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Unsymmetrical Bending

1. Unsymmetrical Bending

1. Rigid Section Displacement Field

u1

u2

u3

 =

 0
v(X1)
w(X1)

 +

X3θ2 − X2θ3
0
0


︸ ︷︷ ︸

θ×X
˜

2. Zero Shear Strain Simplification

γ12 = γ13 = 0 =⇒ θ2 = −w
′
, θ3 = v

′

3. Plane Stress Constitution

σ11 = EY E 11

=⇒ E11 = u1,1 =
[
X3 −X2

] [θ′2
θ′3

]
.

Assumptions

1 Plane sections remain planar.

2 Sections remain perpendicular
to neutral axis: γ12 = γ13 = 0.

3 Plane Stress: σ22 = σ33 = 0.

We shall develop the theory without
the zero strain simplification first.
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Unsymmetrical Bending Axial Stress and its Moments

1.1. Axial Stress and its Moments
Unsymmetrical Bending

The axial stress distribution is σ11 = EY

[
X3 −X2

] [θ′2
θ′3

]
. The traction vector in the

section is t = σ11e1 + σ12e2 + σ13e3 .

Considering just the axial component (σ11e1 ), we write the overall axial force as the
area integral (zeroth moment):

N1 =

∫
A
σ11 = EY

[∫
A X3dA −

∫
A X2dA

] [θ′2
θ′3

]
.

Recall that we have already chosen then origin as the section centroid for expressing the
rigid rotation displacement field, s.t.

∫
A X dA = 0 . Therefore N1 = 0 for pure bending.

Considering the moment due to the axial component (dm = (Xkek )× (σ11e1 dA) we
have (first moment):[

M2

M3

]
=

∫
A

[
X3

−X2

]
σ11dA =

∫
A
EY

[
X3

−X2

] [
X3 −X2

]
dA

[
θ′2
θ′3

]
=

∫
A
EY

[
X2

3 −X2X3

−X2X3 X2
2

]
dA

[
θ′2
θ′3

]
.

For constant EY through section,[
M2

M3

]
= EY

[
I22 −I23
−I23 I33

] [
θ′2
θ′3

]
.

Second Moments of Area

I22 =

∫
A

X
2
3dA

I33 =

∫
A

X
2
2dA

I23 =

∫
A

X2X3dA
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Unsymmetrical Bending Axial Stress In Terms of Moments and Forces

1.2. Axial Stress In Terms of Moments and Forces
Unsymmetrical Bending

It is sometimes convenient to have the stress σ11 expressed in terms of its resultant
moments instead of kinematic quantities like θ2 and θ3. So we will invert the
relationship that we have to first get:[

θ′2
θ′3

]
=

1

EY

1

I22I33 − I223

[
I33 I23
I23 I22

] [
M2

M3

]
.

Stress simplifies as

σ11 = EY

[
X3 −X2

] [θ′2
θ′3

]
=

[
X3 −X2

]
I22I33 − I223

[
I33 I23
I23 I22

] [
M2

M3

]
.

Observe that we have gotten to the above without requiring shear strains to
be zero.
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Unsymmetrical Bending Equilibrium Equations

1.3. Equilibrium Equations
Unsymmetrical Bending

We shall invoke and simplify the equilibrium equations in an integral sense in the
presence of transverse forces only (stress assumptions: σ22 = σ33 = σ23 = 0).

σ1j,j = 0 =⇒
∫
A
σ1j,jdA = 0

σ12,1 + f2 = 0 =⇒
∫
A
σ12,1dA+

∫
A
f2dA= 0

σ13,1 + f3 = 0 =⇒
∫
A
σ13,1dA+

∫
A
f3dA= 0∫

A σ1j,jdA is simplified as

∫
A
σ1j,jdA =

∫
A
σ11,1dA+

Gauss divergence in 2D:(((((∫
A σ1jnjdA︷ ︸︸ ︷∫

A
σ12,2 + σ13,3dA = N1,1

where n = njej is the outward pointing normal on the boundary of the section
(n1 = 0).
σ1jnj is the e1 component of the traction vector on the free surface. By definition this
has to be zero, so we have N1,1 = 0.
Defining the shearing forces as V2 =

∫
A σ12dA and V3 =

∫
A σ13dA, the second two

equations can be read as:

V2,1 + F2 = 0 , V3,1 + F3 = 0 .
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Unsymmetrical Bending Equilibrium Equations

1.3. Equilibrium Equations
Unsymmetrical Bending

In order to relate the different stresses, we invoke M2 = X3σ11 and M3 = −X2σ11 now.

We first pre-multiply σ1j,j by X3 and then integrate over the section:∫
A
X3σ11,1dA+

∫
A
X3σ12,2 +X3σ13,3dA = M2,1 +

∫
A
(X3σ12),2 + (X3σ13),3 − σ13dA∫

A
(X3σ12),2 + (X3σ13),3dA =

�������∫
∂A

X3σ1knkdℓ =⇒ M2,1 −
∫
A
σ13dA = M2,1 − V3 = 0 .

Next we pre-multiply σ1j,j by X2 and repeat the same:∫
A
X2σ11,1dA+

∫
A
X2σ12,2 +X3σ13,3dA = −M3,1 +

∫
A
(X2σ12),2 − σ12 + (X2σ13),3dA∫

A
(X2σ12),2 + (X2σ13),3dA =

�������∫
∂A

X2σ1knkdℓ =⇒ M3,1 +

∫
A
σ12dA = M3,1 + V2 = 0 .

We are finally left with 4 equilibrium equations applicable for beam theory:

V2,1 + F2 = 0 , V3,1 + F3 = 0 , M2,1 − V3 = 0 , M3,1 + V2 = 0 .

These are independent of any kinematic assumptions that we may make.

Transverse Force-Bending Moment Relationship

V2,1 + F2 = 0, V3, 1 + F3 = 0, M2,1 − V3 = 0, M3,1 + V2 = 0

=⇒
[
M3,11

−M2,11

]
=

[
F2

F3

]
.
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Unsymmetrical Bending Equations of Motion in Terms of Displacement

1.4. Equations of Motion in Terms of Displacement
Unsymmetrical Bending

The moments are related to the kinematics through[
M2

M3

]
= EY

[
I22 −I23
−I23 I33

] [
θ′2
θ′3

]
.

For the zero shear strain case (θ2 = −w′, θ3 = v′) the equilibrium equations simplify in
the following manner: [

M3,11

−M2,11

]
=

[
0 1
−1 0

] [
M2,11

M3,11

]
=

[
F2

F3

]
,

EY

[
0 1
−1 0

] [
I22 −I23
−I23 I33

] [
0 −1
1 0

] [
v′′′′

w′′′′

]
=

[
F2

F3

]
,

=⇒ EY

[
I33 I23
I23 I22

] [
v′′′′

w′′′′

]
=

[
F2

F3

]
,

or in more compact notation,

EY I˜̃V˜ ′′′′ = F˜ , I˜̃ =

[
I33 I23
I23 I22

]
, V˜ =

[
v
w

]
.

(Recall that the planar symmetric bending equation is EIv′′′′ = F )
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections
Thin Section: Plane Stress Assumption

Now we shall pursue the equilibrium equations for thin-walled sections.
We define the above section-local coordinate system and transform the elasticity
equations to σ11,1 + σ1s,s + σ1n,n = 0. We integrate this along the thickness:∫ Xn+ t

2

Xn− t
2

σ11,1dXn +

∫
σ1s,sdXn +������: 0∫

σ1n,ndXn = 0

σ1n has to be zero on the surfaces with normal en since these are “free” surfaces; so the
last integral goes to zero. The integral above simplifies (for constant thickness along s)
to:

tσ11,1 +

∫
σ1s,sdXn = 0 =⇒ tσ11,1 + q,s = 0 ,

where we define shear flow q, a new quantity that is basically the integral of the

transverse shear stress along the thickness: q(s) =

∫
σ1sdXn .
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Shear Stress and Flow in Sections Shear Flow Distribution

2.1. Shear Flow Distribution
Shear Stress and Flow in Sections

The stress distribution is written as:

σ11 =

[
X3 −X2

]
I22I33 − I223

[
I33 I23
I23 I22

] [
M2

M3

]
.

Differentiating this we get:

σ11,1 =

[
X3 −X2

]
I22I33 − I223

[
I33 I23
I23 I22

]���*
V3

M2,1

�
��*

−V2

M3,1


=⇒ σ11,1 =

[
X2 X3

]
I22I33 − I223

[
I22 −I23
−I23 I33

] [
V2

V3

]
.

Substituting this in tσ11,1 + q,s = 0 we have,

dq

ds
= −

[
tX2 tX3

]
I22I33 − I223

[
I22 −I23
−I23 I33

] [
V2

V3

]
.

Integrating this from some point we designate as s = 0, we have

q(s)− q0 = −
[∫ s

0 tX2ds
∫ s
0 tX3ds

]
I22I33 − I223

[
I22 −I23
−I23 I33

] [
V2

V3

]
.

You should be able to
remember this formula!
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Shear Stress and Flow in Sections Shear Flow Distribution

2.1.1. Shear Flow Distribution: The Simple Rectangular Section
Shear Stress and Flow in Sections

Consider the rectangular section with height h and thickness t:

q(s) = −
V2

I33

s∫
0

tX2ds = −
tV2

I33

X2∫
−h

2

X2dX2

= −
tV2

2I33
(X2

2 −
h2

4
)

Remember that V2 is NOT any externally applied force. It is merely the resultant of
all the shear stresses in the section.

We are asking the question: what SHOULD be the distribution of shear stresses
(flow) so that their resultant is V2? It is incorrect to think that q(s) is balancing
out V2.
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Shear Stress and Flow in Sections Shear Flow Distribution

2.1.2. Shear Flow Distribution: The “C” Section
Shear Stress and Flow in Sections

Let us consider a “C” section with uniform thickness t. Out of
convenience we shall use a non-centroidal origin, so the
shear flow expression is written as

q(s)− q0 = −
tV2

I33

z2(s)︷ ︸︸ ︷
s∫

0

(X2 −XC2 )ds−
tV3

I22

z3(s)︷ ︸︸ ︷
s∫

0

X3ds.

Doing shear flow calculations can get confusing because of the
running integral. A nice way to keep things organized is to chart
up a table and start filling it up:

s(X2, X3) X2 X3 z2 − z20 z3 − z30
A→B b−X2 b− s h

2
B→C b+ h

2
−X3 0 0

C→D b+ h+X2 s− (b+ h) h
2

Our task now boils down to filling this table carefully and then
substituting in the equation above.
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Shear Stress and Flow in Sections Shear Flow Distribution

2.1.2. Shear Flow Distribution: The “C” Section
Shear Stress and Flow in Sections

Let us first consider the case of having only V2 and setting V3 = 0, where
the shear flow gets written as q(s) = − tV2

I33
z2(s).

s(X2, X3) X2 X3 z2 − z20 z21 − z20

A→B b−X2 b− s h
2

− (X2−b)
2

(X2 + h

2+h
b

) h
2
XC2

B→C b+ h
2
−X3 0 0 XC2 (X3 − h

2
) −hXC2

C→D b+ h+X2 s− (b+ h) h
2

X2
2
(X2 − 2XC2 )

h
2
XC2

Since zA = 0, adding the last column cumulatively will give the value of
z(s). So we have zB = h

2
XC2 , zC = −h

2
XC2 , and zD = 0. (zD = 0 should

also be a verification check for you since this will go to zero only if
everything else is correct)

The shear flow distribution is quadratic in the A → B and C → D
segments and linear in the B → C segment.

Intuition Note

On segments along the direction of the resultant, the shear flow varies quadratically in space.
Perpendicular to the direction of the resultant, the shear flow varies linearly in space.
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Shear Stress and Flow in Sections Shear Flow Distribution
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Shear Stress and Flow in Sections Shear Flow Distribution

2.1.2. Shear Flow Distribution: The “C” Section
Shear Stress and Flow in Sections

Now let us repeat the procedure for V2 = 0 but V3 ̸= 0, so the shear flow
gets written as q(s) = − tV3

I22
z3(s).

s(X2, X3) X2 X3 z3 − z30 z31 − z30

A→B b−X2 b− s h
2

−h
2
(X2 − b) hb

2

B→C b+ h
2
−X3 0 0 − 1

2
(X2

3 − (h
2
)2) 0

C→D b+ h+X2 s− (b+ h) h
2

−h
2
X2 −hb

2

Once again we see that the flow is quadratically varying along the
resultant and linearly perpendicular to it.

We also ensure that the last column sums up to zero.

After substituting for I22 = h2bt
2

(
1 + h

6b

)
, we obtain

ξs = −
b/2

1 + h
6b

Given this flow, let us now work
out the twisting moment M1

that this results in about the
origin O. (Note that we have
been assuming M1 = 0 so far)

This point is known
as the Shear Cen-
tre of the section.
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out the twisting moment M1

that this results in about the
origin O. (Note that we have
been assuming M1 = 0 so far)

This point is known
as the Shear Cen-
tre of the section.
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2.1.3. Shear Flow Distribution: The “I” Section
Shear Stress and Flow in Sections

Consider the shear distribution through an I-section as
shown here

The shear distribution looks like it is “flowing”, with
more “flow” occurring in the thin vertical web and less
in the flanges.

The second moment of area I22 sums up as,

I22 =

web︷ ︸︸ ︷
h3tw

12
+2×

flange︷ ︸︸ ︷(
2bt3f

12
+ 2btf ×

h2

4

)
≈

h3tw

12
+ h2btf .

I33 sums up as,

I33 =
ht3w
12︸︷︷︸
web

+2×

flange︷ ︸︸ ︷(
2b3tf

3

)
≈

4b3tf

3
.

Recall that the stress distribution in this case (I23 = 0)

is σ11 = M2
I22

X3 − M3
I33

X2. So I22 governs bending in the

e2 direction and I33 governs bending in the e3
direction.

Both I22 and I33 have a term that’s proportional
to tf . For bending purposes, in fact, it is more
efficient use of material to move the flanges far
apart (h ↑) and make the web very thin (tw ↓).

Design Principle

Design the flanges to bear all the bending stresses.

Design the web to ”survive” the shear.
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2.1.3. Shear Flow Distribution: The “I” Section
Shear Stress and Flow in Sections

Let us now calculate the actual shear stress distribution
for the I section. We label the section as shown and
write up a table as follows:

Shear flow table for the I-section

t s(X2, X3) X2 X3 [X20, X21] [X30, X31]

A-B ty b+X2 s− b h
2

[−b, 0] −
C-B ty b−X2 b− s h

2
[b, 0] −

D-E ty b+X2 s− b −h
2

[−b, 0] −
F-E ty b−X2 b− s −h

2
[b, 0] −

E-B tw
h
2
+X3 0 s− h

2
− [−h

2
, h
2
]

[X20, X21] and [X30, X31] are the domains of each of
the segments.

The shear flow integral is written as

q(s)− q0 = −
V2

I33

z2(s)︷ ︸︸ ︷∫ s

0
tX2ds−

V3

I22

z3(s)︷ ︸︸ ︷∫ s

0
tX3ds

= −
V2

I33
z2(s)−

V3

I22
z3(s).

We will compute the z2 and z3
functions (in terms of X2, X3)

and add them to the table above
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2.1.3. Shear Flow Distribution: The “I” Section
Shear Stress and Flow in Sections

q(s)− q0 = −
V2

I33

∫ s

0
tX2ds−

V3

I22

∫ s

0
tX3ds = −

V2

I33
z2(s)−

V3

I22
z3(s).

Shear flow table for the I-section

t s(X2, X3) X2 X3 [X20, X21] [X30, X31] z2 − z20 z3 − z30

A-B tf b + X2 s − b h
2

[−b, 0] − tf
X2

2−b2

2
tf

h(X2+b)
2

C-B tf b − X2 b − s h
2

[b, 0] − −tf
X2

2−b2

2
−tf

h(X2−b)
2

D-E tf b + X2 s − b −h
2

[−b, 0] − tf
X2

2−b2

2
−tf

h(X2+b)
2

F-E tf b − X2 b − s −h
2

[b, 0] − −tf
X2

2−b2

2
tf

h(X2−b)
2

E-B tw
h
2

+ X3 0 s − h
2

− [−h
2
, h

2
] 0 tw

X2
3−(h

2
)2

2

We now have all the terms necessary for furnishing the shear flow formula above.

Noting that q(s) = 0 at all the 4 free tips (A,B,C,D here), q0 for these integrals can
safely be taken as zero. But what about the section E −B ?

Balance at the T-junction
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2.1.3. Shear Flow Distribution: The “I” Section
Shear Stress and Flow in Sections

Since z2 and z3 are running integrals, we will also tabulate their values at the “end” of
each segment.

Shear flow table for the I-section

z2 − z20 z21 − z20 z3 − z30 z31 − z30

A-B tf
X2

2−b2

2
−

tf b2

2
tf

h(X2+b)
2

tf hb

2

C-B −tf
X2

2−b2

2

tf b2

2
−tf

h(X2−b)
2

tf hb

2

D-E tf
X2

2−b2

2
−

tf b2

2
−tf

h(X2+b)
2

−
tf hb

2

F-E −tf
X2

2−b2

2

tf b2

2
tf

h(X2−b)
2

−
tf hb

2

E-B 0 0 tw
X2

3−(h
2
)2

2
0

At the junction E, the shear flow will be a sum of the contributions from the segments
D-E and F-E. In terms of the z2, z3 functions this turns out as,

z2

∣∣∣∣
E

= −
tf b

2

2
+

tf b
2

2
= 0, z3

∣∣∣∣
E

= −
tfhb

2
−

tfhb

2
= −tfhb.
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2.1.3. Shear Flow Distribution: The “I” Section
Shear Stress and Flow in Sections

Let us consider the case with V2 = 0, V3 ̸= 0 graphically.

The segments A → B, C → B, D → E, and F → E are
exposed in their free ends, simplifying the shear flow
integral (q = 0 at free ends).

On E → B, we have
qEB(0) = qDE(0) + qFE(0) = V3

I22
tfhb.

The integration evaluates as,

qEB(X3) = −
V3

I22

(
−tfhb+

tw

2
(X2

3 − (
h

2
)2)

)
=

hV3

I22
(tf b+

twh

8
)−

V3

I22

tw

2
X2

3 .

We now have the complete shear flow in the section.

Balance at the T-junction

Numerical Example
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Let us consider the case with V2 = 0, V3 ̸= 0 graphically.

The segments A → B, C → B, D → E, and F → E are
exposed in their free ends, simplifying the shear flow
integral (q = 0 at free ends).
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2. Shear Stress and Flow in Sections
The “I” section: Order of Magnitude Analysis

Let us consider the “total” shear forces experienced by
each member.

Flange AB

VAB = −
V3

I22

htf

2

∫ 0

−b
(X2 + b)dX2 = −

b2htfV3

4I22

Web BE

VEB =
h2(h+ 12b)tV3

12I22
= V3

For b = h
2
, we have,

VAB = −
h3tV3

16I22
≈ −

V3

8

VEB = V3

Simplification Observation

Since VAB ≪ VBE , we understand that
the web is primarily responsible
for restoring shear loads, with
negligible contributions from the
flanges.
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2. Shear Stress and Flow in Sections
An “I” section beam subjected to 3-point bending: Finite Element Results

Stress σXY

Stress σXZ

Code Aster on the Salome Platform

Free and Open Source (FOSS) FE solver that comes with a
fully functional frontend (Salome)! Please Do Explore!

Shear Flow

Balaji, N. N. (AE, IITM) AS3020* September 17, 2025 21 / 39
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2.2. Closed Sections
Shear Stress and Flow in Sections

The shear-flow integral formula makes no reference to
whether the section is open or closed.

Considering the generic closed section shown, we start the
integral at some arbitrary point A. The integral is then
written as,

q(s)− qA = −
∫ s

0
tσ11,1ds︸ ︷︷ ︸

qb(s)

.

When no twisting is expected at the section, the moment along e 1 about O has to be
zero. This is computed as,

A+∫
A−

dM1 =

∮
pq(s)ds = qA

2A︷ ︸︸ ︷∮
pq(s)ds+

∮
pqb(s)ds = 0 =⇒ qA = −

1

2A

∮
pqb(s)ds .

Are we already assuming that
O is the shear center with this?!

Yes. We need to add an ex-
tra term when resultants

V2, V3 are acting with an offset.
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2.2. Closed Sections: Shear Center
Shear Stress and Flow in Sections

If we suppose that the resultants are acting along some
(ξ2, ξ3), the applied moment is:
(ξ2e 2 + ξ3e 3)× (V2e 2 + V3e 3):

M1 = ξ2V3 − ξ3V2.

Equating this to the moment developed from
the shear flow distribution, we get:

ξ2V3 − ξ3V2 = 2AqA− +

∮
pqb(s)ds

For shear center determination (the point around which resultants act), this is not
enough.

We will additionally invoke an argument of zero twist (θ1,1 = 0) in the deflection field
to get an additional relationship (

∮ q
Gt

ds = 0). This will be covered in the next module
(Torsion).

For symmetric closed sections, however, the shear center coincides with the centroid
(through symmetry arguments).
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2.2.1. The Rectangular “Box” Section
Closed Sections

Let us consider the rectangular beam for V3 alone.

We start the integration from point A arbitrarily.

The shear flow equation is q(s)− qA = − tV3
I22

∫ s
0 X3ds = − tV 3

I22
(z3(s)− zA)︸ ︷︷ ︸

z3b(s)

.

We write down the table as follows:

s(X2, X3) X3 z3 − z30 z31 − z30 z3b(X2, X3)

A→B b
2
−X2

h
2

−h
2
(X2 − b

2
) hb

2
−h

2
(X2 − b

2
)

B→C b+ h
2
−X3 X3 − 1

2
(X2

3 − (h
2
)2) 0 hb

2
− 1

2
(X2

3 − (h
2
)2)

C→D 3b
2

+ h+X2 −h
2

−h
2
(X2 + b

2
) −hb

2
−h

2
(X2 − b

2
)

D→A 2b+ 3h
2

+X3 X3
1
2
(X2

3 − (h
2
)2) 0 1

2
(X2

3 − (h
2
)2)

The zero twist condition can be interpreted as saying that the moment about O is zero:

MO =

∮
pq(s)ds = 0 =⇒ zA(−2bh) +

∮
p · z3(s)ds = 0

To avoid confusion choose a clock-
wise integration direction always!

Choosing a non-centroidal point as the center of moment
is sometimes helpful. Always remember this construction:
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2.2.1. The Rectangular “Box” Section
Closed Sections

Based on the above construction, we have

MO = MC −
V3b

2
= 0.

The moment w.r.t. C is written as

MC = −
tV3

I22

∮
p(zA + z3b(s))ds = −

tV3

I22

(
2bhzA +

∮
pz3b(s)ds

)
.

Let us evaluate the last integral using the table (you can just add columns):

s(X2, X3) p z3b(X2, X3)
∫ s1
s0

pz3b(s)ds

A→B b
2
−X2 h −h

2
(X2 − b

2
) h2b2

4

B→C b+ h
2
−X3 0 hb

2
− 1

2
(X2

3 − (h
2
)2) 0

C→D 3b
2

+ h+X2 0 −h
2
(X2 − b

2
) 0

D→A 2b+ 3h
2

+X3 b 1
2
(X2

3 − (h
2
)2) − bh3

12

Summing up the last column we can write

MC = −V3

(
2bht

I22
zA +

h2bt

12I22
(3b− h)

)
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2.2.1. The Rectangular “Box” Section
Closed Sections

The zero twist condition reads:

MC = −V3

(
2bht

I22
zA +

h2bt

12I22
(3b− h)

)
=

V3b

2
.

Solving this for zA we get

zA = −
hb

8
+

h2

24
−

I22

4ht
.

The second area moment is I22 = h2t
6

(3b+ h). Substituting this we get zA = −
hb

4
.

Adding this to z3b(s) we can write z3(s) s.t. q(s) = − tV3
I22

z3(s):

A → B B → C C → D D → A

z3(s) −h
2
X2

hb
4

− 1
2
(X2

3 − (h
2
)2) −h

2
X2 −hb

4
+ 1

2
(X2

3 − (h
2
)2)

Graphical Visualization of Shear Flow
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3. Stringer-Web Idealization

A stringer, when looked at from a section, looks like a
feature with a sudden increase in thickness.

Consider the rth “Boom” to be located at (Xr2 , Xr3 ), with
area Ar.

So the shear flow integral can be generalized to,

q(s)− q(0) = −

[
s∫
0

tX2ds +
∑

r ArXr2

s∫
0

tX3ds +
∑

r ArXr3

]
I22I33 − I223

[
I22 −I23
−I23 I22

] [
V2

V3

]
It is sometimes possible to also “lump” the effects of the skins (with thickness t) into the
boom areas to simplify the above

q(s)− q(0) = −
[
∑

r ArXr2

∑
r ArXr3 ]

I22I33 − I223

[
I22 −I23
−I23 I33

] [
V2

V3

]
This is known as Stringer-Web Idealization.
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3. Stringer-Web Idealization

Considering the integral right across the boom, we have,

q+ − q− = −
[
ArXr3 −ArXr2

]
I22I33 − I223

[
I33V3 − I23V2

I23V3 − I22V2

]
.

For the sections without a boom, there is no change in the
shear flow.

Therefore, the shear flow is constant in the webs that join two
booms.

General Design Principle

As a general principle, the stringers/booms are added to support bending.

The web thicknesses are chosen to ensure the shear stresses don’t exceed failure threshold (we
should like to have t = 0 to minimize weight!).
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3.1. Idealizing a Thin Rectangular Section
Stringer-Web Idealization

Beam theory predicts that the axial stress σ11

varies linearly in the section. So let us consider a
panel with ends A and B under stresses
σ11(xA ) = σA and σ11(xB ) = σB .

While the complete panel responds to the σ11

distribution in reality, in the idealized panel, the
“booms” alone bear the stresses (the webs have
zero cross section). Since stress is proportional to
the section moment, we need to ensure that
the moment along the en direction is
conserved in the idealization process.

Taking moment about point A

Mn = −
ℓ∫

0

x
(
σA + (σB − σA)

x

ℓ

)
tdx := −σBArB = Mn,i =⇒ ArB =

tℓ

6

(
2 +

σA

σB

)
We also require the overall load to be conserved:

ℓ∫
0

σA + (σB − σA)
x

ℓ
tdx := σAArA + σBArB =⇒ ArA =

tℓ

6

(
2 +

σB

σA

)
.
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3.2. Idealized Analysis of a C Section
Stringer-Web Idealization

Let us now reconsider the C section but now using the idealization.
We will consider the V3 ̸= 0, V2 = 0 case (M2 ̸= 0,M3 = 0). So the stress distribution
will be proportional to X3.

On the top and bottom plates, σA = σB . So ArA = ArB = bt
2 .

On the left plate, σA = −σB . So ArA = ArB = ht
6 .

We “stitch” the idealized panels together as shown below such that

ArA =
bt

2
, ArB =

bt

2
+

ht

6
, ArC =

bt

2
+

ht

6
, ArD =

bt

2
.

In the web between the booms the shear
flow is constant.

q(s) = −
V3

I22

∑
r

Xr3Ar

The second area moment of the idealized
section will be:

I22 =
h2t(h+ 6b)

12
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3.2. Idealized Analysis of a C Section
Stringer-Web Idealization

Let’s work out the shear flow now with a
table:

Xr3 Ar q

A h
2

bt
2

−hbtV3
4I22

B h
2

(h+3b)t
6

−ht(h+6b)V3
12I22

C −h
2

(h+3b)t
6

−hbtV3
4I22

D −h
2

bt
2

0

Let’s estimate the shear center by
computing the moment about C and
setting it equal to V3ξs (like we did
before):

MC = qAB × bh = ξsV3

=⇒ ξs = −
h2b2t

4I22
,

which is exactly the same as from the
original section.

This process is significantly less painful than integrating the shear flow: hereby lies its
relevance. But remember that it only provides averaged shear flow.
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4. Saint-Venant’s Principle in Practice: Shear Lag

Loosely put, Saint Venant’s principle
implies that if a boundary loading
condition is replaced with a point load
such that the resultant magnitude and
the (first) moment are equivalent to the
original load, the response of the system
sufficiently far from the boundary
will be identical.

As structural engineers, we should like to
know: How far is far?. So that we may
exploit this principle in our design.

Answering this in the general context is
difficult but we shall demonstrate this
process for a thin walled stringer-web
section. Instead of studying problems 1○ or 2○, we shall study problem 3○

which has zero resultant load and moment, so that the stress and
displacement distributions “at infinity” are zero (as inferred from
linear superposition).
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4. Saint-Venant’s Principle in Practice: Shear Lag
Example from Sun (2006) (Section 3.1)

Let us consider the 3-boom bar under
axial loading as shown.

Applying equilibrium on the section at
some X1 = x 1○ leads to top and bottom

booms experiencing

∫
A1

σ11dA = P (x) ,

and the central boom,∫
A2

σ11dA = −2P (x) .

Shear flow in top web is given as

qtop = −σ11,1A1 = −P,1

or, σ12 =
1

t
P,1 .
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Saint-Venant’s Principle in Practice: Shear Lag

4. Saint-Venant’s Principle in Practice: Shear Lag
Example from Sun (2006) (Section 3.1)

Considering the shear differential in an
infinitesimal section (construction in 3○)
we have,

∂γ12

∂x
=

1

a
(εtop − εmid)

=
1

EY a

(
P (x)

A1
−

−2P (x)

A2

)
Since γ12 = 1

G
σ12, this becomes,

σ12,1 =
G

EY a

(
1

A1
+

2

A2

)
P (x) .

Combining this with the force balance
relationship (σ12 = 1

t
P,1) we obtain

=⇒ P,11 =
Gt

EY a

(
1

A1
+

2

A2

)
P
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4. Saint-Venant’s Principle in Practice: Shear Lag
Example from Sun (2006) (Section 3.1)

The equation governing the boom restoring axial force is of the form

P,11 − λ2P = 0, λ =

√
Gt

EY a

(
1

A1
+

2

A2

)
.

This second order differential equation is solved by

P (X1) = C1e
−λX1 + C2e

λX1 .

Solving it over X1 ∈ (0,∞), for P (X1 = 0) = P0 and limX1→∞ P (X1) = 0, we obtain an
exponentially decaying restoring force (i.e., straight stress) on the booms:

P (X1) = P0e
−λX1 .

Substituting for σ12 we have (for the top web),

σ12 = −
λP0

t
e−λX1 ,

which also decays exponentially in X1.
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4. Saint-Venant’s Principle in Practice: Shear Lag: Decay Rate
Example from Sun (2006) (Section 3.1)

The shear lag factor λ controls how quickly the effects “diffuse out”.
Large λ implies “fast” diffusion and potentially high concentration around the ends..
Small λ implies “slow” diffusion and potentially low concentrations.

In general for stringer-web structures,

λ ∝

√
Gt

EY aA
.

↑ G, t (stiffer web, thicker web), ↑ λ (”faster” diffusion).
↑ EY ,A, a (stiffer boom, larger boom, larger section), ↓ λ (”slower” diffusion).

The terms “faster” and “slower” are used in the sense that “slower” implies that the stress
distribution needs a longer axial distance to get averaged out (vise versa for “faster”).
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4. Finite Element Simulation Results

Let’s consider a numerical example of a steel member (EY = 210GPa, ν = 0.3) with
t = 0.5mm, a = 50mm, A1 = 25mm2, and A2 = 100mm2

The shear lag constant comes out to be λ = 15.19m−1 , i.e., the critical distance 1
λ

is
65.83mm. After 3 times this distance, the exponential function suggests that the effects
will be below 5%.

Axial Stress Distribution (σZZ , Pa)Shear Stress Distribution (σXZ , Pa)

Displacements Scaled by 5× 108 for visualization

Spatial Variation Com-
pared Against Analysis

Shear plotted along web
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4. Saint-Venant’s Principle in Practice: Shear Lag

Now What Does This Add To Our
Understanding?

Were we to add some “intrusions” into an
ideally designed beam or plate, shear lag can
tell us how much effect these will have on
the overall behavior.

Examples include cutouts in fuselages for
windows and doors; fuel storage doors in
wings, etc.

Bending example (axial stress
plotted on un-deformed coordinates)
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