3

3
,

ψ1 = X2X3

Closed Sections

GJ =
4A2

δ

ψ1(s) = ψ0 + 2A
(
δOs(s)

δ
−

AOs(s)
A

)

Open Sections

GJ =
1

3

∫
S
Gt

3
ds

ψ1(s) = ψ0 − 2AOs(s)−θ,1nXs

δOs(s) =

s∫
0

1

Gt
dx; AOs(s) =

1

2

s∫
0

pdx
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Combined Cells

6. Combined Cells

A
B

C

D

E
F

V3 e3

e2

h
2h

1

b1 b2

bL

A
B

C

D

E
F

V3

Idealized Boom Areas, with

hm =
h1b2+h2b1
b1+b2

, ℓ1 =
√
b21 + (h1 − hm)2,

ℓ2 =
√
b22 + (hm − h2)2.

ArA
h2t
3

+ ℓ2t
6
(2 + hm

h2
)

ArB
ℓ2t
6
(2 + h2

hm
) + ℓ1t

6
(2 + h1

hm
) + hmt

3

ArC
h1t
3

+ ℓ1t
6
(2 + hm

h1
)

ArD ArC

ArE ArB

ArF ArA

Procedure:

1 Assume unknown shear flow in
sections AB and BC.

2 Compute all the sectional flows
w.r.t. qAB and qBC .

3 Equate the twists of the two cells
and obtain qBC in terms of qAB :
qBCℓ1+qCD2h1+qDEℓ1+qEB2hm

A1
=

qABℓ2−qEB2hm+qEF ℓ2+qAF 2h2
A2

.

4 Equate the moment about the
origin MO = −(b1 − hL)V3 to
obtain qAB in terms of V3.
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Combined Cells Numerical Example: Shear Center

6.1. Numerical Example: Shear Center
Combined Cells

A
B

C

D

E
F

e3

e2

1
0
0
m
m

h
1

100mm 100mm

Let us now consider this case and
understand the variation in the shear
center with h1.
You can see the derivation in the
Maxima sheet on the website.

Variation with h1
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Combined Cells Numerical Example: Shear Center
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