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Unsymmetrical Bending

1. Unsymmetrical Bending

@ Plane sections remain planar.

@ Sections remain perpendicular
to neutral axis: 12 = y13 = 0.

@ Plane Stress: 022 = 033 = 0.

Balaji, N. N. (AE, IITM)

1. Rigid Section Displacement Field

w1 0 X305 — X003

ws | = |v(X1) | + 0

us w(X1) 0
OxX

2. Zero Shear Strain Simplification

712:’)’13:0ﬁ‘92:—wl, 93:1}’

3. Plane Stress Constitution

!/
= &1 = ul,1 = [X3 —Xz] |:0,2:| .
3
‘We shall develop the theory without
the zero strain simplification first.
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Unsymmetrical Bending  Axial Stress and its Moments

1.1. Axial Stress and its Moments

Unsymmetrical Bending

!
o The axial stress distribution is | o117 = Ey [Xg —XQJ {Z,} . The traction vector in the

section is t = o111 + o12e2 + o13€3 .
e Considering just the axial component (c11€1 ), we write the overall axial force as the
area integral (zeroth moment):

05,
N1 :/ 011 :EY [fAngA —fAXQdA} |:9,:| .
A

o Recall that we have already chosen then origin as the section centroid for expressing the
rigid rotation displacement field, s.t. fAXdA = 0. Therefore N1 = 0 for pure bending.
o Considering the moment due to the axial component (dm = (Xpex) X (o111 dA) w
have (first moment):

i) = [ rman= [ [ B b —ang]

_ EY X§ —X22)(3 dA 9/ ) Second Moments of Area
Y | XeXs X2 A )
Iy = /A X5dA

For constant Ey through section, !
I3z = /A x2da

Mo - I2o —1I23 9/2 i
|:M3} = Ey {7123 I3 } |:93 . Ing =/A XoX3dA
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Unsymmetrical Bending Axial Stress In Terms of Moments and Forces

1.2. Axial Stress In Terms of Moments and Forces

Unsymmetrical Bending

o It is sometimes convenient to have the stress 011 expressed in terms of its resultant
moments instead of kinematic quantities like 2 and 03. So we will invert the
relationship that we have to first get:

[95} _r v [133 123} [Mz]
0':3, Ey Iool33 — 133 I3 Iz Ms| "
@ Stress simplifies as

!
o1 = By [Xs  —X3] [22}
3

[Xs —Xo] I35 I3] [M2
Ios  Io2| [Ms]~

Ioolss — 12,

o Observe that we have gotten to the above without requiring shear strains to
be zero.
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Unsymmetrical Bending  Equilibrium Equations

1.3. Equilibrium Equations

Unsymmetrical Bending

o We shall invoke and simplify the equilibrium equations in an integral sense in the
presence of transverse forces only (stress assumptions: 22 = 033 = 023 = 0).

olj,j:O - /Ao-lj’jdA =0
0121+ fo=0 = / 012,1dA+/ fodA=10
A A

13,1 + f3=0 = / 01371dA+/ f3adA=10
A A
o [, 015;dA is simplified as
Gauss divergence in 2D:W
—_——
/ Ulj,jdA=/ o11,1dA + / 012,2 + 013,3dA = N1
A A A

where n = nje; is the outward pointing normal on the boundary of the section
(n1 = 0).

@ o1;jn; is the e; component of the traction vector on the free surface. By definition this
has to be zero, so we have N1,1 = 0.

o Defining the shearing forces as Vo = fA o12dA and V3 = fA o13dA, the second two
equations can be read as:

[Ver+ R =0|  [Vaa+Fs=0]
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Unsymmetrical Bending  Equilibrium Equations

1.3. Equilibrium Equations

Unsymmetrical Bending

@ In order to relate the different stresses, we invoke M2 = X3011 and M3 = —X9011 now.

o We first pre-multiply 015 ; by X3 and then integrate over the section:
/ X3zo11,1dA +/ X3012,2 + X3013,3dA = M> 1 +/ (X3012),2 + (X3013),3 — 013dA
A A A

/(X30’12),2 + (X3013),3dA :ﬂéw == M —/ o13dA = .
A A A

e Next we pre-multiply o1 ; by X2 and repeat the same:

/ Xo011,1dA +/ Xo2012,2 + X3013,3dA = —M3 1 +/ (X2012),2 — 012 + (X2013) 3dA
A A A

/(X2012),2+(X2013),3dA:W = M3 +/ c12dA=|M31+Va=0|
A A A

o We are finally left with 4 equilibrium equations applicable for beam theory:

‘V2,1+F2:0‘7 ’V3,1+F3=0‘7 ‘M2,1—V3=0‘7 ‘M3,1+V2=0‘-

These are independent of any kinematic assumptions that we may make.
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Transverse Force-Bending Moment Relationship

Voi1+F=0, V3,1+F3=0, Mz1—-V3=0, Mz1+Ve=0

Mzq11 | | F»
—Ms 11| |F3]°
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Unsymmetrical Bending Equations of Motion in Terms of Displacement

1.4. Equations of Motion in Terms of Displacement

Unsymmetrical Bending
o The moments are related to the kinematics through
Mo Ina  —I23] [}
=F 2.
{M:J Y [—123 I3z | |05
o For the zero shear strain case (02 =
the following manner:
Mz | _ |0 1] [M2an| _ |2
—Ms 11 -1 0| |M311 F3
g [0 Y [f2 k][0 —1][v"] _[E
Y —1 0| |-Iss Is3 1 0 W T Fsl
I3z Iaz| [V] _ [F2
= FEy |:123 Ioo | |w™| = | B3|
or in more compact notation,

I I v
E IV//// —F I = 33 23 V= .
Y ~ 7 {123 Io|” =~ w

(Recall that the planar symmetric bending equation is EIv"""" = F)
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

Thin Section: Plane Stress Assumption

o Now we shall pursue the equilibrium equations for thin-walled sections.
o We define the above section-local coordinate system and transform the elasticity
equations to o11,1 + 01s,s + 01n,n = 0. We integrate this along the thickness:

Xn+3 0
/ . Ull,ldX7L+/Uls,st7L +Mz0
Xn—3

@ o1, has to be zero on the surfaces with normal e,, since these are “free” surfaces; so the
last integral goes to zero. The integral above simplifies (for constant thickness along s)

to:
to11,1 + /U1s,stn =0 = |to11,1 +q,s =0,

where we define shear flow ¢, a new quantity that is basically the integral of the

transverse shear stress along the thickness: | ¢(s) = /o’lstn .
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Shear Stress and Flow in Sections

2.1. Shear Flow Distribution

Shear Stress and Flow in Sections

Shear Flow Distribution

@ The stress distribution is written as:

Iool33 — 1223 I3 122 M3

R Xz —Xo] {133 123} [Mz].

o Differentiating this we get:

S . 1 P
1= 122133 —1223 123 122

— _ [Xo X3] [Le —Ix)[Ve
M= ol — 12, [=T2s Isz | [V3]°
e Substituting this in to11,1 + ¢,s = 0 we have,

You should be able to

dg _ [tXo tX3] [ Iy —Ix) [Va
remember this formula! % - Tool33 — 1223 By Is3 Vil

o Integrating this from some point we designate as s = 0, we have

q(s) —qo=— [fOS tXQdS fOs thdS] 122 _123 V2 i
Ioolss — 12, —Iz3 I3z | |V3

September 12, 2025
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Shear Stress and Flow in Sections Shear Flow Distribution

2.1.1. Shear Flow Distribution: The Simple Rectangular Section

Shear Stress and Flow in Sections

o Consider the rectangular section with height h and thickness ¢:

€2 t Shear
H Flow
: N
v s v Xo
t
q(s) = —i/tXst = _z / XodXso
I33 I33
0 _h
/| 2
t h?
=g
2133 4

o Remember that V5 is NOT any externally applied force. It is merely the resultant of
all the shear stresses in the section.

o We are asking the question: what SHOULD be the distribution of shear stresses
(flow) so that their resultant is V2? It is incorrect to think that ¢(s) is balancing
out V.
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Shear Stress and Flow in Sections Shear Flow Distribution

2.1.2. Shear Flow Distribution: The “C” Section

Shear Stress and Flow in Sections

o Let us consider a “C” section with uniform thickness t. Out of
convenience we shall use a non-centroidal origin, so the
shear flow expression is written as €3

z2(s) 23(s)

S s
tVs tV-
q(s) —qo = —J/(Xz - X¢,)ds — i/Xg,ds.
ISS-O 122 2

o Doing shear flow calculations can get confusing because of the
running integral. A nice way to keep things organized is to chart s $

€
up a table and start filling it up: Xo, ’
h b
5(X2, X3) X X3 z—z0 23—230 5
A—B b— X b—s 2
B—C || b+ 2 — X3 0 0
CoD || b+h+Xy s—(b+h) & C

o Our task now boils down to filling this table carefully and then
substituting in the equation above.
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Shear Stress and Flow in Sections Shear Flow Distribution

2.1.2. Shear Flow Distribution: The “C” Section

Shear Stress and Flow in Sections

o Let us first consider the case of having only V5 and setting V3 = 0, where

the shear flow gets written as g(s) = tl‘;g z2(s).
5(X2, X3) Xo X3 z2 — 220 221 — 220
A—B b— Xz b—s b _(Xaob)(x, hxo, ol i
B—C || b+ 24— X3 0 0 Xcy (X3 — 7) —hXc,
X
CoD || b+h+Xos s—(b+h) % 22 (X2 — 2X¢,) L Xe,
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Shear Stress and Flow in Sections Shear Flow Distribution

2.1.2. Shear Flow Distribution: The “C” Section

Shear Stress and Flow in Sections

o Let us first consider the case of having only V5 and setting V3 = 0, where

the shear flow gets written as g(s) = tl‘;g z2(s).
5(X2, X3) Xo X3 z2 — 220 z21—220
A—B b— Xy b—s b _(Xaob)(x, hxo, ol i
B—C || b+ 24— X3 0 0 Xcy (X3 — 7) —hXc,
CoD || b+h+ X2 s—(b+h) &2 22(X;y — 2X¢,) 5Xey, | P
e Since z4 = 0, adding the last column cumulatively will give the value of b iy
z(s). So we have zp = %XCQ, zo = —%XCQ, and zp = 0. (zp = 0 should

also be a verification check for you since this will go to zero only if C
everything else is correct)

o The shear flow distribution is quadratic in the A — B and C — D
segments and linear in the B — C segment.
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Shear Stress and Flow in Sections Shear Flow Distribution

2.1.2. Shear Flow Distribution: The “C” Section

Shear Stress and Flow in Sections

o Let us first consider the case of having only V5 and setting V3 = 0, where

the shear flow gets written as g(s) = tIZs z2(s).
5(X2, X3) Xo X3 22 — 220 z21—220
A—B b— Xz b—s b _(Xaob)(x, hxe, o
B—C || b+ 24— X3 0 0 X, (X5 — 7) —hXe,
C—D || b+h+Xy s—(b+h) L& 22 (X2 — 2Xc,) Axe, _ ? .
e Since z4 = 0, adding the last column cumulatively will give the value of g c
z(s). So we have zp = %Xcz, zo = —%Xc2, and zp = 0. (zp = 0 should

also be a verification check for you since this will go to zero only if
everything else is correct)

o The shear flow distribution is quadratic in the A — B and C' — D
segments and linear in the B — C segment.

On segments along the direction of the resultant, the shear flow varies quadratically in space.
Perpendicular to the direction of the resultant, the shear flow varies linearly in space.

=)
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Shear Stress and Flow in Sections Shear Flow Distribution

2.1.2. Shear Flow Distribution: The “C” Section

Shear Stress and Flow in Sections

o Le €3 4aB 18 -ve so flow is
th m« the dxn of integration
B = N A Shear Flow
7T
A% h
aa5(X2) = 575 (X2 = 0)(Xz = 3 Xou)
A—H apc varies linearly and Vo (h h A
is0at0 a50(Xs) = =7~ | 5Xe = Xea (X = 3)
B—( 33
tVs
c-D :~1—2X02(h X3) -
@ Nd [
tV5 h Xe,
o Siy qop(X2) = _Kz <—§Xcz + 72(X2 - 2XC'2)> o
z( h
A%
ald — = 212 (X3 - Xc, X2 — hXc,)
ev| 2 5
e TH
Se;

C

E— qgop is +ve so flow is
along the dxn of integration
On se y in space.

Perpendicular to the direction of the resultant, the shear flow varies linearly in space.

—
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Shear Stress and Flow in Sections Shear Flow Distribution

2.1.2. Shear Flow Distribution: The “C” Section

Shear Stress and Flow in Sections

o Now let us repeat the procedure for Vo = 0 but V3 # 0, so the shear flow

gets written as ¢(s) = —%23(8).
s(X2, X3) Xo X3 z3 — 230 231 — 230
h h hb €3
A—B b— X b—s 5 —§(X2—b) 5 .
h h [
B—C b+§7X3 0 0 7%()(:?*(5)2) 0
CoD || b+h+Xy s—(b+h) & -X, —hb
@
@ Once again we see that the flow is quadratically varying along the ‘ 1 <
resultant and linearly perpendicular to it. ’E’ =
o We also ensure that the last column sums up to zero.
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Shear Stress and Flow in Sections Shear Flow Distribution

2.1.2. Shear Flow Distribution: The “C” Section

Shear Stress and Flow in Sections

[&
=3 dar is -ve so flow is Shear Flow
o N against the dxn of integration Vs
ge B qa(X2) = @h(xz —b)
] — (a1 (B 08— ()
qBc (A3 Tn D) 3
1A% h?
V: =28 (- x2). 8
Ay AL atic 2 T 3 '
an aries quadraically and o Y 1
B— the dxn ofim?grgano;] qop(X2) = “TIm (5 - §X2> ’
& ( S €9 _ &h(Xg _ b)
)J( 212 o
e Of A Ca ¢ f\r( %
b s
re — TR o
o W 2 . is —ve so flow is
qop is -ve so flow is
against the dxn of integration
lD
C -
b
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Shear Stress and Flow in Sections Shear Flow Distribution

2.1.2. Shear Flow Distribution: The “C” Section

Shear Stress and Flow in Sections

o N
ge

e Oy
re

o W,

e
=3 dar is -ve so flow is Shear Flow
against the dxn of integration th
B 4aB(X2) = S7—h(X2 - b)
A 215 ) \
N apo(Xs) = _tVs (b M
BC(A3 T \ 2 D)
AVg __ s hb ’L_Xg ko
4B varies quadratically and
is —ve so flow is against don(Xs) = Vs (hb EXZ A
the dxn of integration Toa \ 2 2
1A%
16 S [ =3 (X, —b)
j( 2159 .~
Cs IC T [23
h i Xe,
— 2+ hfb B
2
o is -ve so flow is - - § Sevvemmmesssm 3D
against the dxn of integration Given this flow, let us now work '
— 1 out the twisting moment M 7
o0 D that this results in about the
origin O. (Note that we have
b been assuming M; = 0 so far)
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Shear Stress and Flow in Sections

Shear Flow Distribution

2.1.2. Shear Flow Distribution: The “C” Section

Shear Stress and Flow in Sections

e
=3 dar is -ve so flow is Shear Flow
e N against the dxn of integration X Vs X b
e B aaB( 2)*@(2*)
A (= Vo (0 (X3 (5))
— qBc(A3) = Tn \ 2 B)
— tVs h? 5
A AlVs :_T(hb+Z_X3 .
gpe varies quadratically and tV22 W h
is —ve so flow is against 3
B e won(xe) = -2 (- Lxa)
C— tVs
ol e e
X 212
e O L Ca Twisting Moment M;
b
re 5 25 hib M, = /,,q(s)ds
o Wi gep is -ve so flow is 0 p bp
against the dxn of integration = / 548 (X2)(=dXs) + / 5dcn(X2)dXy
ﬁD b 0
RtV /‘b R2b%t
L] = Xy — b)dXy = ———V,
¢ 212 Jo (X2 —b)dX, Al °
h2b3t
My =&V =>§& =~
b S S 4]22
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Shear Stress and Flow in Sections

2.1.2. Shear Flow Distribution: The “C” Section

Shear Stress and Flow in Sections

o Now let us repeat the procedure for Vo = 0 but V3

Shear Flow Distribution

gets written as ¢(s) = —%23(8).
S(XQ,X;;) X X3 23 —
h h
A-B || b-Xy b—s Ao k(]
B—C || b+ 45— X3 0 0 —i(x3
CoD || b+h+Xo s—(b+h) % —h

@ Once again we see that the flow is quadratically Y
resultant and linearly perpendicular to it.

e We also ensure that the last column sums up to zei

@ (1 + l), we obta

o After substituting for Iso = 6

b/2

§s =

1+ 2

1+ h/6b

£s

b

2+ h/b
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Shear Stress and Flow in Sections

2.1.2. Shear Flow Distribution: The “C” Section

Shear Stress and Flow in Sections

o Now let us repeat the procedure for Vo = 0 but V3

Shear Flow Distribution

gets written as ¢(s) = —%23(8).
S(XQ,X;;) X X3 23 —
h h
A-B || b-Xy b—s Ao k(]
B—C || b+ 45— X3 0 0 —i(x3
CoD || b+h+Xo s—(b+h) % —h

@ Once again we see that the flow is quadratically Y
resultant and linearly perpendicular to it.

e We also ensure that the last column sums up to zei

@ (1 + l), we obta

o After substituting for Iso = 6

b/2

1+ h/6b

£s

b

2+ h/b

This point is known b
as the Shear Cen- fo=— /2
. . : h
tre of the section. 1+ 55
Balaji, N. N. (AE, IITM) AS3020%
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Shear Stress and Flow in Sections Shear Flow Distribution

2.1.3. Shear Flow Distribution: The “I” Section

Shear Stress and Flow in Sections

e Consider the shear distribution through an I-section as

shown here Flanges
@ The shear distribution looks like it is “flowing”, with
more “flow” occurring in the thin vertical web and less m
in the flanges.
@ The second moment of area I22 sums up as, Flanges
€3
web flange I |
1t 2bt% n2\ Bt ' 7 _
Inp = — 2 42 x —+2btf x — | = —+h2bt
12 4
T
@ [33 sums up as, flange Flanges €
h
ht3, 203t 463t |
fos = 55 T2~ (Tf) ~ =5
~— Web
web
e Recall that the stress distribution in this case (I23 =0) | N ] +
is 011 = 122 2 X3 — =3 Xo. So Iz governs bending in the
eo direction and 133 governs bending in the ez b
direction.
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Shear Stress and Flow in Sections Shear Flow Distribution

2.1.3. Shear Flow Distribution: The “I” Section

Shear Stress and Flow in Sections

e Consider the shear distribution through an I-section as
shown here Flanges

Both Iss and I33 have a term that’s proportional
to ty. For bending purposes, in fact, it
efficient use of material to move the flan:

° apart (h 1) and make the web very thin (¢, ).
€3
web flange I |
nit 2t} n2\ _ mt ' 7 i
Tog = 21 1oy 7f+2btfx— ~ w+h2bt 7
12 4
e I33 sums up as, flange Flanges K [
h
ht3, 203t 43t ]
133*6-%2 (#)%Tj
~— ‘Web
web
e Recall that the stress distribution in this case (I23 =0) | N ] +
is 011 = 122 2 X3 — =3 Xo. So Iz governs bending in the
eo direction and 133 governs bending in the ez b
direction.
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Shear Stress and Flow in Sections Shear Flow Distribution

2.1.3. Shear Flow Distribution: The “I” Section

Shear Stress and Flow in Sections

e Consider the shear distribution through an I-section as
shown here Flanges

Both Iss and I33 have a term that’s piopmtional
to ty. For bending purposes, in fact,

efficient use of r rial to move the ila.ng
° apart (h 1) and make the web very thin (¢, ).
web flange 0
[
h3t, 20t h2\ _ k3t 7
Iop =~ 42 x | L 4+ 2bty x | m T2 4 h2bty !
Design Principle
) T
Design the flanges to bear all the bending str S. Flanges €
Web
o Recall that the stress distribution in this case (I23 =0) | S
is 011 = %Xg — =3 X9. So Iz governs bending in the
eo direction and 133 governs bending in the ez b
direction.
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Shear Stress and Flow in Sections

Shear Stress and Flow in Sections Shear Flow Distribution

2.1.3. Shear Flow Distribution: The “I” Section

o Let us now calculate the actual shear stress distribution e
for the I section. We label the section as shown and B
write up a table as follows: 11- # -
Shear flow table for the I-section A C
[t [s(Xe,X3) [ Xo | X3 [ [X20,X21] | [X30, X31] |
AB [ t, b+ Xo s—b % [~b,0] - .
CB ||ty | b-Xo |[b-s| L [b,0] - 2 A
D-E || ¢, b+ Xo s—b —% [~b,0] -
F-E ty b— Xo b—s -5 [b,0] —
E-B || tw b+ X3 0 s—n — -4, 5
D F
e [X20, X21] and [X30, X31] are the domains of each of # % Y
the segments. i
b
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Shear Stress and Flow in Sections

Shear Flow Distribution

2.1.3. Shear Flow Distribution: The “I” Section

Shear Stress and Flow in Sections

o Let us now calculate the actual shear stress distribution e
for the I section. We label the section as shown and B
write up a table as follows: 11- # -
Shear flow table for the I-section A C
[t [ s(Xe,X3) [ Xo [ Xz [ [Xo0,Xo1] | [Xs0,X31] |
AB [ t, b+ Xo s—b % [~b,0] - .
OB ||ty | b-X2 |[b-s| I [b,0] - 2 b
D-E || ¢, b+Xs | s—b —% [-b,0] -
F-E ty b— Xo b—s -5 [b,0] —
EB || tw | 2+X;3 0 | s—2 - (-5, 4
F
e [X20, X21] and [X30, X31] are the domains of each of % Y

the segments.

@ The shear flow integral is written as

Balaji, N. N.

q(s) — qo

(AE, IITM)

-
{I:
ey

z2(s) 23(s)
1% s V- s
22| tXopds——2 | tXsds
Is3 Jo I22 Jo
Vo 1%
———29(8) — —2z3(s).
Tas (s) Ton (s)
AS3020%*

We will compute the z2 and z3
functions (in terms of Xo, X3)
and add them to the table above
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Shear Stress and Flow in Sections Shear Flow Distribution

2.1.3. Shear Flow Distribution: The “I” Section

Shear Stress and Flow in Sections

1% s 1% s 1%
q(s) —qo = — 22 [ Xods — =2 | tXsds = 7222(3) - —3z3(s).
I33 o 22.Jo I3 Iz

Shear flow table for the I-section

[t T s(Xo,X3) [ Xo [ X3 [ [Xo0,Xo1] [ [Xg0,Xa1] [[[ 23 =209 [ 23— 230
A-B ty b4 Xq s—b g [—b, 0] - ty X%;bQ ty h’(Xg‘H’)
Cc-B ty b— Xo b—s L [b, 0] - —ty Xg;bz 7tfh(xg’b>
D-E ty bt Xo s—b -% [=b, 0] 7 th%;bz —pp nXatb)
F-E ty b— Xo b—s -4 [b, 0] - —tg X2;b2 ty MX%"’)
E-B tw bt xg 0 s— b - -k, b 0 t,u,x?’%(%ﬂ

o We now have all the terms necessary for furnishing the shear flow formula above.

e Noting that g(s) = 0 at all the 4 free tips (A,B,C,D here), qo for these integrals can
safely be taken as zero. But what about the section £ — B 7
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Shear Stress and Flow in Sections Shear Flow Distribution

2.1.3. Shear Flow Distribution: The “I” Section

Shear Stress and Flow in Sections

Vo [® Vi [* \% \%
q(s) —qo = — 22 [ tXods — =2 | tXsds=——22 s) — —323(3)‘
I3z )0 Iz I

0 33 T2

Shear flow table for the I-section
Balance at the T-junction

[ 22 —220 [ 23— 230
X2 _p2 h(Xo+t
b2 b, h(Xo4b)
F2 f 2
2 2
XZ-b h(X5—b)
.S _ 2
"f 5 I,f D)
P
xZ-b h(Xp+b)
X3 .y, h(Xab)
T fT 2
P
xZ-b h(X5—b)
2 2
“tr "2 tf——=2
gy
0 tw (z)
qc
e We now h |Zf‘:f1.4+rm —go=0=>qc=q1+ap ar flow formula above.

v
o Noting that™q(s)= 0 at all'the 4 free tips (A;B;C.Dhere); qo for these integrals can
safely be taken as zero. But what about the section £ — B 7
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Shear Stress and Flow in Sections Shear Flow Distribution

2.1.3. Shear Flow Distribution: The “I” Section

Shear Stress and Flow in Sections

e Since zo and z3 are running integrals, we will also tabulate their values at the “end” of
each segment.

Shear flow table for the I-section

[ [ 22— 230 [ 201 — 220 [ 23 — 230 [ 231 — 230 [l
A-B "fﬂ _ﬁ tr h(X§+b) @
CB || -ty ng_hz % —tp M) L
pe || X2 | _w L, aogin | ikt
F-E || —tf X§;b2 12&2 tp 1= L
E-B 0 0 tw 42—)(%72(@)2 0

o At the junction E, the shear flow will be a sum of the contributions from the segments
D-E and F-E. In terms of the 22, z3 functions this turns out as,

teb? b2 trhb  tyhb
| =L 4T 0, | =TT
5 2 2 E 2 2
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Shear Stress and Flow in Sections Shear Flow Distribution

2.1.3. Shear Flow Distribution: The “I” Section

Shear Stress and Flow in Sections

o Let us consider the case with Vo = 0, V3 # 0 graphically.

o The segments A - B, C — B, D — E, and F — E are B €3
exposed in their free ends, simplifying the shear flow ot
integral (¢ = 0 at free ends). L T 5
A A>Bise(0,b) CoBise(0) ()
X, 7b~»!l,)(,:g X, bﬂ!l,X,:g
Alvs
B E:se(0,2h) [
Xigog h
DS E:sc(0,b) FoEisc (0
DX_, b0, X3 = —%’ Xo:b—0, Xy = —g 1«‘
Iy I A
T T

E
b
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2.1.3. Shear Flow Distribution: The “I” Section

Shear Stress and Flow in Sections

o Let us consider the case with Vo = 0, V3 # 0 graphically.

o The segments A - B, C — B, D — E, and F — E are
exposed in their free ends, simplifying the shear flow
integral (¢ = 0 at free ends).

&
— V . =3
A — B : qap(s) =qap(Xa2) = —ézg(s) = AB:s=b+X, B
L ’s
_ VB, n(Xatb) t > ? 5
122 f 2 A A B:se(0,b) C—B:se(0,b) (/v
Xo: b0, X, = 1 Xoihs0, Xy = 1
2 2
Alv;
B E:se(0,2h) €9
o b
Xoig o3 h
D E:se(0.0) FE:se(0h)
D,\'_,:—zwn‘x«:—g X_»:lrﬂ().X,‘:f{—z’ 1«‘
iy I
T T

E
b
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Shear Stress and Flow in Sections

Shear Flow Distribution

2.1.3. Shear Flow Distribution: The “I” Section

Shear Stress and Flow in Sections

o Let us consider the case with Vo = 0, V3 # 0 graphically.
o The segments A - B, C — B, D — E, and F — E are

exposed in their free ends, simplifying the shear flow

integral (¢ = 0 at free ends).

A — B : qap(s) =qap(Xa2) = —1‘2—3’2
Vi, e
Iz

\% _
C= B : gop(Xs) = 2t M0

Balaji, N. N. (AE, IITM) AS3020*

B BC:s=b

RN
A

A-Bise(0,0) CoBise (0.h)
Xai b0, X, = 3 Xotho0, %= 1

Alvs

B E:se(0,2) [
X bk

DS E:se(0,0) F—E:se(0b)

Dxeibooxo=-8 | oo x4

Ja
3
T

E
b
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2.1.3. Shear Flow Distribution: The “I” Section

Shear Stress and Flow in Sections

o Let us consider the case with Vo = 0, V3 # 0 graphically.

o The segments A - B, C — B, D — E, and F — E are
exposed in their free ends, simplifying the shear flow
integral (¢ = 0 at free ends).

&
_ \% =3
A =B :qap(s) = qap(X2) = —7223(s) = B
4 4, h(X2+b) ¢ e
122 f A A B:se(0,b) CoBise(0) ()
X, 7b~»!l,)(,:g X, bﬂ!l,X,:g
V-
3, h(Xa—b
C—-B: QCB(XQ):th% A V3
22 B EB:se(0,2h) [
V3 h(Xatb Xigog h
D= E : ¢gpr(X2) = 7tf¥
I22
DS E:sc(0,b) FoEisc (0
D,\'_,:—zwn‘x.(:—g X_,:IH().XJ:—{—Z' F
L - O
T > T

DE:s=bt X2 [

"
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2.1.3. Shear Flow Distribution: The “I” Section

Shear Stress and Flow in Sections

o Let us consider the case with Vo = 0, V3 # 0 graphically.

o The segments A - B, C — B, D — E, and F — E are
exposed in their free ends, simplifying the shear flow

integral (¢ = 0 at free ends).
_ \% €3
A =B :qap(s) = qap(X2) = —7223(s) = B
_ Vs, iy ¢ P+
122 A A>Bise(0,b) CoBise(0) ()
X, 7b~»!l,)(,:g Xy bﬂ!l,X,:g
V3 | h(xa-b) A
C—B: qp(X2)= th% Vs
22 B E:se(0,2h) [
V3 h(Xatb Xigog h
D E : gpp(Xa) = -t MX2th)
I22
D Xai b0, Xa= =3 20050, Xy= 5 o
iy - Ly
b < ?
BC:s=b_ X,

E
b
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Shear Stress and Flow in Sections Shear Flow Distribution

2.1.3. Shear Flow Distribution: The “I” Section

Shear Stress and Flow in Sections

o Let us consider the case with Vo = 0, V3 # 0 graphically.

o The segments A -+ B, C — B, D — E, and F — E are
exposed in their free ends, simplifying the shear flow
integral (¢ = 0 at free ends).

_—

o In summary we have linear shear flow trends at the

]

——>>% -,

flanges.

A B:se(0,0) CoBise (D)
A . n n c
Xp:-b=0, X3 =73 Xaih—0, Xy =5
2 2
Alvs
B E:se(0,2h) [
b
xv‘q’ﬂﬁ'
D E:se(0h) FoE:se(0D)
i i
D Xo: b0, X5 =3 XZ:II—VO.X,:fé F
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2.1.3. Shear Flow Distribution: The “I” Section

Shear Stress and Flow in Sections

o Let us consider the case with Vo = 0, V3 # 0 graphically.
o The segments A -+ B, C — B, D — E, and F — E are
exposed in their free ends, simplifying the shear flow

integral (¢ = 0 at free ends).

o In summary we have linear shear flow trends at the
flanges.

e For the web (E — B), we recall the balance at the “T”
junction.

Balance at the T-junction

[Er-wtm-ac=0=>w=u+m]
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2.1.3. Shear Flow Distribution: The “I” Section

Shear Stress and Flow in Sections

o Let us consider the case with Vo = 0, V3 # 0 graphically.

o The segments A - B, C — B, D — E, and F — E are €3
exposed in their free ends, simplifying the shear flow T B ot
integral (¢ = 0 at free ends). L T 5
A A B:se(0.) CoBisc(l) (7
o OnEHB, we have X, %40,){,:’21 Xz.b—»U,Xy:;l
V-
a58(0) = qpp(0) + qrp(0) = 2 tshb. Alv,
o The integration evaluates as, BAE.;’E(OAQ,,,) Alpe.s— L)f X
Xoi3 o3 > h
V3 t h e €
a5B(X3) = —— ( —tphb+ 2 (X3 — ()%
Io 2 2
_ hVS (tfb+ twh)_ Etwag? Do E:se(0h) FoE:sc(0,b)
122 8 122 2 Dx.;;—(,aﬂ.x.,:—%‘ X;:llﬁn.x“:*% F
s s Y
L T
E
b
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Shear Stress and Flow in Sections Shear Flow Distribution

2.1.3. Shear Flow Distribution: The “I” Section

Shear Stress and Flow in Sections

o Let us consider the case with Vo = 0, V3 # 0 graphically.

o The segments A - B, C — B, D — E, and F — E are A%

exposed in their free ends, simplifying the shear flow
integral (¢ = 0 at free ends).

A ABen)

e On E — B, we have Xy =b—0, xv,:,%'
qeB(0) = qpE(0) + qre(0) = I‘;—thhb.
o The integration evaluates as, BoEise(0.2h)
Xt b
Vs t h ’
app(Xs) = — = ( ~trhb+ (X3 — (5)?)

I22 2 2
%(tfb_,’_ﬂ)_&tﬂ ?? D*}E-;E(UJ;')
122 8 122 2 DXe:-b-0.X=-3

@ We now have the complete shear flow in the section.
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Shear Stress and Flow in Sections

2.1.3. Shear Flow Distribution: The “I” Section

Shear Stress and Flow in Sections

Shear Flow Distribution

Numerical Example

Resultant V,=1,V;=0

b=50.0 mm, h=75.0 mm, #;=3.0 mm, ,=1.0 mm

- .

1 ® :

E Z 5

o <)

Z 0 20

'E [

25 =
25 -
/};OOOO 2% 3 Ognﬁi’o

ey - cQ
30 0 30 Ko “ W gox

X, Coordinate (mm)

Resultant V,=0,V;=1

B
=
élo
g 5
oS
= 0
=
g5
@«
30
0
Cy 0 e
00y, 725 — pa!
rd”’a: X3 800‘(\“

@ We now have the complete shear flow in the section.
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2. Shear Stress and Flow in Sections

The “I” section: Order of Magnitude Analysis

o Let us consider the “total” shear forces experienced by
each member.

o Flange AB o
Va2 ht 0 tht V- A A B:se(0,0) C\B:se(0.h) C
VAB:_iif/ (X2+b)dX2:—¢ X, 7’)~>O,X&:g Xp:b J‘X":’i,
Iz 2 /oy 4159
Vs
e Web BE
B E:se (0,2h) 5
h2(h + 12b)tVx X b b
Vg = (b 120tV _ o . L
12122
e For b = %, we have,
hStV3 V3 DoE:se (ll,[;)
Vap = — N —— Xot b0, Xy =~
AB = T 1615, 8 D : F

Ve = V3 EE
b _\)|/
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2. Shear Stress and Flow in Sections

The “I” section: Order of Magnitude Analysis

o Let us consider the “total” shear forces experienced by

each member. B =)
o Flange AB
Va ht 0 tht Ve A A—B:se(0,b) C
VAB:——S—f/ (X2 +b)dXy = ——1 22 Xaib0 =t
Ioa 2 )y 4122
VQ
e Web BE Simplification Observation
2 Since Vap < Vpg, we understand that
Ve = M =V3 the web is primarily responsible
12192 for restoring shear loads, with
negligible contributions from the
e For b = %, we have, flanges.
h3tVa V3
VAB = — ~ ——
16122 8
Vep = V3
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2. Shear Stress and Flow in Sections

An “I” section beam subjected to 3-point bending: Finite Element Results

14606
1266
les

807

Displacement - Magnitude

e

&)

CODE aster

sciome mecaz02?

Code_Aster on the Salome Platform

Free and Open Source (FOSS) FE solver that comes with a
fully functional frontend (Salome)! Please Do Explore!
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2. Shear Stress and Flow in Sections Stress ox z

An “I” section beam subjected to 3-point bending: Finite Element Results

Tecco 4

3
i
i

s

Tosea

Stress oxy

Displacement - Magnitude

R —
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2. Shear Stress and Flow in Sections Stress ox z

An “I” section beam subjected to 3-point bending: Finite Element Results

Tecco 4

3
i
i

s

Tosea

T el

Stress oxy

A\
3
A | AfeN o ¢
s L I
\ v
F2
H SR h
£
£
H e Fogflcon
DXa: 650Xy = -3 Xa:5 /0. X L F
1

I3
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Shear Stress and Flow in Sections Closed Sections

2.2. Closed Sections

Shear Stress and Flow in Sections

Integration
direction

o The shear-flow integral formula makes no reference to
whether the section is open or closed.

o Considering the generic closed section shown, we start the
integral at some arbitrary point A. The integral is then
written as,

S
q(s) —qa = 7/ toi1,1ds.
0

ap(s)

()

%
(Z 0A = 1 15
05 2

e When no twisting is expected at the section, the moment along e about O has to be

zero. This is computed as,

At 2A
[

/ dM, = 7{pq(8)d8 =aqaf pq<s>ds+?{qu(8)d8 =0 =

Fa .

Balaji, N. N. (AE, IITM) AS3020*
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Shear Stress and Flow in Sections Closed Sections

2.2. Closed Sections

Shear Stress and Flow in Sections

Integration
. direction
o The shear-flow integral formula makes no reference to
whether the section is open or closed.
o Considering the generic closed section shown, we start the
inteoral at some arbitrarv noint. A The integral is then
Are we already assuming that

O is the shear center with this?!
Jo

ap(s)

—_— 5(‘4\

&)

0s

0A = %pés

o When no twisting is expected at the section, the moment along e¢; about O has to be

zero. This is computed as,

At 2A

— P
/ dM;, = }{pq(s)ds =qa qu(s)der?{qu(s)ds =0 = |quy = “oa ?ﬁ pap (s)ds |-

A—
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Shear Stress and Flow in Sections Closed Sections

2.2. Closed Sections

Shear Stress and Flow in Sections

Integration
direction

o The shear-flow integral formula makes no reference to
whether the section is open or closed.

o Considering the generic closed section shown, we start the
inteoral at some arbitrarv noint. A The integral is then
Are we already assuming that

O is the shear center with this?!

Yes. We need to add an ex-

tra term when resultants
Va, V3 are acting with an offset.

AC3
=0 Es
A
&)
o >
%

0A = } 0s

0s 2p

o When no twisting is expected at the section, the moment along e¢; about O has to be

zero. This is computed as,

At 2A
———
/ dM, = }(pq(S)ds =qa qu<s>ds+?{qu(8)d8 =0 =
e

Balaji, N. N. (AE, IITM) AS3020*
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Shear Stress and Flow in Sections Closed Sections

2.2. Closed Sections: Shear Center

Shear Stress and Flow in Sections

AE3
o If we suppose that the resultants are acting along some V-
(&2, €&3), the applied moment is:
(§2e2 +&3e3) x (Vaeo + Vies):
My = Vs — &3Va. Vs
. . (&2,83)
o Equating this to the moment developed from e

the shear flow distribution, we get:

EaV3 —E&3Va = 2Aq,- + ?{pr(S)dS

o For shear center determination (the point around which resultants act), this is not
enough.

o We will additionally invoke an argument of zero twist (01,1 = 0) in the deflection field
to get an additional relationship (§ %ds = 0). This will be covered in the next module
(Torsion).

o For symmetric closed sections, however, the shear center coincides with the centroid
(through symmetry arguments).
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Shear Stress and Flow in Sections Closed Sections

3
. S
2.2.1. The Rectangular “Box” Section e —
Closed Sections 7 v
To avoid confusion choose a clock- 3
wise integration direction always! 19 [
o Let us consider the rectangular beam for V3 alone.
e We start the integration from point A arbitrarily. C D
o The shear flow equation is g(s) — g4 = —%fo X3ds = tv’ (z3(s) — za).
22—
235 (5)
o We write down the table as follows:
H 5(X2,X3) X3 23 — 230 231 — 230 236 (X2, X3)
b h h b hb h b
A—B 2 — X2 3 —3(X2-3) 5 —3(X2-3)
B—C b+ 5 —-Xz X3 —3(X2-(%)?) 0 B —3(X3 - (5)?)
C—D 3—b+h+xg -b _h(xy 4+ 2 —hb ~bxa-b)
DoA [ 264+ 4 X5 X3 3(XF—(4)?) 0 3(X3 - (5)%)

o The zero twist condition can be interpreted as saying that the moment about O is zero:

Mo = ?{pq(s)ds =0 = z4(—2bh) + %p -23(s)ds =0
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Shear Stress and Flow in Sections Closed Sections

€3
. S A
2.2.1. The Rectangular “Box” Section Bt 1
Closed Sections Tt v
To avoid confusion choose a clock- 3
wise integration direction always! 0 [
o L Choosing a non-centroidal point as the center of moment
o W is sometimes helpful. Always remember this construction: D
o TH 1.
AE3 Moment about Centroid C
° Wi @ =p =18
. r Me = [ 2 x a0
| § X3)
o © = /(1 —R) x fdQ b
o 2
2 = dQ—R dQ hy2
— [expio-rx [0 | (4)?)
Q Q y
~Mo ~R < F - 5)
- o o2 3

o The zero twist condition can be interpreted as saying that the moment about O is zero:

Balaji, N. N.

Mo = ?{pq(s)ds =0 = z4(—2bh) + ?{p - z3(s)ds =0
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Shear Stress and Flow in Sections Closed Sections

e
3 s
2.2.1. The Rectangular “Box” Section e —
Closed Sections Tt
V3
@ Based on the above construction, we have 0 2
V3b
Mo = M¢ — % 0.
C D
o The moment w.r.t. C is written as
tV- tVa
Me = ——2 ¢ p(za + z3p(s))ds = ——> (QthA + ?{PZ'Sb(s)ds) .
122 122
Let us evaluate the last integral using the table (you can just add columns):
5(X2, X3) P z3p(X2, X3) ‘ Joy P23b(s5)d
b 2;2
A—B L-X h —h(X-b) L
B—C || b+4-Xs 0 - 1(Xx3-(4)?) 0
CoD || 2+h+Xy 0 ~b(x,- b 0
3h 1 h bh?
D—A || 26+ +X3 b T(XE2 - (2% —
e Summing up the last column we can write
2bht h2bt
Me = —V3 zA + (3b—h)
122 12152
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Shear Stress and Flow in Sections Closed Sections

€3
g 5
2.2.1. The Rectangular “Box” Section e —
Closed Sections Tt
V3
0 €
e The zero twist condition reads:
C D
2bht h2bt V3b
Me = —V- 3b—h)|=—.
’ ( Im - 12122( )>

@ Solving this for z4 we get

kb h* I

zZA = — - ==
8 24 4ht’
. t hb
o The second area moment is Iop = T(?)b + h). Substituting this we get | z4 = el
o Adding this to z35(s) we can write z3(s) s.t. g(s) = tI;/g z3(s):
H A— B B —C C—D D— A
s || bx ®ooaoy)  hx By id- )
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2.2.1. The Rectangular “Box” Section 5 ﬁ#

Closed Sections

Shear Stress and Flow in Sections Closed Sections

€3

€

t

VIN

e The zey

e Solving

@ The seq

Adding

Graphical Visualization of Shear Flow

Q3l\
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Stringer-Web Idealization

3. Stringer-Web Idealization

J J J J J N
B 2
L o~y £
~~ e \
i d € 59 t+0(s—sg,
r r rrr g &

J

o A stringer, when looked at from a section, looks like a

feature with a sudden increase in thickness. “\
o Consider the 7" “Boom” to be located at (Xr,, Xry), with
area Ar. 0 ()

@ So the shear flow integral can be generalized to,

bftx2ds +3, A X, t;fthds +3, A,,.X,,,S}

a(s) — a(0) = - {323 ‘éﬂ [Kﬂ

o It is sometimes possible to also “lump” the effects of the skins (with thickness ¢) into the

boom areas to simplify the above

o, ArXry 3, Ar Xy |: Iao —123} {Vz}

Toolzs — ]223 —1I23 I3s Vs

Ipolssz — 12,

q(s) — q(0) = —

e This is known as Stringer-Web Idealization.
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3. Stringer-Web Idealization

o Considering the integral right across the boom, we have,

t =

—q =— t+6(s—sp,

[ATX7'3 _A'r'X'rQ} 133V3 _ 123V2
I23V3 — I22Va |~

thickness
profile

Ipolsz — 13,

e For the sections without a boom, there is no change in the
shear flow.

o Therefore, the shear flow is constant in the webs that join two
booms. o

General Design Principle
@ As a general principle, the stringers/booms are added to support bending.

@ The web thicknesses are chosen to ensure the shear stresses don’t exceed failure threshold (we
should like to have ¢ = 0 to minimize weight!).
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Stringer-Web Idealization Idealizing a Thin Rectangular Section

3.1. Idealizing a Thin Rectangular Section

Stringer-Web Idealization

e Beam theory predicts that the axial stress 011
varies linearly in the section. So let us consider a
panel with ends A and B under stresses
o011(za) =04 and 011(2zR) = 0B.

o While the complete panel responds to the 011
distribution in reality, in the idealized panel, the C
“booms” alone bear the stresses (the webs have A
zero cross section). Since stress is proportional to
the section moment, we need to ensure that oA
the moment along the e, direction is oB
conserved in the idealization process.

o Taking moment about point A

L
02
M, = —/:1: (UA +(op — UA)%) tdr := —opArp = Myp,;, — | Arp = e <2+ Ui)
0

e We also require the overall load to be conserved:

14

102
/O'A + (0B —O'A)%tdx ‘= 0pArp +0opArg — | Arp = o (2+ U—B) .
oA

0

(=]
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Shear Lag

4. Shear Lag

Example from Sun (2006) (Section 3.1)

o We already saw the St. Venant’s principle. Can we say something more specific about
“how fast” the end effects start getting smoothed out in the stress field? Consider:

@. @ Section at
€ —

e Applying equilibrium on the section at @41 5=0 Py
some X1 =z (D) leads to top and bottom .
o b 2k &
booms experiencing o11dA = P(z) |, 2 %
Ay
and the central boom, A <t Py \
|
/ (711dA=72P(.’L') . z=0 z=1/
A2 ®P0<— — D) @iar ) (14 c1op)i
o Shear flow in top web is given as |
2P, —2P(z)
dtop = 70'11,1/41 = 7P’1 —
(1 + €mia)dx
or, —toiz = —Px. P_ || P o
|:z_‘ oy = #M
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Shear Lag

4. Shear Lag

Example from Sun (2006) (Section 3.1)

D @: Section at 2
[ —
2

o Considering the shear differential in an @41 s=0 Py =
infinitesimal section ((3)) we have, T .
’ —2P, €
Ovi2 1 Az ?
= —(€top — €mid)
ox a <t P
1 (P(a:) —2P(x)) Ay s X
= I — |
Eya \ A As =0 p\ =0
Al
e Since 12 = éalg, this becomes, ®P0 — Bl) ox (14 €1op)0a
1 2 —2Py | |—2P(x)
o12,1 = -— + —) P(x). —
Eya (A1 As (T emia)z
Py _| _P(x) P
e Using the force balance relationship e —| - by = Sy
1 M
012 = ;P,l also
Gt 1 2
= |P11=—— (7 + —) P
’ Eya \ Ay As
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Shear Lag

4. Shear Lag

Example from Sun (2006) (Section 3.1)

o The equation governing the boom restoring axial force is of the form

Gt (1 2
P11 — AP =0, A= (—Jr—)
Eya \ Ay As

P(Xl) = CleiAXI + CQGAXI.

e Solving it over Xy € (0, 00), it is easy to see that Co must be 0 for P(X1) to be
bounded. So we have an exponentially decaying restoring force on the booms:

e This is solved by

P(X1) = Ppe M1,
o Substituting for 012 we have (for the top web),

AP0 _ax,
Ao 7

g12 = —
t

which also decays exponentially in X7.
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Shear Lag

4. Shear Lag: Decay Rate

Example from Sun (2006) (Section 3.1)

o The shear lag factor A controls how quickly the effects “diffuse out”.

o Large A implies “fast” diffusion and potentially high concentration around the ends..
e Small X implies “slow” diffusion and potentially low concentrations.

o In general for stringer-web structures,
o 1 G (stiffer web), T A (”faster” diffusion).
o 1 Ey (stiffer boom), | A ("slower” diffusion).

The terms “faster” and “slower” are used in the sense that “slower” implies that the stress
distribution needs a longer axial distance to get averaged out (vise versa for “faster”). J
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4. Shear Lag

Example from Sun (2006) (Section 3.1): FE Results

Shear Lag
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4. Shear Lag

Example from Sun (2006) (Section 3.1): FE Results

Shear Lag
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