AS3020: Aerospace Structures Demos
Using Emacs Org Table and Emacs-Calc for Solving Shear Flow Problems
Table of Contents
Problem Setting
- Download the .org version of this file from here. Download the problem setting image from here.
- Go back to main course page
- Download the classdemo .org file (that we created during class) from here.
Figure 1: Problem 23.6 from [1]
Pointers on Emacs Org-Table
Useful Shortcuts
Mis thealt key,Cis thectrl key.C-cmeans "Control plus c".C-x cmeans "hold down control and hit x, then leave control and hit c".
C-c }will show the keys for the tableC-u C-c C-cwill recalculate all formulaeM-<up/down/left/right>moves the row/column of cell up/down/left/right.C-c `from inside a table lets you edit the formulae you've already typed.
Table Tips
- Rows are prefixed with "@" - @5 is fifth row.
@-1refers to the "previous row"
- Columns are prefixed with "$" - $4 is fourth column.
$-1refers to the "previous column"
- A particular cell is written with both a row number and a column number:
@3$4is the 3rd row 4th column item. - Starting formula with "=" makes the formula applicable to the whole row.
- Starting the formula with ":-" makes the formula applicable only to the *current cell.
Useful functions
:=vsum(@2..@9)sums up the rows from 2 to 9.- Use
remote(<tablename>, @3$5)to access element from another table. =simplify(<expression>)and=expand(<expression>)will help with simplification.=rmeq(a=b)will return the right hand side of the expression, i.e., "b" in this case.=subst(x^2+4, x, 5)will substitute the value "5" to the variable "x" in the expression.- Underscore
_is the array indexing operator.- If you have an array
[1, 4, 5, 6]in column 4, then$4_2will yield the 2nd element of the array.
- If you have an array
Solution
Figure 2: Problem 23.6 from [1]
Let us First Handle the Booms
| Boom | Ar | X3r | X3r Ar | X3r^2 Ar | X3r Ar/I22 |
|---|---|---|---|---|---|
| 1 | 1290 | 153 | 197370 | 30197610 | 1.0893246e-3 |
| 2 | 645 | 153 | 98685 | 15098805 | 5.4466231e-4 |
| 3 | 1290 | 153 | 197370 | 30197610 | 1.0893246e-3 |
| 4 | 645 | 153 | 98685 | 15098805 | 5.4466231e-4 |
| 5 | 645 | -153 | -98685 | 15098805 | -5.4466231e-4 |
| 6 | 1290 | -153 | -197370 | 30197610 | -1.0893246e-3 |
| 7 | 645 | -153 | -98685 | 15098805 | -5.4466231e-4 |
| 8 | 1290 | -153 | -197370 | 30197610 | -1.0893246e-3 |
| 0 | 181185660 | 0 |
- Cell @10$5 is the second moment of area I22.
Let us write out the cell areas
| Cell | Area |
|---|---|
| 1 | 167780 |
| 2 | 217872 |
Let us consider the panels now
| Panels | del s | t | G | q | q del s/Gt | 2A_6 | 2A_6 q |
|---|---|---|---|---|---|---|---|
| 12 | 356 | 0.915 | 24200 | qab | 0.016077316 qab | 108936 | 108936 qab |
| 23 | 356 | 0.915 | 24200 | qab - 5.4466231e-4 | 0.016077316 qab - 8.7567079e-6 | 108936 | 108936 qab - 59.333333 |
| 34 | 380 | 0.915 | 20700 | qcd | 0.020062828 qcd | 116280 | 116280 qcd |
| 45 | 610 | 1.220 | 24800 | qcd - 5.4466231e-4 | 0.020161290 qcd - 1.0981095e-5 | 219280 | 219280 qcd - 119.43355 |
| 36 | 306 | 1.220 | 24800 | qab - qcd - 1.6339869e-3 | 0.010113696 qab - 0.010113696 qcd - 1.6525648e-5 | 0 | 0 |
| 56 | 380 | 0.915 | 20700 | qcd | 0.020062828 qcd | 0 | 0 |
| 67 | 356 | 0.915 | 24200 | qab - 5.446623e-4 | 0.016077316 qab - 8.7567077e-6 | 0 | 0 |
| 78 | 356 | 0.915 | 24200 | qab + 1e-11 | 0.016077316 qab + 1.6077316e-13 | 0 | 0 |
| 81 | 306 | 1.220 | 24800 | qab + 1.0893246e-3 | 0.010113696 qab + 1.1017098e-5 | 217872 | 217872 qab + 237.33333 |
| Cell 1 Twist Rate: | 2.0980046e-7 qcd - 3.0139754e-8 qab + 1.6523283e-11 | Twisting Moment_6: | 335560 qcd + 435744 qab + 58.566447 | ||||
| Cell 2 Twist Rate: | 1.9400532e-7 qab - 2.3210178e-8 qcd - 5.2833695e-11 | #ERROR | |||||
| Cell 1-Cell 2 Twist | 2.3301064e-7 qcd - 2.2414507e-7 qab + 6.9356978e-11 | 0 |
Let us solve for the shear center (zero twist rate condition)
We shall solve for the twist rates of the two cells to be zero simultaneously.
Solution qab qcd [qab = 2.6750653e-4, qcd = -4.0327376e-5] 2.6750653e-4 -4.0327376e-5 Resultant Moment: 161.59856 (for load acting through 6) - The resultant moment will be equal to the shear center position since all the above is for unit resultant load.
Now we substitue for qab and qcd into the flow.
Panels q 2A_6 2A_6 q 66750 q 12 2.6750653e-4 108936 29.141091 17.856061 23 -2.7715578e-4 108936 -30.192242 -18.500148 34 -4.0327377e-5 116280 -4.6892673 -2.6918523 45 -5.8498969e-4 219280 -128.27654 -39.048062 36 -1.3261530e-3 0 0. -88.520713 56 -4.0327377e-5 0 0. -2.6918523 67 -2.7715577e-4 0 0. -18.500148 78 2.6750654e-4 0 0. 17.856062 81 1.3568311e-3 217872 295.61551 90.568476 161.59855 0 - Cell @11$4 stores the shear center.
Let us solve a resultant force problem instead, supposing a load of 100 N is acting 50 mm to the left of the spar 36.
- Here we require twist compatibility and moment balance.
The resultant moment has to be 100 x -50 = -5000.
Resultant Moment: -5000 Solution qab qcd [qab = -1.1449748e-5, qcd = -3.0866995e-4] -1.1449748e-5 -3.0866995e-4 Cell 1 Twist Rate: -4.7890722e-9 Cell 2 Twist Rate: -4.7890723e-9 - If what we've done is correct, then the twist rates in the two cells to be equal!
Now we substitute to get the shear flow distribution.
Panels q/V3 q 12 -1.1449748e-5 -1.1449748e-3 23 -5.5611206e-4 -0.055611206 34 -3.0866995e-4 -0.030866995 45 -8.5333226e-4 -0.085333226 36 -1.3367667e-3 -0.13367667 56 -3.0866995e-4 -0.030866995 67 -5.5611205e-4 -0.055611205 78 -1.1449738e-5 -1.1449738e-3 81 1.0778749e-3 0.10778749 - The flow in the table above (in terms of qab, qcd) is for unit load. So the resulting flow needs to be multipled by the resultant to get the actual flow.