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Unsymmetrical Bending

1. Unsymmetrical Bending

1. Rigid Section Displacement Field

@ Plane sections remain planar.

® T ey a1 L8], [ s e
i e uz | = [v(X1)| + 0
@ Plane Stress: 022 = 033 = 0. us w(Xl) 0
OxX

2. Zero Shear Strain Simplification

/ ’

m2 =3 =0 = ‘92:—107 O3 =v

3. Plane Stress Constitution
W

/
= En=ui,1=[Xz —Xg [gﬂ

=[X3 —Xo] [_le“} .
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Unsymmetrical Bending  Axial Stress and its Moments

1.1. Axial Stress and its Moments

Unsymmetrical Bending

ol
o The axial stress distribution is | o117 = Ey [Xg —Xz} { le ] . The traction vector in

the section is t = o11e1 + o12e2 + o13€3 .
o Considering just the axial component (o11€1 ), we write the overall axial force as the
area integral (zeroth moment):

!
le/ o11 = By [[, X3dA —fAXQdA}[ o ]
A

U”

o Recall that we have already chosen then origin as the section centroid for expressing the
rigid rotation displacement field, s.t. fAldA = 0. Therefore N1 = 0 for pure bending.

o Considering the moment due to the axial component (dm = (Xpeg ) X (o111 dA) we
have (first moment):

[ o 2] i3]

_ EY X?2) —X22)(3 dA —’L/[i” ) Second Moments of Area
Y | -XaXs X2 v )
Ipg = /A X3dA

I35 = [ xZda
Ma| _ po [ 122 —I2s —w" /A
Ms = Ly — I3 Is3 " . Ipg = /.A X9 Xg3gdA
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Unsymmetrical Bending  Equilibrium Equations

1.2. Equilibrium Equations

Unsymmetrical Bending

@ We shall invoke and simplify the equilibrium equations in an integral sense in the
presence of transverse forces only.

0’1]'7]':0 = /Aalj’jdA =0
0121+ fa =0 = / 01271dA+/ fadA=0
A A

013,10+ fz3 =0 :>/013,1dA+/ f3dA=10
A A

o [, 01;,;dA is simplified as

Ly aX

/01]',]'!114:/ 011,1dA+/ 012,2dA+/ 013,3dA = N11
A A A A

where n = nje; is the outward pointing normal on the boundary of the section
(n1 =0).

@ o1;jn; is the e; component of the traction vector on the free surface. By definition this
has to be zero, so we have N1 1 = 0.

o Defining the shearing forces as Vo = fA o12dA and V3 = fA o13dA, the second two
equations can be read as:

Vo1 + F» =0, Va1 + F3=0.
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Unsymmetrical Bending  Equilibrium Equations

1.2. Equilibrium Equations

Unsymmetrical Bending

o In order to relate the different stresses, we invoke M2 = X3011 and M3 = —X90711 now.

e We first pre-multiply o1; ; by X3 and then integrate over the section:
JpuXsoT3dl
——

/X3U11,1dA+/ X3012,2dA + /X3U13,3dA =0,
A A A

| S —
JaaXaorsmadl—[ 4 013dA
Integration by Parts, Gauss Divergence.] — _

e Next we pre-multiply o1, ; by X2 and repeat the same:

JouXzoT5al
—_——

/X2011,1dA+ /X2012,2dA +/ X2013,3dA =0
A A A

—
JouXooT5dl— [ 4 012dA

— [ -vi=0)
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Unsymmetrical Bending  Equilibrium Equations

1.2. Equilibrium Equations

Unsymmetrical Bending

@ The equilibrium equations are
Von+F2a=0, V3i1+F3=0, Mp1=Vs, Msg1=-Vz,
which can be rewritten as

M3 11 = F3, —Ma2 11 = F3.

e While it may sometimes be hard to fully comprehend, note that the equilibrium
considerations are independent of the kinematic assumptions.

o We are merely interpreting the general 3D equilibrium equations we developed before for
the 3D prismatic case.

e We do not need to be confused by the fact that if shear strains are zero, the shear
stresses will have to be too for a linear elastic material since all the above considerations
are made independent of the type of material constitution.

‘We have, however, assumed that o92 = 033 = 023 = 0.
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Unsymmetrical Bending Equations of Motion in Terms of Displacement

1.3. Equations of Motion in Terms of Displacement

Unsymmetrical Bending

o The moments are related to the kinematics by
Ma| B I2o —Ixs| [—w”
M|~ 7Y |—Is  Iss A
e Invoking the equilibrium conditions again we have,
0 1 M2,11 _
-1 0| [M311
B 0 1 122 —Ixz| [0 —1] [0
V-1 0| |-Is Is3 ||l 0] [w™”

133 123 ,U/lll o
123 122 "

|
—

:>Ey|: w

or in more compact notation,

I I
E ]IV”” - F i = 33 23 .
Y ~ [ T |l2s Ia22

(Recall how the simple bending case looked)
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Unsymmetrical Bending Axial Stress In Terms of Moments and Forces

1.4. Axial Stress In Terms of Moments and Forces

Unsymmetrical Bending
e So far we have
Mo -5 Ino  —Iz]| [—w”
v Ms| — 7Y |—Is  Is3 o |

Mz] directly:

7
o1 =Ey [X3 —Xo] { 4 ]7

o Inverting the second relationship allows us to write 11 in terms of [Ml

Xz —Xo] {133 1'23} [Mz].

= Ios  I22| M3

Ipolss — 12,
o By reordering the terms we get a form that is slightly easier to remember:

[X2  Xs] {122 —123] [—M3}7

o= 122133 — 1223 _123 133 M
and therfore,
P X2 Xs] [z —I23] [-M5a
T Ipolzz — I3, |[—l23 Isz | | Maa |’

[Xo Xs] [ e —Ix][Ve
— = — -
7111 Ioolss — I3, {—123 I33 | | V3
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

o If shear strain is assumed zero, can we still have shear stress?

o We posit: v12 =0, 713 = 0, 723 = 0. As point quantities, the shear stresses may still be
small (0'12 = G’ylg).

o But the integral quantities are taken to be finite:

/0’12dA = Vs, /013dA = V3.

o We will never try to use 12 or 013 in isolation - they will always feature as section
averaged quantities.
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

Thin Section: Plane Stress Assumption

o We define the above section-local coordinate system and transform the elasticity
equations to 11,1 + 01n,n + 01s,s = 0. Applying plane stress assumption (for thin
sections) drops the o1, term, leading to:

011,1 +015,s =0 = to11,1 +¢qs =0,

where we have integrated along the e, direction once.

o Following through with the integral along e s, this leads to the shear flow formula

[y tXads [ tX3ds] [122 _[23} {VQ}

9(s) = g0 == Ipplss — 12, —l23 I3z | |[V3
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

o Consider the rectangular section with height A and thickness ¢:

Shear
Flow

\|

Vi s v X3

t
q(s) -3 /tX3dS -3 / X3dXo
122 I22
0 _h

/1 2

tV3 h?2

g
2120 4

o Remember that V3 is NOT any externally applied force. It is merely the resultant of
all the shear stresses in the section.

e So V3 and ¢(s) point in the same direction in this example. It is incorrect to think that
q(s) is balancing out V3.

=}
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

The “I” section

o Consider the shear distribution through an I-section as
shown here

o The shear distribution looks like it is “flowing”, with
more “flow” occurring in the thin vertical web and less
in the flanges.

@ The second moment of area I22 sums up as,

web flange
3 b3 h2 h3
h°t 2bt
Tog = — 42 x [ == +2bt x — | ~ (=— + bh2)L.
2=yt (12+ 4) (12 )
e [33 sums up as, flange
—_——
LA W U
33 — 12 3 ~ 3
~~
web ~0 for small b
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

The “I” section

Idealization

@ Both I3 and I33 are dominated by flange
contributions, implying that bending is supported

primarily by the flanges.

@ This motivates the following idealization for the
I-section:

= 2bt

T2 = bh>t, I3 = 0.

= 2bt
@ The lumped area elements denoted . are sometimes
referred to as “Booms” in the section.

@ Thickness in the web (denoted w) is taken to be
zero for bending-stress calculations.
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

The “I”

section

o Let us consider the case with Vo = 0, V3 # 0.
o The segments A — B, C — B, D — E, and F — E are

exposed in their free ends, simplifying the shear flow #
integral (¢ = 0 at free ends).
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

The “I” section
o Let us consider the case with Vo =0, V3 # 0.

o The segments A -+ B, C — B, D — E, and F — E are
exposed in their free ends, simplifying the shear flow

integral (¢ = 0 at free ends). . veXs B €3
S =0+ X»
A =B :qap(s) =qap(X2) =
st = At 3+
2
_% fosms _ 3(b+X2) A A-oBcOn) CoBise(0h) ()
2122 X, 4,40,)(‘_'—2’ x._,:lHu.x,J—z'
Alv,
B Eisc(0,20) €9
ho h
Yaig oy h
DS E:se(0b) FoE:se(0h)
DX_::—Ir—»U.X,;:—% Xg:b—»[).X;(:—g '3
P 4
L I
E
b
Balaji, N. N.

(AE, IITM)

AS3020%*

September 9, 2025

14 /29



Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

The “I” section
o Let us consider the case with Vo =0, V3 # 0.

o The segments A -+ B, C — B, D — E, and F — E are
exposed in their free ends, simplifying the shear flow

integral (¢ = 0 at free ends). B €3 e Ly
1S =0— A9
A—}B:qABS EqABXQZ B
)= ayp() = — Fe—
_tlﬁ fosms _ _ 3(b+X2) A A-BieOn CoBLeh) ()
22 2122 Xy =b—0, X“’% x._,:lHu.x,J—z'
htV3 A .
CoB : qop(Xa) = —5 -2 (b= Xa) E
22 B Eisc(0,20) €9
Xoigoog h
DS E:se(0b) FoE:se(0.h)
DX_::—Ir—»U.X,;:—% Xg:b—»[).X;(:—g '3
P 4
L I
E
b
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

The “I” section

o Let us consider the case with Vo =0, V3 # 0.

o The segments A -+ B, C — B, D — E, and F — E are
exposed in their free ends, simplifying the shear flow

integral (¢ = 0 at free ends). B €3
A — B : qap(s) =qap(X2) = T 1
B ¢ P T
_tlﬁ fosm;: _htV3 (b+ X2) A A-BieOn CoBLeh) ()
22 2122 Xy =b—0, X“’% x._,:lHu.x,J—z'
htV3 A .
CoB : qop(Xa) = —5 -2 (b= Xa) E
22 B E:sc(0,2h) €9
h h
htV- Xaigo-3 h
D E : ¢pp(Xa) = > (b+ X2) t
2122
Do E:se(0.h) FE:se(0.b)
DX_::—Ir—»U.X,;:—% Xg:b—»[).X;(:—g '3
e S— ]

DE:s=b+X2 [

=
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

The “I” section

o Let us consider the case with Vo =0, V3 # 0.
o The segments A -+ B, C — B, D — E, and F — E are

exposed in their free ends, simplifying the shear flow
integral (¢ = 0 at free ends). B €3
A= B :aap(s) =qap(X2) = T O
3 htV: L hj
—tVa s ey o _ 3 ABisc(0b CoBoscb
5ds = + X2) A @ e
122 70 2122 Xy =b—0, X“’% x._,:lHu.x,J—z'
htV3 A .
CoB : qop(Xa) = —5 -2 (b= Xa) E
22 B E:se(0,2h) ey
bk
htV3 Xyig =3 h
D= E:gpr(Xa)= (b+ X2) t
2122
htV3
F—E: QFE(X2): 2]22 (b_ 2) D E:se(0,b) F—E:s€(0,b)
DX_::—Ir—»U.X,;:—% Xg:b—»[).X;(:—g '3
 — —
F BCis=b— X,
b
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

The “I” section

o Let us consider the case with Vo = 0, V3 # 0.

o The segments A - B, C — B, D — E, and F — E are €3
exposed in their free ends, simplifying the shear flow B
integral (¢ = 0 at free ends). Ke.(_o_)_)% —
o In summary we have linear relationships at the flangesy A-B:scoy) CoBisc(O) (7
X, JHO,X&:Q Xaibo0, Xy =
2 2
Alvy
B E:se(0,2h) gz
Xo bk
) 2 h
Do E:se(0,h) FE:sc(0,b)
sz:fl.an.xﬁfg Xg:[l%(),X(;:*%’ F

=~
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

The “I” section

o Let us consider the case with Vo = 0, V3 # 0.
o The segments A - B, C — B, D — E, and F — E are
exposed in their free ends, simplifying the shear flow
integral (¢ = 0 at free ends).
o In summary we have linear relationships at the flanges.
o Before looking at the web (B — E), we have to obsery Balance at the T-junction
the balance at the “T” junction.

[Ermrs-w=0=>w-utw

Balaji, N. N. (AE, IITM) AS3020* September 9, 2025 14 /29



Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

The “I” section

o Let us consider the case with Vo = 0, V3 # 0.

o The segments A — B, C — B, D — E, and F — E are
exposed in their free ends, simplifying the shear flow ¢

integral (¢ = 0 at free ends).
e On B — E, we have
q8e(0) = qa5(0) + 9cB(0) =

o The integration evaluates as,

bhtV3
I2o

htV3
122

9BE(X3)

(b

Balaji, N. N. (AE, IITM)

_ bhtVa

122

tV3
2122
h

+ )+

8

(X

2 M2
34
tV3X2

2 2

)
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€3
B
Y
i
A Bise (0,0) CoBise(0,h)
Ax b0, Xy = I Xoih—0, X, "C
2 b0, Xy = 3 2020, Xy = 3
Alv,
B Eise (0,2h) [2)
o h
P
h N
V BE:s=——X3
2
Do E:se (0.h) FoE:se (0,b)

L )
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L 1
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

The “I” section

o Let us consider the case with Vo = 0, V3 # 0. €3
o The segments A — B, C — B, D — E, and F — E are

exposed in their free ends, simplifying the shear flow -
integral (¢ = 0 at free ends). A AHB“‘“‘“}‘) c Bi-‘f("-’;) C
e On B — E, we have Xai-b=0, Xy =3 Xa:1bN), Xa =3
bhtV:
q5E(0) = ¢aB(0) + 9cp(0) = — 1223~ V3
o The integration evaluates as, B E:se(0,2h) 5
Xy bt i
iy 2 1
bhtV3 tVs 2 h?
X3) = — V8 2 7
anp(Xs) =~ 2 4 2 (X3 - )
htV3 h tVs3
Z—T(bﬁ‘g)ﬁ‘fxg- DS E:se(0,b)
22 22 ) Xa: b0, x,,=7]§’
o We now have the complete shear flow in the section. Y
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

The “I” section: Order of Magnitude Analysis

o Let us consider the “total” shear forces experienced by
each member.

o Flange AB B
g 0 2 A A-Bise(D CNBen
Vap = 7htV3 / (b+ XQ)dX2 — 7b htV3 Xy 7r,ﬁn,X&:Q Xh x, =l
2oz Sy 4122 2 2
V3
o Web BE
B E:se (0,2h) 5
:M:V X.«:_%H—g h
pE 12159 3
e For b = %, we have,
h3tV3 V3 D E:se (u,[;)
Vap = — S A Xo: b0, Xy =3
AB = T 610, 8 D : P
VBE = V3
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

The “I” section: Order of Magnitude Analysis

o Let us consider the “total” shear forces experienced by

each member.

o Flange AB
htVs3 0 thtV3
Vag = — / b+ X9)dXo = —
2122 —b( ) 412
o Web BE
_ h2(h+12b)tVs
BE = 1212, B
e For b = %, we have,
h3tVs V3
Vap = — N ——
AB T T 61, 8
Vg = V3
Balaji, N. N. (AE, IITM) AS3020*

A Bise (0,b)

A

Xp:—b—0, X.;:%

VQ

Idealization

Since Vap < Vpg, we understand that
the web is primarily responsible
for restoring shear loads, with
negligible contributions from the
flanges.
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

An “I” section beam subjected to 3-point bending: Finite Element Results

Displacement - Magnitude

CODE aster

sciome mecaz02?

Code_Aster on the Salome Platform

Free and Open Source (FOSS) FE solver that comes with a
fully functional frontend (Salome)! Please Do Explore!
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections Stress ox z

An “I” section beam subjected to 3-point bending: Finite Element Results

Tecco 4

3
i
i

s

Tosea

Stress oxy

Displacement - Magnitude

R —
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections Stress ox z

An “I” section beam subjected to 3-point bending: Finite Element Results

[ -
£ o
H
L
T
Stress oxy
2
zéx
3
T aean| A[eNe o ¢
a4 Tl x-2
N v,
E2
H SR h
i
H
Dxivoox--3| Moo=t p
’s
=
b
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Shear Stress and Flow in Sections

2.1. Shear Center

Shear Stress and Flow in Sections

e Shear Center is the point of shear load such that > my = 0. Although in a lot of

Shear Center

symmetric sections this is coincident with the centroid, this is NOT always the case.
o Consider the “C” section beam:

Q
> T ,
35 Iy = 2 +O(t%)
htV3
AlVs 1w4lX2) = 5, (= X2)
htV3 h tVs
€ qac(X3) = (b + > + ==X2
OGD_> Ziv 4 2159
Xeo X 3
- c2 gep(X2) = ~ 30, (b= Xa)
2 212
b*h=tV;
Mlzjquds:— = Vag,
— 415
; D
3b2
b Es:—h+6b+0(t)
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Shear Stress and Flow in Sections Shear Center

2.1. Shear Center

Shear Stress and Flow in Sections

o Shear Center is the point of shear load such that > mi = 0. Although in a lot of

symmetric sections this is coincident with the centroid, this is NOT always the case.

o Consider the “C” section beam:

€3
__ (h®+6bh?)t 5
A #B 2® + O(t%)
htV;
qpa(Xs) = — =2 (b — Xo)
| 68 2122
htV, ( h) tVs
! 2 X3) = — b+ =)+ X2
Ere '(569—3 Gac(Xs) = =51~ 1) T2,

AS3020%* September 9, 2025
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Shear Stress and Flow in Sections Shear Center

2.1. Shear Center

Shear Stress and Flow in Sections

e Shear Center is the point of shear load such that > my = 0. Although in a lot of

symmetric sections this is coincident with the centroid, this is NOT always the case.

o Consider the “C” section beam:
€3

e B (bt)s x 2 b
A== T T
q(s) —q(0 /ngs
s Vs €2
O > Shear Flow
) Xea 1V (X3(h+20)2 — P (h + b)?)
= qpa(Xe) = By )
5 » (h+ 20)
(X )= th2V,
I\ 5 qac X3 @ +)él)133
C 5 I gep(X2) = —qpa(X2)
1
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Shear Stress and Flow in Sections Closed Sections

2.2. Closed Sections

Shear Stress and Flow in Sections

@ The shear-flow integral formula makes no reference to
whether the section is open or closed.

o Considering the generic closed section shown, we start the
integral at some arbitrary point A, denoting the point
right before it as A~. The integral is then written as,

S
q(s) —qa- = —/ toi1,1ds.
0

ap(s)

o When no twisting is expected at the section, the moment along e about O has to be
zero. This is computed as,

At 2A
1

/ dM, = %pq(s)ds =qu- qu(s)ds +?§p%(8)d8 = |a,- = “oa qub“)ds -

e
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Shear Stress and Flow in Sections Closed Sections

2.2. Closed Sections

Shear Stress and Flow in Sections

o The shear-flow integral formula makes no reference to
whether the section is open or closed.
o Considering the generic closed section shown, we start the

integral at some arbitrary point A, denoting the point
vritten as,

Are we already assuming that

O is the shear center with this?!
qisT— 94— — 7‘/0 TOTL,1a> -

ap(s)

direction

o When no twisting is expected at the section, the moment along e about O has to be

zero. This is computed as,

At 2A

—
/ dM; = ?{pq(s)ds =qa- §ra()ds +quz;(8)d8 ==
e
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Shear Stress and Flow in Sections Closed Sections

2.2. Closed Sections

Shear Stress and Flow in Sections

o The shear-flow integral formula makes no reference to
whether the section is open or closed.

o Considering the generic closed section shown, we start the direction
integral at some arbitrary point A, denoting the point

vritten as,

Are we already assuming that
O is the shear center with this?!

Yes. We need to add an ex-
tra term when resultants
Va, V3 are acting with an offset. SA = lp(Ss

2

o When no twisting is expected at the section, the moment along e ; about O has to be
zero. This is computed as,

AT 2A
—_— P
/ dM, = ?{pq(s)ds =q,- qu(s)ds +%qu(s)ds = |aa- =3 ?{ pap(s)ds |-
A"
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2.2. Closed Sections

Shear Stress and Flow in Sections

o If we suppose that the resultants are acting along some v
(€2,€3), the applied moment is: 3
(§2e2 +&3e3) x (Vaea + Vaes):

My =& V3 — &3Vh. Va

. . (€2,83)
o Equating this to the moment developed from i €

the shear flow distribution, we get: >

&aV3 —E&3Va = 2Aq,4- + jl{PlIb(S)dS

e For shear center determination (the point around which resultants act), this is not
enough.

e We will additionally invoke an argument of zero twist (01,1 = 0) in the deflection field
to get an additional relationship. This will be covered in the next module (Torsion).

e For symmetric closed sections, however, the shear center coincides with the centroid
(through symmetry arguments).
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3. Stringer-Web Idealization

t+d(s—sg,

&
thickness
profile

o A stringer, when looked at from a section, looks like a
feature with a sudden increase in thickness.

o Consider the r*" “Boom” to be located at (Xoy, Xry), with

area Aj. N\

@)

J

o So the shear flow integral can be generalized to,

0

q(s) —q(0) = —

t[ Xads + 3, ArXpy  —t [ Xods — 3, A,XTZ}
0
|:I23V3 — 122V

I33Vs — 123V2:|
Ipolssz — 13,
o When thickness ¢ is negligible in comparison to the boom sections, this further simplifies

to

)

q(s) —q(0) = — >, ArXry  — 2, ArXry] |:133V3 - 123V2:|

Toolss — ]223 I23V3 — I22 V2
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3. Stringer-Web Idealization

o Considering the integral right across the boom, we have,

t =

—q =— t+6(s—sp,

[ATX7'3 _A'r'X'rQ} 133V3 _ 123V2
I23V3 — I22Va |~

thickness
profile

Ipolsz — 13,

e For the sections without a boom, there is no change in the
shear flow.

o Therefore, the shear flow is constant in the webs that join two
booms. o

General Design Principle
@ As a general principle, the stringers/booms are added to support bending.

@ The web thicknesses are chosen to ensure the shear stresses don’t exceed failure threshold (we
should like to have ¢ = 0 to minimize weight!).
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3. Stringer-Web Idealization

Idealization of the I-Section

o We idealize the I-section by lumping area elements A; and As. A; and Az are estimated
by matching the second area moments:

Original Section Stringer-Web Idealization
) &3
L Rt
! ] @ Ay @
122 ideal 122, 0rig L 7 ] D D
Aqh2 Agh? h3
4% ( )42 x ( ) — 4+ br? | t+ 0t bt
4 4 12 A=
© bt dbt N
I3 h Ay, = =
33,ideal ==
I33,ideal  — ol ERE
——~ a3t 5
4% (A1b7) = —— + O(t7)
3
i ]
L ] @ {As) @
FT'E E

o The total sectional area of the original section is ht + 4bt.

o The total area of the new section (assuming the web thickness is drastically reduced) is
4A1 +2A5 = % + 4bt, which is a slight reduction.

o Looking at this from a manufacturing standpoint, this shows that a web-stringer

construction can achieve similar bending stiffness with lesser material
expenditure.
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3. Stringer-Web Idealization

Idealization of the I-Section: Shear Flow Comparisons

Original Section Stringer-Web Idealization
=) &3
@ For the idealized section AB, the shear low A B A B
is given by, I ] @ As, @
[
- Vs A h Vsb
qAB,ideal = T2 ideat 15 = 7 120k Al:g
© bt dbt N
The average flow for the original section is, h (A= T¥5
1 b*htVs) _ 3Vsb
dA4Bavg = A, )~ B2 + 120k
I ] @ (42) @
FT’ E E
o On BE, the idealized flow is
Vs h V3
4BE ideal = 2AB ideal — 7 A2- = ——,
122 ideat 2 h

which is the same for the original section also.

o In the stringer-web section, therefore, the flanges carry lesser average shear than the
original section, and the web carries the same shear.
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4. Shear Lag

Example from Sun (2006) (Section 3.1)

o We already saw the St. Venant’s principle. Can we say something more specific about
“how fast” the end effects start getting smoothed out in the stress field? Consider:

@. @ Section at
€ —

e Applying equilibrium on the section at @41 5=0 Py
some X1 =z (D) leads to top and bottom .
o b 2k &
booms experiencing o11dA = P(z) |, 2 %
Ay
and the central boom, A <t Py \
|
/ (711dA=72P(.’L') . z=0 z=1/
A2 ®P0<— — D) @iar ) (14 c1op)i
o Shear flow in top web is given as |
2P, —2P(z)
dtop = 70'11,1/41 = 7P’1 —
(1 + €mia)dx
or, —toiz = —Px. P_ || P o
|:z_‘ oy = #M
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4. Shear Lag

Example from Sun (2006) (Section 3.1)

D @: Section at 2
[ —
2

o Considering the shear differential in an @41 s=0 Py =
infinitesimal section ((3)) we have, T .
’ —2P, €
a’ylz 1 Az 0
= —(€top — €mid)
ox a <t P
1 (P(a:) —2P(x)) Ay s X
= I — |
Eya \ A As =0 p\ =0
Al
e Since 12 = éalg, this becomes, ®P0 — Bl) ox (14 €1op)0a
1 2 —2Py | |—2P(x)
o121 = — + 7) P(x). —
Eya (A1 As (T emia)z
Py _| _P(x) P
e Using the force balance relationship e —| - by = Sy
1 T
012 = ;P,l also
Gt 1 2
= |P11=—— (7 + —) P
’ Eya \ Ay As
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4. Shear Lag

Example from Sun (2006) (Section 3.1)

o The equation governing the boom restoring axial force is of the form

Gt (1 2
P11 — AP =0, A= (—Jr—)
Eya \ Ay As

P(Xl) = CleiAXI + CQGAXI.

e Solving it over Xy € (0, 00), it is easy to see that Co must be 0 for P(X1) to be
bounded. So we have an exponentially decaying restoring force on the booms:

e This is solved by

P(X1) = Ppe M1,
o Substituting for 012 we have (for the top web),

AP0 _ax,
Ao 7

g12 = —
t

which also decays exponentially in X7.
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4. Shear Lag: Decay Rate

Example from Sun (2006) (Section 3.1)

o The shear lag factor A controls how quickly the effects “diffuse out”.

o Large A implies “fast” diffusion and potentially high concentration around the ends..
e Small X implies “slow” diffusion and potentially low concentrations.

o In general for stringer-web structures,
o 1 G (stiffer web), T A (”faster” diffusion).
o 1 Ey (stiffer boom), | A ("slower” diffusion).

The terms “faster” and “slower” are used in the sense that “slower” implies that the stress
distribution needs a longer axial distance to get averaged out (vise versa for “faster”). J
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Example from Sun (2006) (Section 3.1): FE Results

Shear Lag
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4. Shear Lag

Example from Sun (2006) (Section 3.1): FE Results

Shear Lag
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