

AS2070: Aerospace Structural Mechanics

Module 3: Introduction to Fatigue and Failure (V1)

Instructor: Nidish Narayanaa Balaji

Department of Aerospace Engineering, IIT Madras

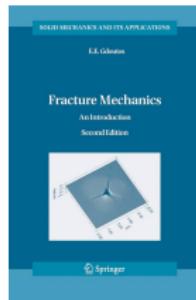
January 21, 2026

Table of Contents

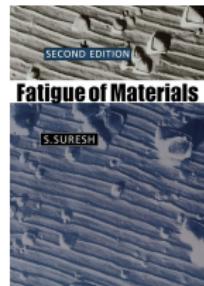
Also see <https://www.fractionmechanics.org/>

1 Introduction

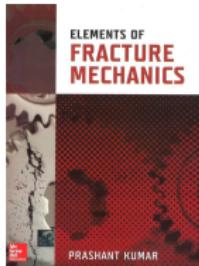
- Structure of Materials
- Understanding the Stress-Strain Curve
- Failure Mechanisms
 - Fracture
 - Fatigue
- Energy Release Rate
- Linear Elastic Fracture Mechanics
- Modes of Fracture



Chapters 1,4
in Gdoutos (2005)



Chapters 1,7,9
in Suresh (1998)



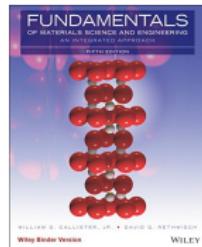
Chapters 1-3
in Kumar (2009)

2 Introduction to Fatigue

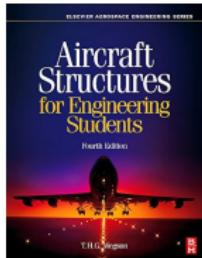
- The deHavilland Comet
- Miner's Rule

3 Linear Elastic Fracture Mechanics

- Griffith's Analysis and Energy Release Rate
- A Primer on 2D Elasticity
- Classical Solutions
 - The Michell Solution
 - Plate with a Hole
 - Notch Crack
- Crack Propagation and the Paris Law



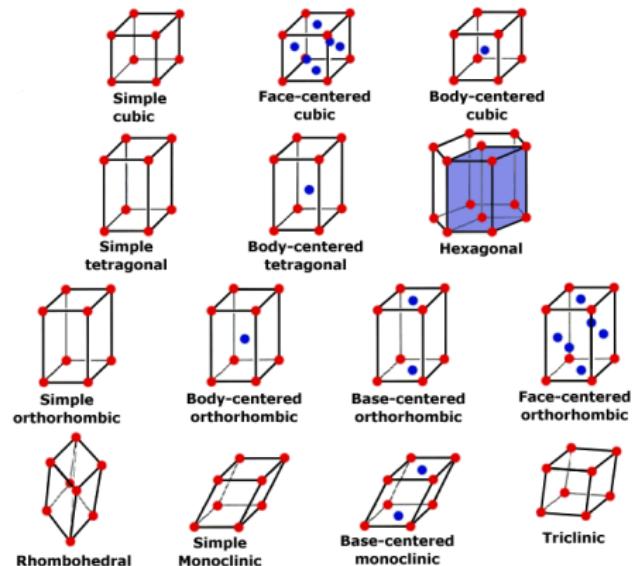
Chapter 3 in Jr
and Rethwisch
(2012)



Chapter 15
in Megson (2013)

1.1. Structure of Materials

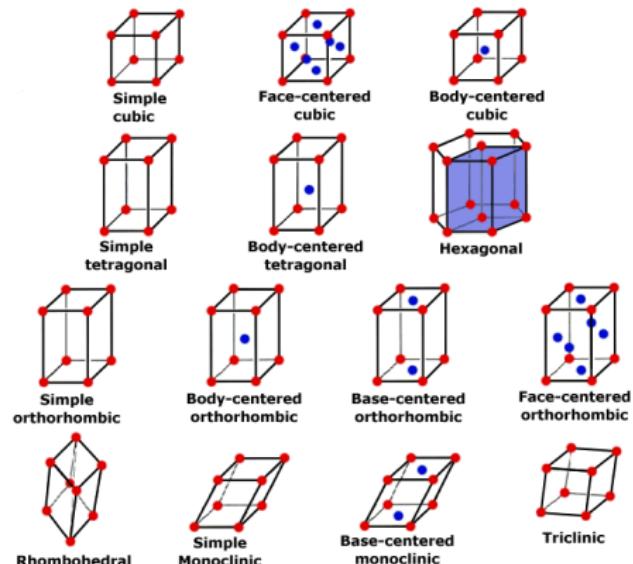
Introduction



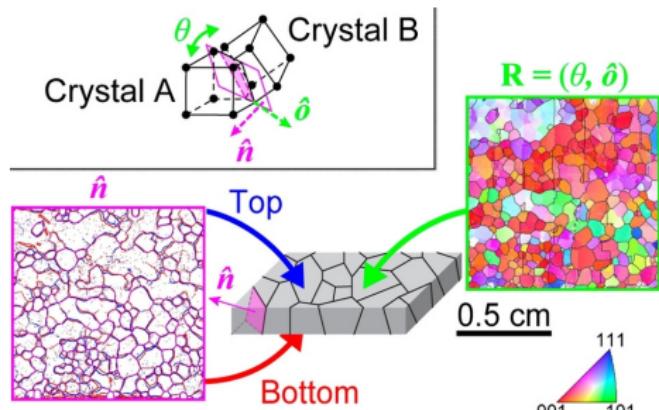
Types of crystal structures in metals Sparky (2013)

1.1. Structure of Materials

Introduction



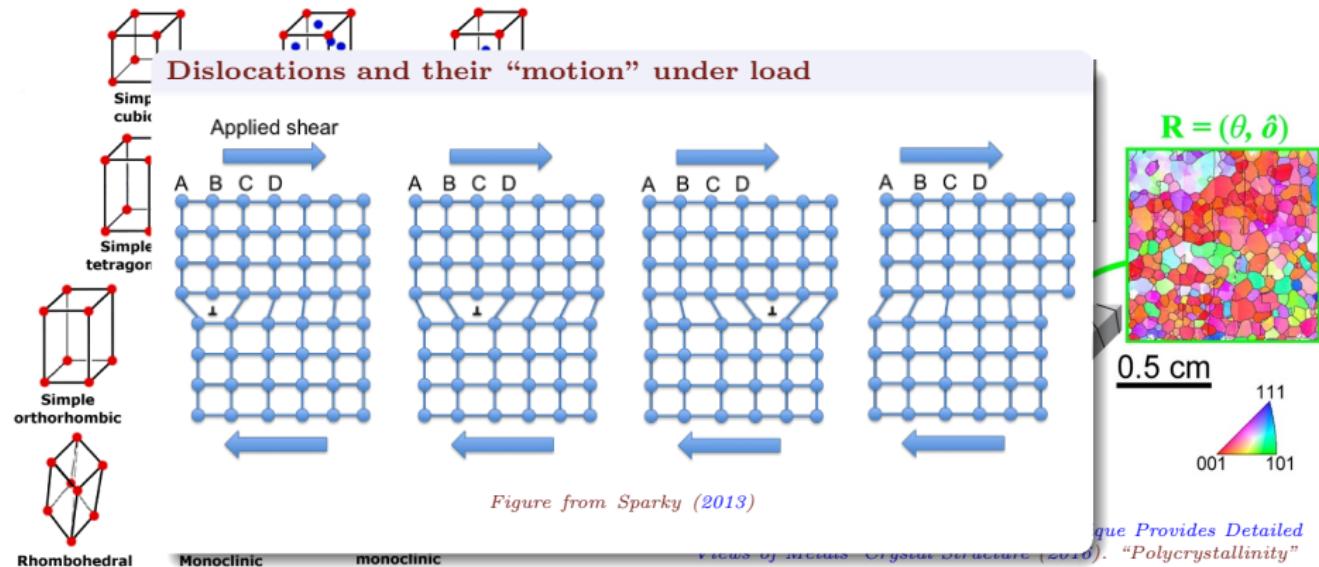
Types of crystal structures in metals Sparky (2013)



Crystal and Grain Structures New Technique Provides Detailed Views of Metals' Crystal Structure (2016). "Polycrystallinity"

1.1. Structure of Materials

Introduction



Types of crystal structures in metals Sparky (2013)

1.2. Understanding the Stress-Strain Curve

Introduction

The Uniaxial Tensile Test

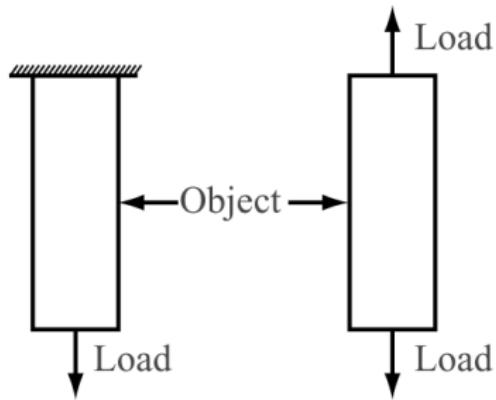


Figure from Rajendran 2011

1.2. Understanding the Stress-Strain Curve

Introduction

Terminology

- ① Proportionality Limit;
- ② Elastic Limit;
- ③ Yield Point;
- ④ Ultimate Strength;
- ⑤ Fracture Point;
- ⑥ Elongation at Failure;

Ductile Fracture

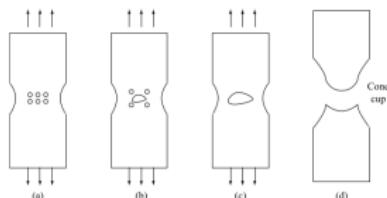


Figure from Rajendran 2011

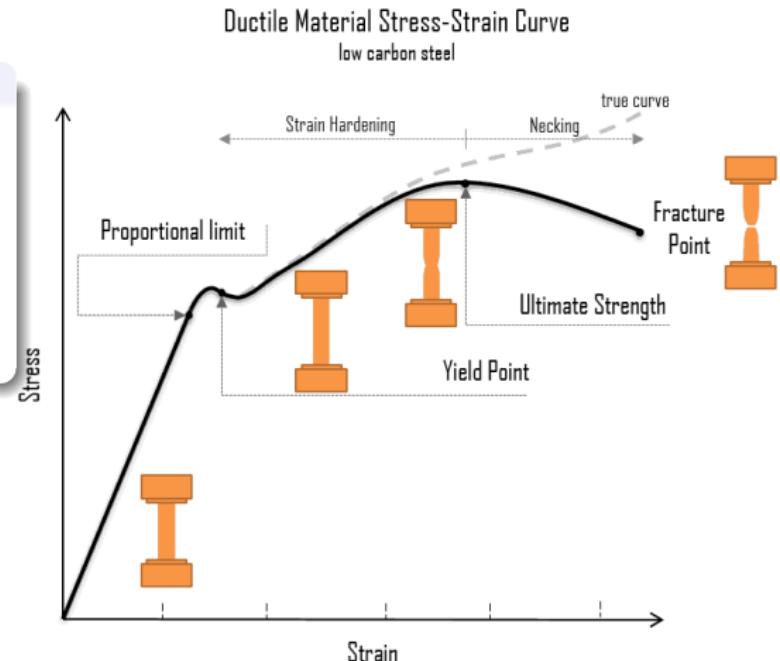


Figure from Connor 2020

1.3. Failure Mechanisms: Fracture

1. Introduction

“Griffith Theory” of brittle fracture

- Theoretical fracture stress $\sim \frac{E}{5} - \frac{E}{30}$
(steel $\sim \frac{E}{1000}$)
- Fracture occurs when
 $E_{strain} = E_{surface}$
- Crack propagates when
 $\frac{dE_{strain}}{dL} = \frac{dE_{surface}}{dL}$

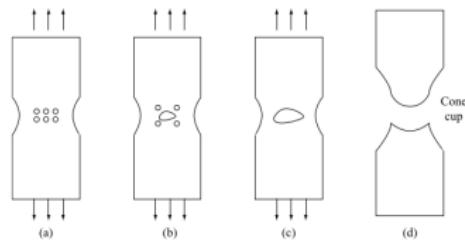
1.3. Failure Mechanisms: Fracture

1. Introduction

“Griffith Theory” of brittle fracture

- Theoretical fracture stress $\sim \frac{E}{5} - \frac{E}{30}$
(steel $\sim \frac{E}{1000}$)
- Fracture occurs when $E_{strain} = E_{surface}$
- Crack propagates when $\frac{dE_{strain}}{dL} = \frac{dE_{surface}}{dL}$

Ductile Fracture



Ductile Fracture Rajendran 2011

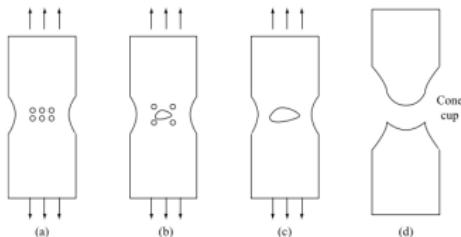
1.3. Failure Mechanisms: Fracture

1. Introduction

“Griffith Theory” of brittle fracture

- Theoretical fracture stress $\sim \frac{E}{5} - \frac{E}{30}$
(steel $\sim \frac{E}{1000}$)
- Fracture occurs when $E_{strain} = E_{surface}$
- Crack propagates when $\frac{dE_{strain}}{dL} = \frac{dE_{surface}}{dL}$

Ductile Fracture



Ductile Fracture Rajendran 2011

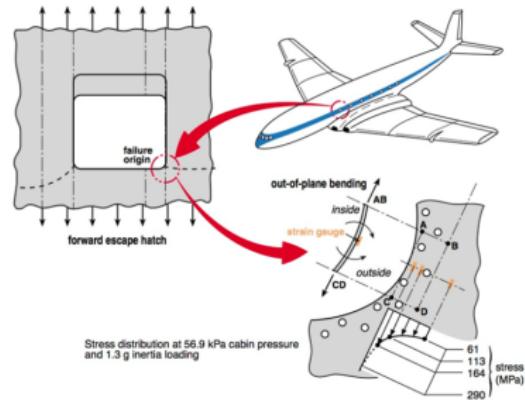
Sr. No	Brittle Fracture	Ductile Fracture
1.	It occurs with no or little plastic deformation.	It occurs with large plastic deformation.
2.	The rate of propagation of the crack is fast.	The rate of propagation of the crack is slow.
3.	It occurs suddenly without any warning.	It occurs slowly.
4.	The fractured surface is flat.	The fractured surface has rough contour and the shape is similar to cup and cone arrangement.
5.	The fractured surface appears shiny.	The fractured surface is dull when viewed with naked eye and the surface has dimpled appearance when viewed with scanning electron microscope.
6.	It occurs where micro crack is larger.	It occurs in localised region where the deformation is larger.

Ductile vs Brittle Fracture Rajendran 2011

1.3. Failure Mechanisms: Fatigue

1. Introduction

..over 90% of mechanical failures are caused because of metal fatigue [What Is Metal Fatigue? 2021...](#)

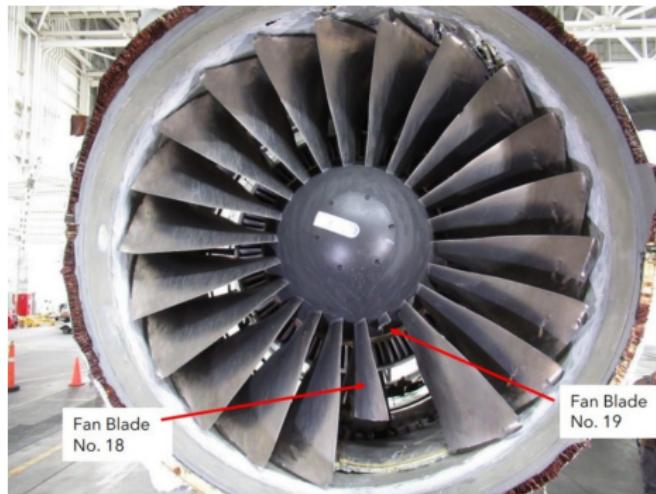


[The De Havilland Comet](#) [The deHavilland Comet Disaster 2019 \[lecture\]](#)

1.3. Failure Mechanisms: Fatigue

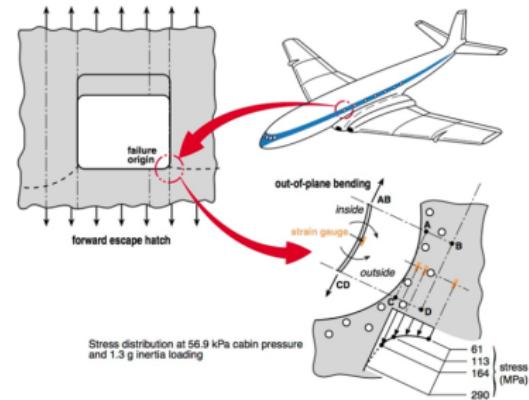
1. Introduction

..over 90% of mechanical failures are caused because of metal fatigue [What Is Metal Fatigue? 2021...](#)



Fan Blade
No. 18

Fan Blade
No. 19



The De Havilland Comet [The deHavilland Comet Disaster 2019 \[lecture\]](#)

A more recent example (2021 United Airlines Boeing 777) [DCA21FA085.Aspx 2024.](#) [video]

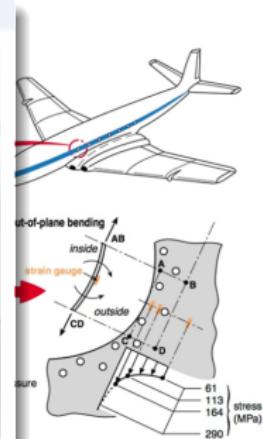
1.3. Failure Mechanisms: Fatigue

1. Introduction

..over 90% of mechanical failures are caused because of metal fatigue *What Is Metal Fatigue? 2021...*

Fatigue Crack Propagation: Beech Marks

Figure from *Fatigue Physics 2024*



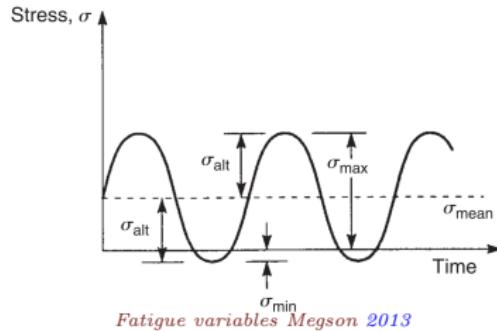
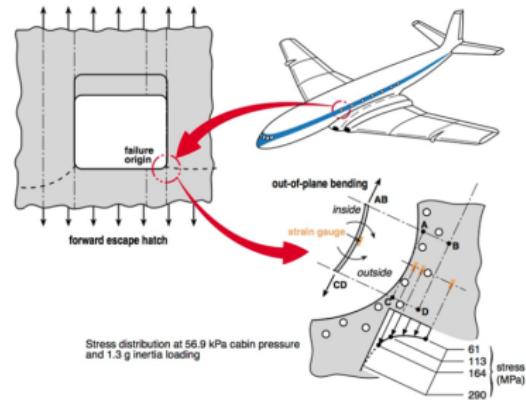
deHavilland Comet Disaster
structure]

A more recent example
777) <DCA21FA000.aspx> 2024. [\[view\]](#)

1.3. Failure Mechanisms: Fatigue

1. Introduction

..over 90% of mechanical failures are caused because of metal fatigue [What Is Metal Fatigue? 2021...](#)

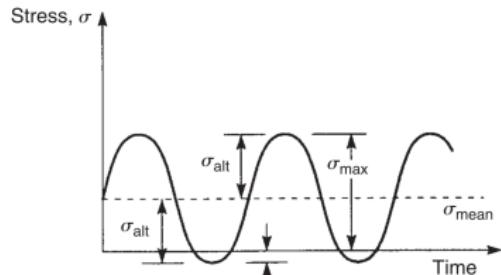


[The De Havilland Comet The deHavilland Comet Disaster 2019 \[lecture\]](#)

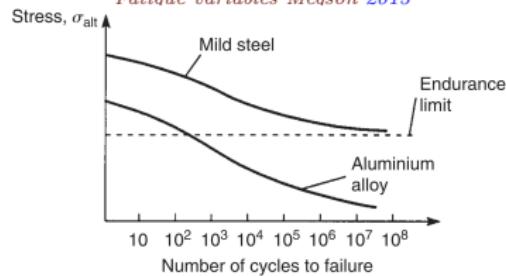
1.3. Failure Mechanisms: Fatigue

1. Introduction

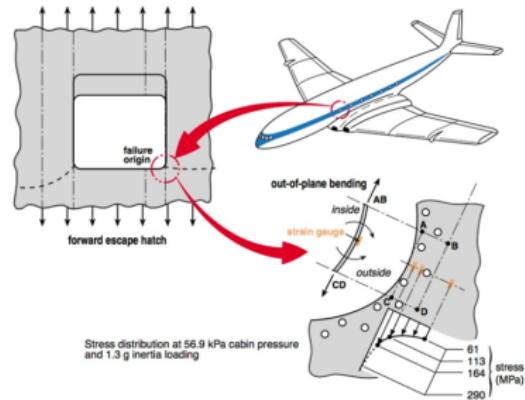
..over 90% of mechanical failures are caused because of metal fatigue [What Is Metal Fatigue? 2021...](#)



Fatigue variables Meason 2013



The S-n Diagram Megson 2013



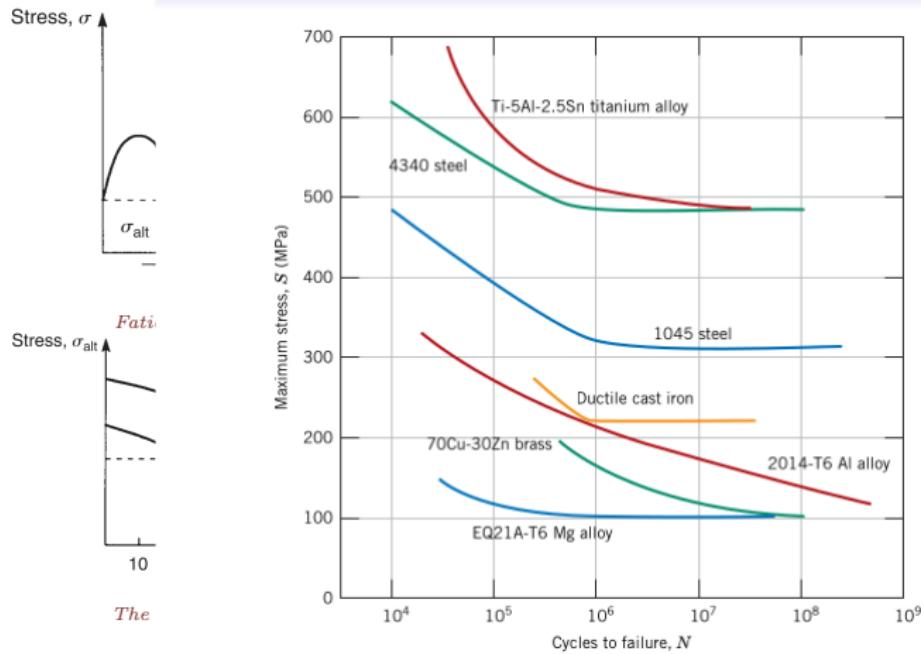
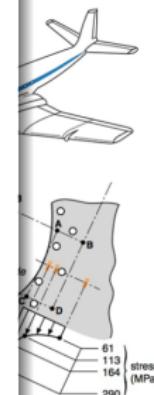
The De Havilland Comet [The deHavilland Comet Disaster 2019 \[lecture\]](#)

1.3. Failure Mechanisms: Fatigue

1. Introduction

..over 90% of mechanical failures are caused because of metal fatigue [What Is Metal Fatigue? 2021...](#)

S-N Curves for Common Metals (Jr and Rethwisch 2012)



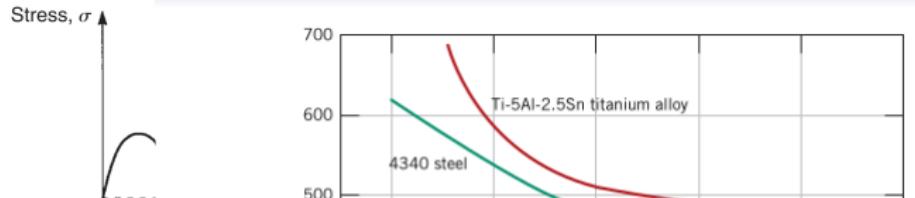
1 Comet Disaster

1.3. Failure Mechanisms: Fatigue

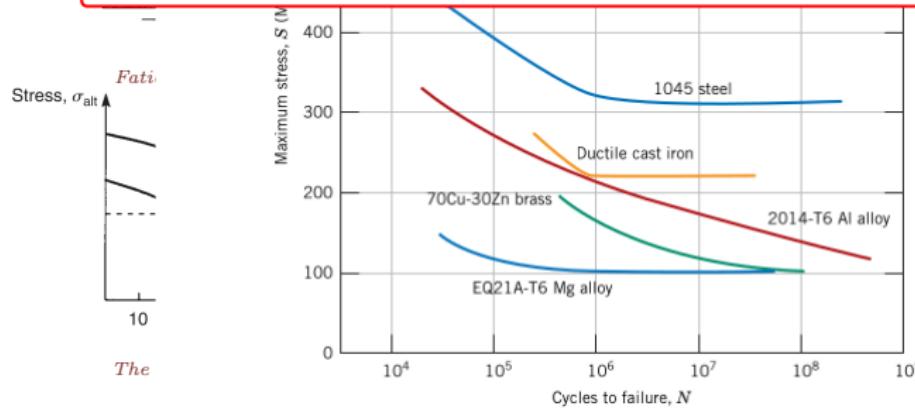
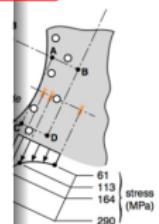
1. Introduction

..over 90% of mechanical failures are caused because of metal fatigue [What Is Metal Fatigue? 2021...](#)

S-N Curves for Common Metals (Jr and Rethwisch 2012)



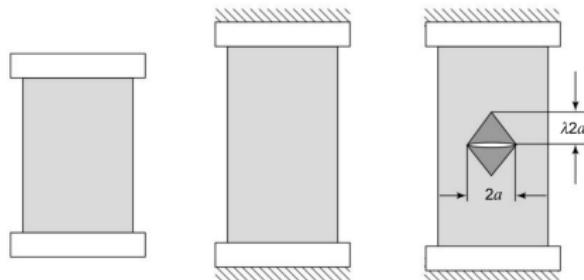
Homework: Watch [this video on Fatigue testing.](#)



Comet Disaster

1.4. Energy Release Rate: Griffith's Analysis

Introduction



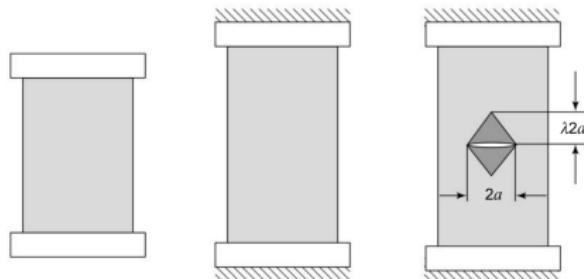
Simplistic picture of the introduction of a crack in a stretched specimen (Figure from sec 2.5 in Kumar 2009)

- Because of the crack, we assume $\sigma \approx 0$ in the triangles.
- Corresponding energy loss:

$$E_R = V_\Delta \times \left(\frac{\sigma^2}{2E}\right) = \frac{2a^2 \lambda t \sigma^2}{E}.$$

1.4. Energy Release Rate: Griffith's Analysis

Introduction



Simplistic picture of the introduction of a crack in a stretched specimen (Figure from sec 2.5 in Kumar 2009)

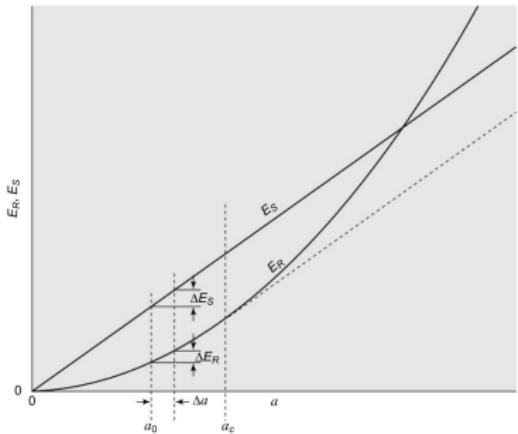
- Because of the crack, we assume $\sigma \approx 0$ in the triangles.
- Corresponding energy loss:

$$E_R = V_\Delta \times \left(\frac{\sigma^2}{2E}\right) = \frac{2a^2 \lambda t \sigma^2}{E}.$$

- For thin plates, $\lambda = \frac{\pi}{2}$. So,

$$E_R = \frac{\pi a^2 t \sigma^2}{E}.$$

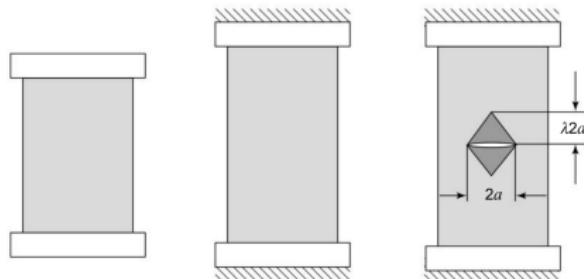
- The “creation” of a surface takes energy. We write this as,

$$E_S = 2(2at)\gamma = 4at\gamma.$$


(Figure from Kumar 2009)

1.4. Energy Release Rate: Griffith's Analysis

Introduction



Simplistic picture of specimen (Figure from

- For thin plates, $\lambda = \frac{\pi}{2}$. So,

$$E_R = \frac{\pi a^2 t \sigma^2}{E}.$$

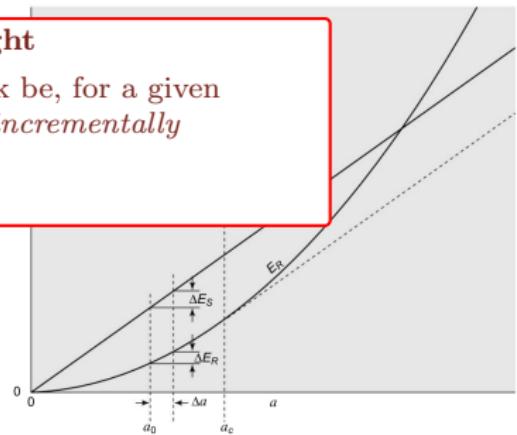
- The “creation” of a surface takes energy. We write this as,

$$E_S = 2(2at)\gamma = 4at\gamma.$$

Food For Thought

- What would a “safe size” of crack be, for a given loading condition? Hint: Think incrementally
- Because of the triangle
- Corresponding energy loss:

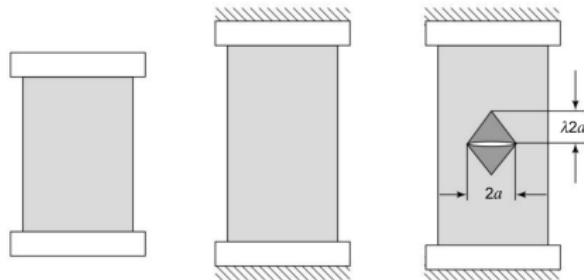
$$E_R = V_{\Delta} \times \left(\frac{\sigma^2}{2E}\right) = \frac{2a^2 \lambda t \sigma^2}{E}.$$



(Figure from Kumar 2009)

1.4. Energy Release Rate: Griffith's Analysis

Introduction



Simplistic picture of specimen (Figure from

- For thin plates, $\lambda = \frac{\pi}{2}$. So,

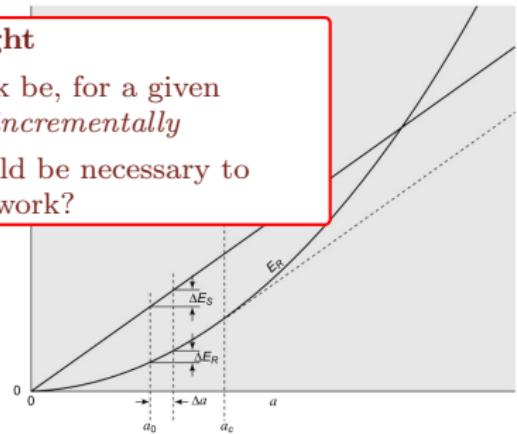
$$E_R = \frac{\pi a^2 t \sigma^2}{E}.$$
- The “creation” of a surface takes energy. We write this as,

$$E_S = 2(2at)\gamma = 4at\gamma.$$

Food For Thought

- What would a “safe size” of crack be, for a given loading condition? *Hint: Think incrementally*
- Because of the triangular notch
- What type of an experiment would be necessary to confirm this mathematical framework?
- Corresponding energy loss:

$$E_R = V_{\Delta} \times \left(\frac{\sigma^2}{2E}\right) = \frac{2a^2 \lambda t \sigma^2}{E}.$$



(Figure from Kumar 2009)

1.5. Linear Elastic Fracture Mechanics

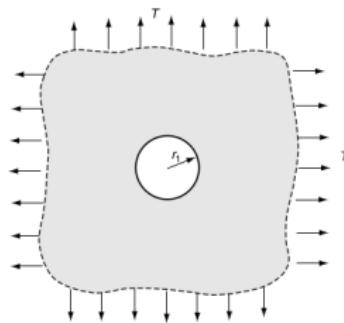
Introduction

(Ref: Sec. 8.4.2 in Sadd 2009)

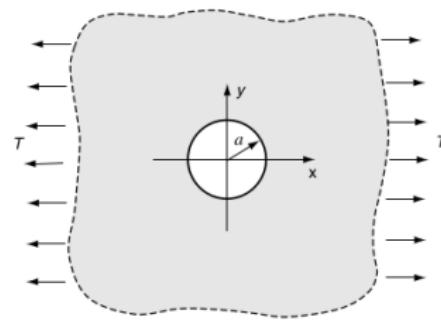
Consider the following two cases.

Question: Where will the point of peak stress occur? And which will have higher maximum stress?

Case 1



Case 2



1.5. Linear Elastic Fracture Mechanics

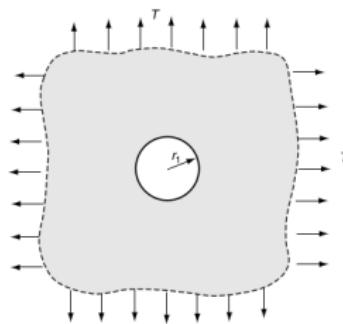
Introduction

(Ref: Sec. 8.4.2 in Sadd 2009)

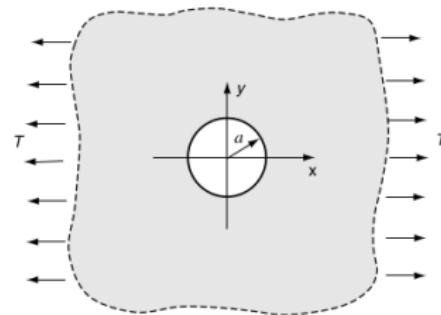
Consider the following two cases.

Question: Where will the point of peak stress occur? And which will have higher maximum stress?

Case 1



Case 2



Analytical Solution

$$\sigma_r = T\left(1 - \frac{r_1^2}{r^2}\right), \quad \sigma_\theta = T\left(1 + \frac{r_1^2}{r^2}\right)$$

$$\Rightarrow \boxed{\sigma_{\max} = 2T}$$

1.5. Linear Elastic Fracture Mechanics

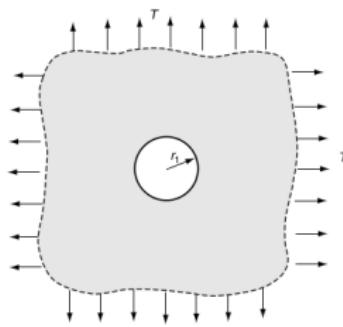
Introduction

(Ref: Sec. 8.4.2 in Sadd 2009)

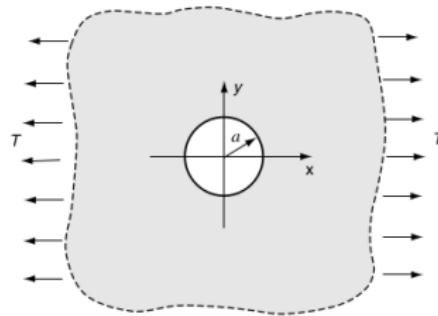
Consider the following two cases.

Question: Where will the point of peak stress occur? And which will have higher maximum stress?

Case 1



Case 2



Analytical Solution

$$\sigma_r = T \left(1 - \frac{r_1^2}{r^2}\right), \sigma_\theta = T \left(1 + \frac{r_1^2}{r^2}\right)$$

$$\Rightarrow \boxed{\sigma_{\max} = 2T}$$

Analytical Solution

$$\sigma_r = T \left(1 - \frac{r_1^2}{r^2}\right) + (\cdot) \cos(2\theta), \sigma_\theta = \dots$$

$$\Rightarrow \boxed{\sigma_{\max} = 3T}$$

1.5. Linear Elastic Fracture Mechanics

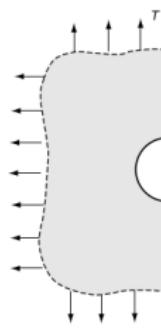
Introduction

(Ref: Sec. 8.4.2 in Sadd 2009)

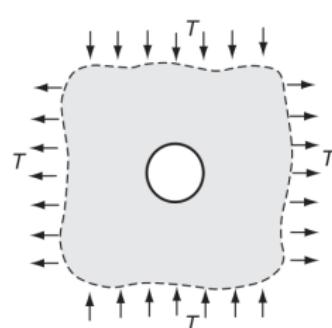
Consider the following two cases.

Question: Where will the point of peak stress occur? And which will have higher maximum stress?

Case 1



Case 3



Analytical Solution

$$\sigma_r = T\left(1 - \frac{r_1^2}{r^2}\right), \sigma_\theta = T\left(1 + \frac{r_1^2}{r^2}\right)$$

$$\Rightarrow \boxed{\sigma_{\max} = 2T}$$

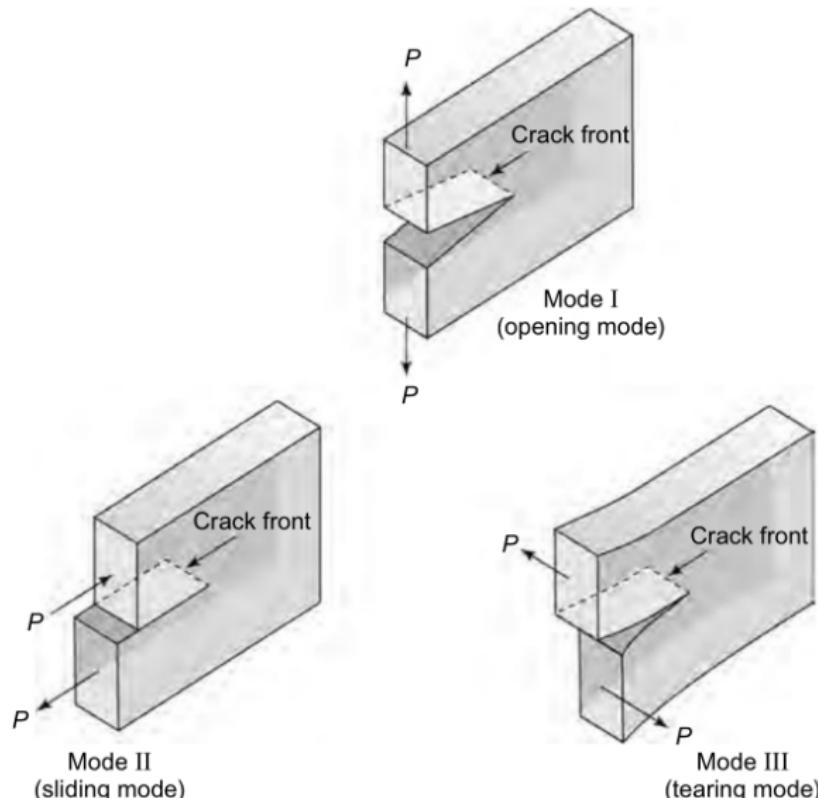
$$\boxed{\sigma_{\max} = 4T}$$

$$\sigma_r = T\left(1 - \frac{r_1^2}{r^2}\right) + (\cdot) \cos(2\theta), \sigma_\theta = \dots$$

$$\Rightarrow \boxed{\sigma_{\max} = 3T}$$

1.6. Modes of Fracture

Introduction

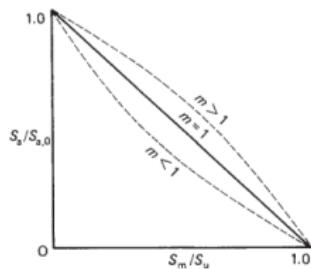


2. Introduction to Fatigue

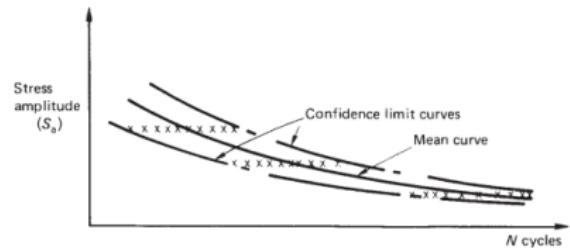
Concepts

- Safe Life: RUL
- Fail-Safe: Redundancy

Tensile Stresses: The Goodman Diagram

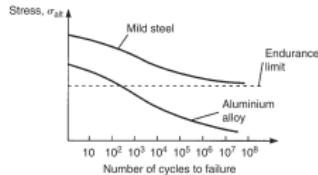


$$(Figure 15.2 from Megson 2013) \quad \frac{S_u/S_{a,0}}{S_{a,0}} = 1 - \left(\frac{S_m}{S_u} \right)^m$$



(Figure 15.1 from Megson 2013)

The S-N Curve



(Figure from Megson 2013)

$$\sigma_{alt} = \sigma_{\infty} \left(1 + \frac{C}{\sqrt{N}} \right), \quad N \propto \frac{1}{\sigma_{mean}}.$$

2.1. The deHavilland Comet

Introduction to Fatigue

*No aircraft has contributed more to safety in the jet age than the Comet. The lessons it taught the world of aeronautics live in every jet airliner flying today. – D.D. Dempster, 1959, in *The Tale of the Comet**

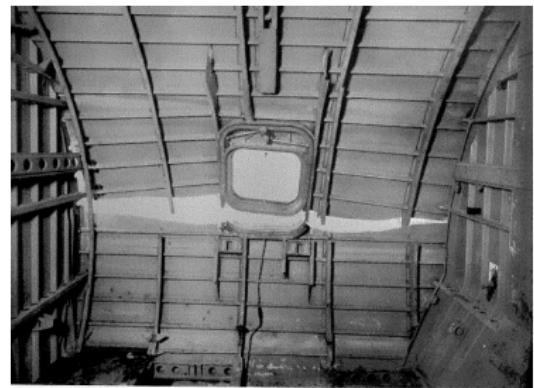


FIG. 7. VIEW FROM INSIDE OF FAILURE AT THE FORWARD ESCAPE HATCH ON THE PORT SIDE—COMET G-ALYU

(Figures from “De Havilland Comet” 2025)

2.1. The deHavilland Comet

Introduction to Fatigue

*No aircraft has contributed more to safety in the jet age than the Comet. The lessons it taught the world of aeronautics live in every jet airliner flying today. – D.D. Dempster, 1959 in *The Tale of the Comet**

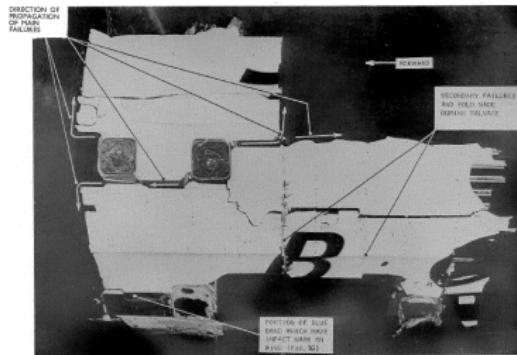


FIG. 12. PHOTOGRAPH OF WRECKAGE AROUND ADF AERIAL WINDOWS—G-ALYP.

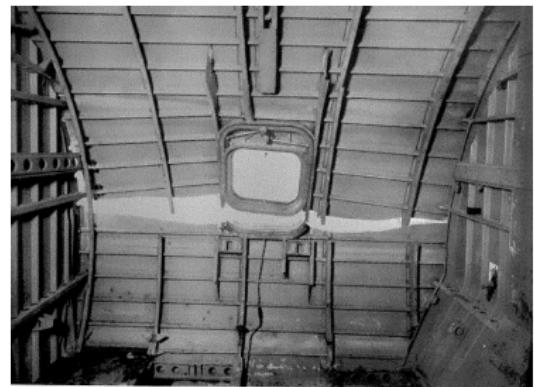


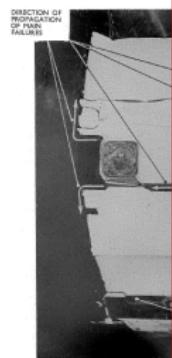
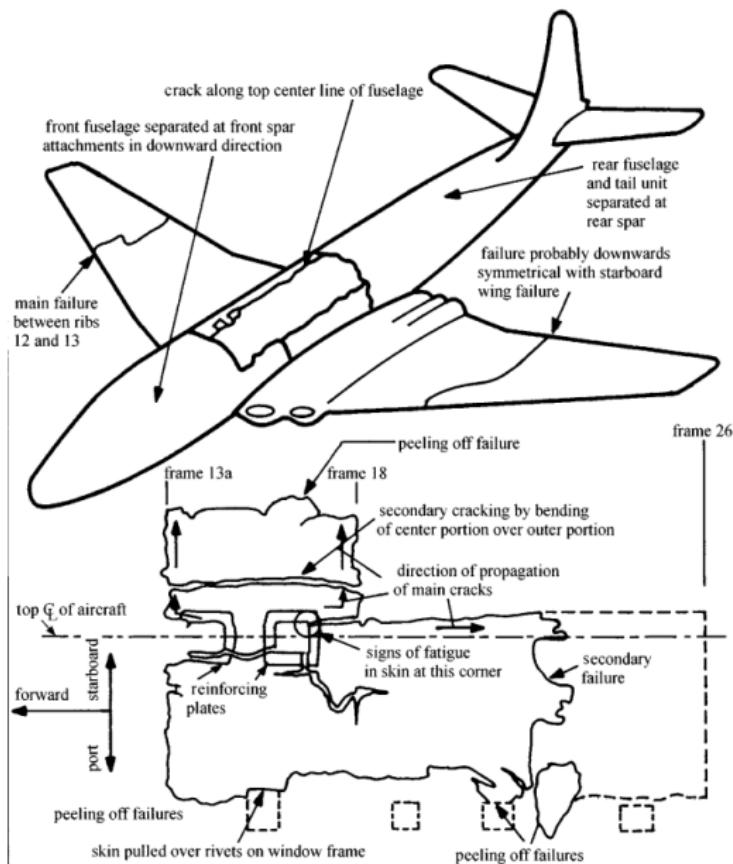
FIG. 7. VIEW FROM INSIDE OF FAILURE AT THE FORWARD ESCAPE HATCH ON THE PORT SIDE—COMET G-ALYU

(Figures from “De Havilland Comet” 2025)

2.1. The deHavilland Comet

Introduction to

No aircraft
taught the
1050 in



lessons it
temper, t

CH ON THE

t" 2025)

2.2. Miner's Rule

Introduction to Fatigue

- Suppose at an operation level of σ_m, σ_a , the fatigue life is N and the structure undergoes n cycles, Miner's rule posits that $\frac{n}{N}$ is the fraction of life that has been consumed.
- Suppose a structure undergoes multiple stress levels in its loading history, the total fraction of fatigue life that has been consumed is written as

$$\frac{n_1}{N_1} + \frac{n_2}{N_2} + \frac{n_3}{N_3} + \dots$$

- The structure is expected to fail when this sum becomes 1.0..

3.1. Griffith's Analysis and Energy Release Rate

Linear Elastic Fracture Mechanics

- The total energy of a loaded elastic body is written as

$$\Pi = \underbrace{U}_{\text{elastic}} - \underbrace{W}_{\text{external}} .$$

- Griffith's principle:** The energy lost due to the creation of a cracked surface must be equal to the energy required for the creation of the cracked surface.
- Surface energy is usually expressed as $E_S = \mathcal{A}\gamma$.
- This is a general principle agnostic of the exact structure under consideration.

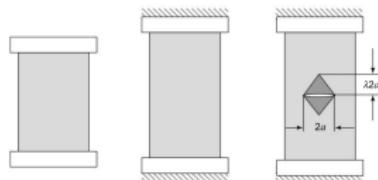
$$G = -\frac{d\Pi}{d\mathcal{A}} = 2\gamma .$$

(note: $2\mathcal{A}$ is the effective total “new” surface area that has been created)

3.1. Griffith's Analysis and Energy Release Rate: Examples

Linear Elastic Fracture Mechanics

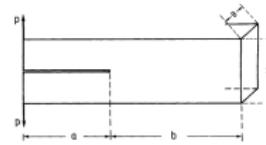
Crack in Stretched Specimen



(Figure from sec 2.5 in Kumar 2009)

- Crack: $\mathcal{A} = 2at$, $\partial\mathcal{A} = \frac{1}{2t}\partial a$
- $\Pi = U = \frac{\sigma^2 t}{2E'}(\mathcal{A}_{tot} - 4\lambda a^2)$.
- $E_S = 2\mathcal{A}\gamma$, $\frac{dE_S}{d\mathcal{A}} = 2\gamma$.
- $G = -\frac{d\Pi}{d\mathcal{A}} = -\frac{1}{2t}\frac{d\Pi}{da} = \frac{\lambda a}{2E'}\sigma^2$.
- $\sigma_{cr} = \sqrt{\frac{E'\gamma}{\lambda a}} = \sqrt{\frac{2E'\gamma}{\pi a}}$.

Double Cantilever Beam (DCB)



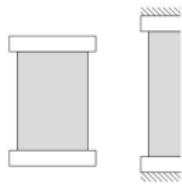
(Figure 4.14 in Gdoutos 2005)

- $u = CP = \frac{2a^3}{3EI}P$, $C = \frac{2a^3}{3EI}$.
- $U = \frac{Pu}{2} = \frac{CP^2}{2} = \frac{P^2}{3EI}a^3$,
 $W = Pu = CP^2 = \frac{2P^2}{3EI}a^3$,
 $\Pi = -\frac{P^2}{2}C = -\frac{P^2}{3EI}a^3$.
- $\mathcal{A} = aB$, $\partial\mathcal{A} = \frac{1}{B}\partial a$.
- $G = -\frac{d\Pi}{d\mathcal{A}} = \frac{P^2}{2B}\frac{dC}{da} = \frac{P^2 a^2}{EIB} = \frac{12P^2 a^2}{EB^2 h^3}$

3.1. Griffith's Analysis and Energy Release Rate: Examples

Linear Elastic Fracture Mechanics

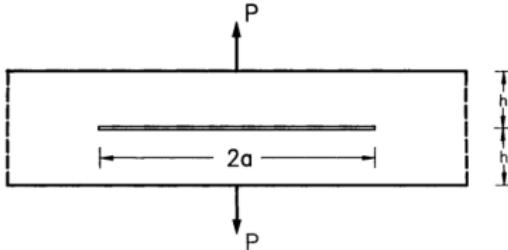
Crack in Stress



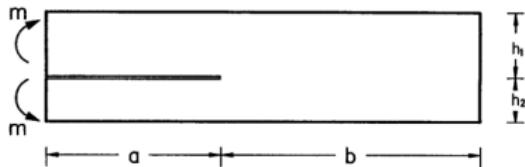
(Figure from sec

- Crack: $A = 2at$, ϵ
- $\Pi = U = \frac{\sigma^2 t}{2E'} (A_{to})$
- $E_S = 2A\gamma$, $\frac{dE_S}{dA} =$
- $G = -\frac{d\Pi}{dA} = -\frac{1}{2t}$
- $\sigma_{cr} = \sqrt{\frac{E'\gamma}{\lambda a}} = \sqrt{}$

Additional Cases to Consider

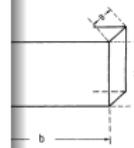


(Figure 4.23 from Gdoutos (2005))



(Figure 4.20 from Gdoutos (2005))

Center Beam (DCB)



Gdoutos (2005)

$$= \frac{2a^3}{3EI}.$$

$$\frac{P^2}{3EI} a^3,$$

$$\frac{2P^2}{3EI} a^3,$$

$$+ a^3.$$

.

$$= \frac{P^2 a^2}{EIB} = \frac{12P^2 a^2}{EB^2 h^3}$$

3.2. A Primer on 2D Elasticity

Linear Elastic Fracture Mechanics

- In 2D, the governing equations of elasticity (let us assume no body loads for simplicity) are written as,

$$\sigma_{x,x} + \tau_{xy,y} = 0, \quad \tau_{xy,x} + \sigma_{y,y} = 0.$$

- If we seek to obtain **solutions expressed directly in the stresses**, 2 equations won't cut it (we have 3 unique stresses $\sigma_x, \sigma_y, \tau_{xy}$). So we invoke strain compatibility, which is written as

$$\varepsilon_{x,yy} + \varepsilon_{y,xx} = \gamma_{xy,xy}$$

- This can be expressed in terms of the stresses if we invoke the **stress-strain constitutive relationships**.

3.2. A Primer on 2D Elasticity

Linear Elastic Fracture Mechanics

- In 2D, the governing equations of elasticity (let us assume no body loads for simplicity) are written as,

$$\sigma_{x,x} + \tau_{xy,y} = 0, \quad \tau_{xy,x} + \sigma_{y,y} = 0.$$

- If we seek to obtain **solutions expressed directly in the stresses**, 2 equations won't cut it (we have 3 unique stresses $\sigma_x, \sigma_y, \tau_{xy}$). So we invoke strain compatibility equations written as

$$\varepsilon_{x,yy} + \varepsilon_{y,xx} = \gamma_{xy,xy}$$

- This can be expressed in terms of the stresses if we invoke the **stress-strain constitutive relationships**.

Recall: These are conditions that the strains must satisfy in order for them to have been generated by a continuously differentiable displacement field.

3.2. A Primer on 2D Elasticity

Linear Elastic Fracture Mechanics

Plane Stress

$$\begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{bmatrix} = \frac{1}{E} \begin{bmatrix} 1 & -\nu & 0 \\ -\nu & 1 & 0 \\ 0 & 0 & 2(1+\nu) \end{bmatrix} \begin{bmatrix} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{bmatrix}$$

Compatibility

$$\sigma_{x,yy} + \sigma_{y,xx} - \nu(\sigma_{x,xx} + \sigma_{y,yy}) = 2(1+\nu)\tau_{xy,xy}.$$

Plane Strain

$$\begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{bmatrix} = \frac{1+\nu}{E} \begin{bmatrix} 1-\nu & -\nu & 0 \\ -\nu & 1-\nu & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{bmatrix}$$

Compatibility

$$(1-\nu)(\sigma_{x,yy} + \sigma_{y,xx}) - \nu(\sigma_{x,xx} + \sigma_{y,yy}) = 2\tau_{xy,xy}.$$

- Making the substitution $\sigma_x = \phi_{,yy}$, $\sigma_y = \phi_{,xx}$, $\tau_{xy} = -\phi_{,xy}$, it is trivial to see that the equilibrium equations are satisfied automatically.
- In both the above cases, the compatibility equation comes out to be:

$$\phi_{,xxxx} + \phi_{,yyyy} + 2\phi_{,xxyy} = (\partial_{xx} + \partial_{yy})^2 \phi = \nabla^4 \phi = 0.$$

- Since the Laplacian when set to zero ($\nabla^2 \phi = 0$) is referred to as the **harmonic equation** (recall complex analyticity), $\nabla^4 \phi = 0$ is referred to as the **bi-harmonic equation**. ϕ is the **Airy Stress Function**.

3.3. Classical Solutions

Linear Elastic Fracture Mechanics

- Restricting ourselves to 2D problems, the governing equations may be written using the Airy's stress formulation as the biharmonic equation

$$\nabla^4 \phi = 0$$

- Let us look at this with cylindrical coordinates ($x = r \cos \theta$, $y = r \sin \theta$).

$$\begin{aligned} \nabla \phi &= [\underline{e}_r \quad \underline{e}_\theta] \begin{bmatrix} \phi, r \\ \phi, \theta \\ \frac{\phi, \theta}{r} \end{bmatrix}, \quad \nabla \underline{u} = [\underline{e}_r \quad \underline{e}_\theta] \begin{bmatrix} u_{r,r} & \frac{u_{r,\theta} - u_\theta}{r} \\ u_{\theta,r} & \frac{u_{\theta,\theta} + u_r}{r} \end{bmatrix} \begin{bmatrix} \underline{e}_r \\ \underline{e}_\theta \end{bmatrix} \\ \nabla^2 \phi &= [\underline{e}_r \quad \underline{e}_\theta] \begin{bmatrix} \phi_{,rr} & \partial_r \left(\frac{\phi, \theta}{r} \right) \\ \partial_r \left(\frac{\phi, \theta}{r} \right) & \frac{\phi, r}{r} + \frac{\phi, \theta \theta}{r^2} \end{bmatrix} \begin{bmatrix} \underline{e}_r \\ \underline{e}_\theta \end{bmatrix}. \end{aligned}$$

- The stresses are expressed (to satisfy equilibrium) as

$$\sigma_{rr} = \frac{\phi, r}{r} + \frac{\phi, \theta \theta}{r^2}, \quad \sigma_{\theta\theta} = \phi_{,rr}, \quad \tau_{r\theta} = -\partial_r \left(\frac{\phi, \theta}{r} \right).$$

3.3. Classical Solutions

Linear Elastic Fracture Mechanics

- R General form of the Airy's Stress Function (Michell Solution, see Barber 2022, Ch. 8-9)

$$\phi = a_0 + a_1 \log r + a_2 r^2 + a_3 r^2 \log r$$

$$(a_4 + a_5 \log r + a_6 r^2 + a_7 r^2 \log r) \theta$$

- L $(a_{11}r + a_{12}r \log r + \frac{a_{13}}{r} + a_{14}r^3 + a_{15}r\theta + a_{16}r\theta \log r) \cos \theta$

$$(b_{11}r + b_{12}r \log r + \frac{b_{13}}{r} + b_{14}r^3 + b_{15}r\theta + b_{16}r\theta \log r) \sin \theta$$

$$\sum_{n=2}^{\infty} (a_{n1}r^n + a_{n2}r^{2+n} + a_{n3}r^{-n} + a_{n4}r^{2-n}) \cos n\theta$$

- T $\sum_{n=2}^{\infty} (b_{n1}r^n + b_{n2}r^{2+n} + b_{n3}r^{-n} + b_{n4}r^{2-n}) \sin n\theta.$

$$\sigma_{rr} = \frac{\phi_{,r}}{r} + \frac{\phi_{,\theta\theta}}{r^2}, \quad \sigma_{\theta\theta} = \phi_{,rr}, \quad \tau_{r\theta} = -\partial_r\left(\frac{\phi_{,\theta}}{r}\right).$$

3.3.1. The Michell Solution: Tabled Expressions

Classical Solutions

Stress Components

ϕ	σ_{rr}	$\sigma_{r\theta}$	$\sigma_{\theta\theta}$
r^2	2	0	2
$r^2 \ln(r)$	$2 \ln(r) + 1$	0	$2 \ln(r) + 3$
$\ln(r)$	$1/r^2$	0	$-1/r^2$
θ	0	$1/r^2$	0
$r^3 \cos \theta$	$2r \cos \theta$	$2r \sin \theta$	$6r \cos \theta$
$r\theta \sin \theta$	$2 \cos \theta / r$	0	0
$r \ln(r) \cos \theta$	$\cos \theta / r$	$\sin \theta / r$	$\cos \theta / r$
$\cos \theta / r$	$-2 \cos \theta / r^3$	$-2 \sin \theta / r^3$	$2 \cos \theta / r^3$
$r^3 \sin \theta$	$2r \sin \theta$	$-2r \cos \theta$	$6r \sin \theta$
$r\theta \cos \theta$	$-2 \sin \theta / r$	0	0
$r \ln(r) \sin \theta$	$\sin \theta / r$	$-\cos \theta / r$	$\sin \theta / r$
$\sin \theta / r$	$-2 \sin \theta / r^3$	$2 \cos \theta / r^3$	$2 \sin \theta / r^3$
$r^{n+2} \cos n\theta$	$-(n+1)(n-2)r^n \cos n\theta$	$n(n+1)r^n \sin n\theta$	$(n+1)(n+2)r^n \cos n\theta$
$r^n \cos n\theta$	$-n(n-1)r^{n-2} \cos n\theta$	$n(n-1)r^{n-2} \sin n\theta$	$n(n-1)r^{n-2} \cos n\theta$
$r^{n+2} \sin n\theta$	$-(n+1)(n-2)r^n \sin n\theta$	$-n(n+1)r^n \cos n\theta$	$(n+1)(n+2)r^n \sin n\theta$
$r^n \sin n\theta$	$-n(n-1)r^{n-2} \sin n\theta$	$-n(n-1)r^{n-2} \cos n\theta$	$n(n-1)r^{n-2} \sin n\theta$

(Table 8.1 from Barber 2022)

We set rigid body motion components to zero for the displacements

Displacement Components

ϕ	$2\mu u_r$	$2\mu u_\theta$
r^2	$(\kappa - 1)r$	0
$r^2 \ln(r)$	$(\kappa - 1)r \ln(r) - r$	$(\kappa + 1)r\theta$
$\ln(r)$	$-1/r$	0
θ	0	$-1/r$
$r^3 \cos \theta$	$(\kappa - 2)r^2 \cos \theta$	$(\kappa + 2)r^2 \sin \theta$
$r\theta \sin \theta$	$\frac{1}{2}[(\kappa - 1)\theta \sin \theta - \cos \theta + (\kappa + 1)\ln(r) \cos \theta]$	$\frac{1}{2}[(\kappa - 1)\theta \cos \theta - \sin \theta - (\kappa + 1)\ln(r) \sin \theta]$
$r \ln(r) \cos \theta$	$\frac{1}{2}[(\kappa + 1)\theta \sin \theta - \cos \theta + (\kappa - 1)\ln(r) \cos \theta]$	$\frac{1}{2}[(\kappa + 1)\theta \cos \theta - \sin \theta - (\kappa - 1)\ln(r) \sin \theta]$
$\cos \theta / r$	$\cos \theta / r^2$	$\sin \theta / r^2$
$r^3 \sin \theta$	$(\kappa - 2)r^2 \sin \theta$	$-(\kappa + 2)r^2 \cos \theta$
$r\theta \cos \theta$	$\frac{1}{2}[(\kappa - 1)\theta \cos \theta + \sin \theta - (\kappa + 1)\ln(r) \sin \theta]$	$\frac{1}{2}[(-\kappa - 1)\theta \sin \theta - \cos \theta - (\kappa + 1)\ln(r) \cos \theta]$
$r \ln(r) \sin \theta$	$\frac{1}{2}[(-\kappa + 1)\theta \cos \theta - \sin \theta + (\kappa - 1)\ln(r) \cos \theta]$	$\frac{1}{2}[(\kappa + 1)\theta \sin \theta + \cos \theta + (\kappa - 1)\ln(r) \cos \theta]$
$\sin \theta / r$	$\sin \theta / r^2$	$-\cos \theta / r^2$
$r^{n+2} \cos n\theta$	$(\kappa - n - 1)r^{n+1} \cos n\theta$	$(\kappa + n + 1)r^{n+1} \sin n\theta$
$r^n \cos n\theta$	$-nr^{n-1} \cos n\theta$	$nr^{n-1} \sin n\theta$
$r^{n+2} \sin n\theta$	$(\kappa - n - 1)r^{n+1} \sin n\theta$	$-(\kappa + n + 1)r^{n+1} \cos n\theta$
$r^n \sin n\theta$	$-nr^{n-1} \sin n\theta$	$-nr^{n-1} \cos n\theta$

(Table 9.1 from Barber 2022)

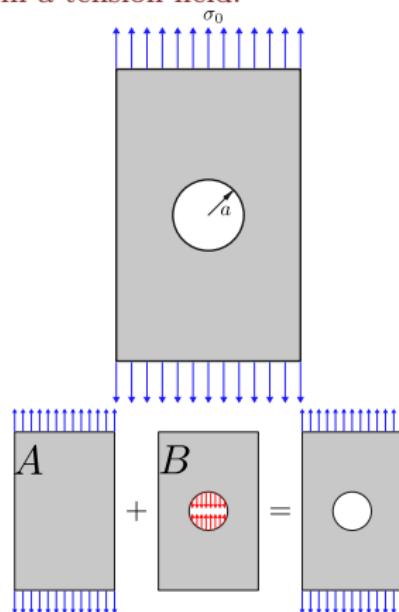
$$\text{Plane Stress } \kappa = \frac{3-\nu}{1+\nu}$$

$$\text{Plane Strain } \kappa = 3 - 4\nu$$

3.3. Plate with a Hole. Plate With a Hole Under Tension

Linear Elastic Fracture Mechanics

- Let us now try to use the above table for obtaining the stress distribution around a hole in a tension field.



3.3. Plate with a Hole. Plate With a Hole Under Tension

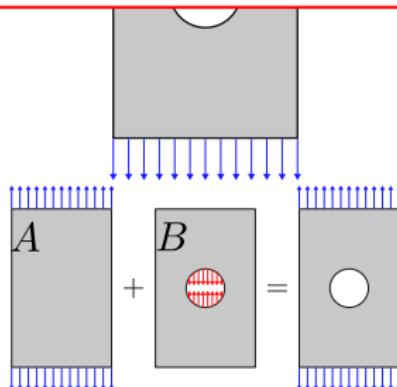
Linear Elastic Fracture Mechanics

- Let us now try to use the above table for obtaining the stress distribution around a hole in a tension field.

Displacement Field

$$u_r = \frac{\sigma_0}{2} (\kappa - 1)r - \frac{\sigma_0}{2} r \cos 2\theta$$

$$u_\theta = \frac{\sigma_0}{2} r \sin 2\theta$$



Problem A

The 2D stress field (cartesian) is

$$\underline{\underline{\sigma}}_{cart} = \begin{bmatrix} 0 & 0 \\ 0 & \sigma_0 \end{bmatrix}.$$

- Transforming to cylindrical coordinates,

$$\begin{aligned} \underline{\underline{\sigma}}_{cyl} &= \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & \sigma_0 \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \\ &= \sigma_0 \begin{bmatrix} \sin^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \cos^2 \theta \end{bmatrix} \end{aligned}$$

The components can be written as

$$\begin{aligned} \sigma_{rr} &= \sigma_0 \left(\frac{1}{2} - \frac{\cos 2\theta}{2} \right), & \sigma_{r\theta} &= \sigma_0 \frac{\sin 2\theta}{2}, \\ \sigma_{\theta\theta} &= \sigma_0 \left(\frac{1}{2} + \frac{\cos 2\theta}{2} \right). \end{aligned}$$

3.3. Plate with a Hole. Plate With a Hole Under Tension

Linear Elastic Fracture Mechanics

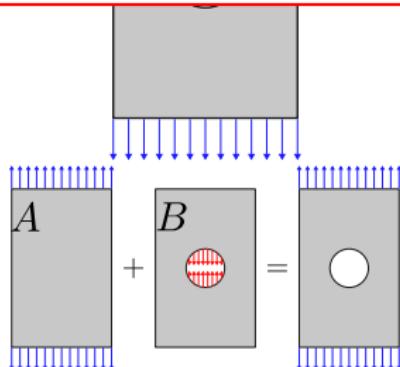
- Let us now try to use the above table for obtaining the stress distribution around a hole in a tension field.

σ_0

Displacement Field

$$u_r = \frac{\sigma_0 a^2}{2r} \left(1 - \left(\kappa + 1 - \left(\frac{a}{r} \right)^2 \right) \cos 2\theta \right)$$

$$u_\theta = \frac{\sigma_0 a^2}{2r} \left(\kappa - 1 + \left(\frac{a}{r} \right)^2 \right) \sin 2\theta.$$



Problem B

At $r = a$ we want

$$\sigma_{rr} = \sigma_0 \left(\frac{1}{2} - \frac{\cos 2\theta}{2} \right), \quad \sigma_{r\theta} = \sigma_0 \frac{\sin 2\theta}{2}.$$

(no hoop component specified)

As $r \rightarrow \infty$, we want $\sigma_{rr}, \sigma_{r\theta}, \sigma_{\theta\theta} \rightarrow 0$ to match the far-field.

- Based on inspection (shown in class), we find the following Airy stress function to be a good starting point: $\phi = A \log r + B\theta + C \cos 2\theta + D \frac{\cos 2\theta}{r^2}$.
- Solving for A, B, C, D based on the B.C.s we get,

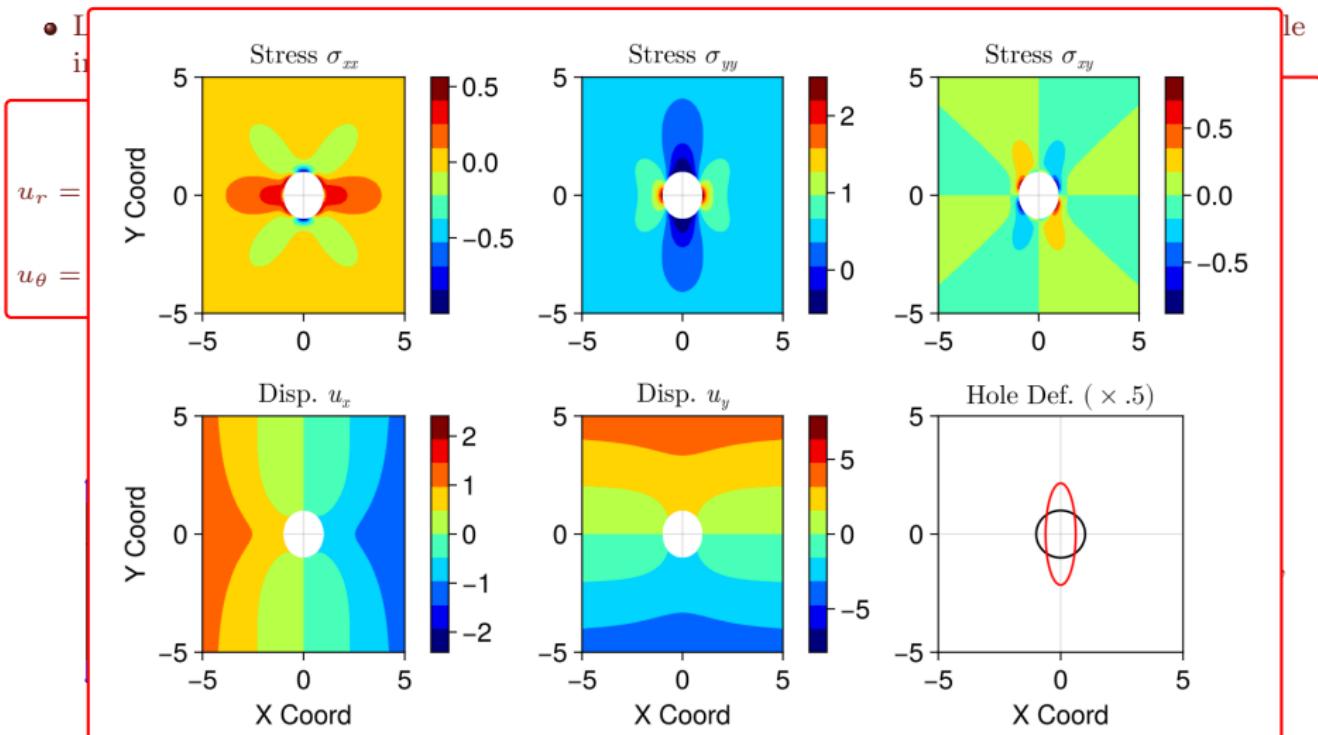
$$\sigma_{rr} = -\frac{\sigma_0}{2} \left(\frac{a}{r} \right)^2 + 2\sigma_0 \left(\frac{a}{r} \right)^2 \left(1 - \frac{3}{4} \left(\frac{a}{r} \right)^2 \right) \cos 2\theta,$$

$$\sigma_{\theta\theta} = \frac{\sigma_0}{2} \left(\frac{a}{r} \right)^2 + \frac{3\sigma_0}{4} \left(\frac{a}{r} \right)^4 \cos 2\theta,$$

$$\sigma_{r\theta} = \sigma_0 \left(\frac{a}{r} \right)^2 \left(1 - \frac{3}{2} \left(\frac{a}{r} \right)^2 \right) \sin 2\theta$$

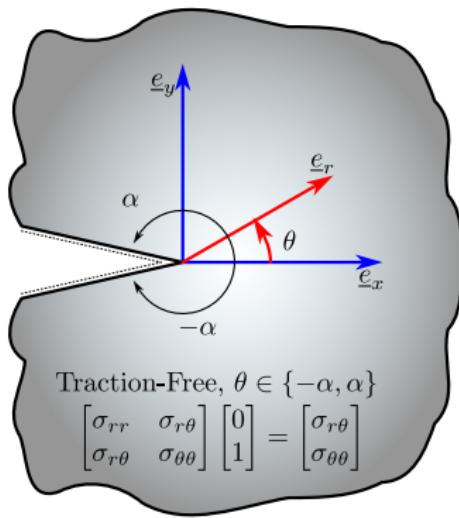
3.3. Plate with a Hole. Plate With a Hole Under Tension

Linear Elastic Fracture Mechanics



3.3.3. Notch Crack

Classical Solutions



- We seek an analytical solution for this problem setting **very close to the crack**.
- While we may intuitively expect stress to be singular at the crack tip, the strain energy has to be finite.
- Suppose $\sigma \sim \mathcal{O}(r^\lambda)$, $\varepsilon \sim \mathcal{O}(r^\lambda)$ necessarily.
 - So $\mathcal{U} = \int \int \frac{\sigma \varepsilon}{2} r dr d\theta \sim \mathcal{O}(r^{2\lambda+1})$.
 - For this to be finite, $2\lambda + 1 \geq 0 \implies \lambda \geq -\frac{1}{2}$.
- We list out **the only Airy stress functions** that can show this in the following table (refer sl. 18).

ϕ	σ_{rr}	$\sigma_{r\theta}$	$\sigma_{\theta\theta}$
$r^{n+2} \cos n\theta$	$(..)r^n \cos n\theta$	$(..)r^n \sin n\theta$	$(..)r^n \cos n\theta$
$r^n \cos n\theta$	$(..)r^{n-2} \cos n\theta$	$(..)r^{n-2} \sin n\theta$	$(..)r^{n-2} \cos n\theta$
$r^{n+2} \sin n\theta$	$(..)r^n \sin n\theta$	$(..)r^n \cos n\theta$	$(..)r^n \sin n\theta$
$r^n \sin n\theta$	$(..)r^{n-2} \sin n\theta$	$(..)r^{n-2} \cos n\theta$	$(..)r^{n-2} \sin n\theta$

3.3.3. Singularity Close to Notch Crack

Classical Solutions

- For the Notch crack problem, we posit the Airy stress function

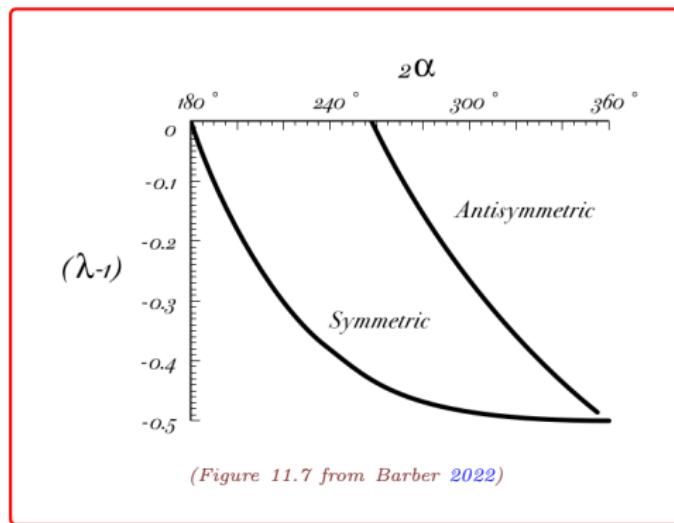
$$\phi = r^{\lambda+1} (A_1 \cos((\lambda - 1)\theta) + A_2 \cos((\lambda + 1)\theta) + B_1 \sin((\lambda - 1)\theta) + B_2 \sin((\lambda + 1)\theta)).$$

3.3.3. Singularity Close to Notch Crack

Classical Solutions

- For the Notch crack problem, we posit the Airy stress function

$$\phi = r^{\lambda+1} (A_1 \cos((\lambda-1)\theta) + A_2 \cos((\lambda+1)\theta) + B_1 \sin((\lambda-1)\theta) + B_2 \sin((\lambda+1)\theta)) .$$



3.3.3. Singularity Close to Notch Crack

Classical Solutions

- For the Notch crack problem, we posit the Airy stress function

$$\phi = r^{\lambda+1} (A_1 \cos((\lambda-1)\theta) + A_2 \cos((\lambda+1)\theta) + B_1 \sin((\lambda-1)\theta) + B_2 \sin((\lambda+1)\theta)).$$

- Applying the boundary conditions (along with $\alpha = \pi$), we get a nonlinear eigenvalue problem that has the following solutions:

λ	Eigenfunction
$\frac{1}{2}$	$A_2 = \frac{A_1}{3}, B_2 = -B_1$
1	$A_2 = -A_1, B_2 = 0 (B_1 = 0)$
$\frac{3}{2}$	$A_2 = -\frac{A_1}{5}, B_2 = -B_1$
\vdots	

- $\lambda = \frac{1}{2}$ corresponds to the near-field singular stress field, given by

$$\sigma_{rr} = \frac{K_I}{\sqrt{2\pi r}} \left(\frac{5}{4} \cos \frac{\theta}{2} - \frac{1}{4} \cos \frac{3\theta}{2} \right) + \frac{K_{II}}{\sqrt{2\pi r}} \left(-\frac{5}{4} \sin \frac{\theta}{2} + \frac{3}{4} \sin \frac{3\theta}{2} \right)$$

$$\sigma_{\theta\theta} = \frac{K_I}{\sqrt{2\pi r}} \left(\frac{3}{4} \cos \frac{\theta}{2} + \frac{1}{4} \cos \frac{3\theta}{2} \right) + \frac{K_{II}}{\sqrt{2\pi r}} \left(-\frac{3}{4} \sin \frac{\theta}{2} - \frac{3}{4} \sin \frac{3\theta}{2} \right)$$

$$\sigma_{r\theta} = \frac{K_I}{\sqrt{2\pi r}} \left(\frac{1}{4} \sin \frac{\theta}{2} + \frac{1}{4} \sin \frac{3\theta}{2} \right) + \frac{K_{II}}{\sqrt{2\pi r}} \left(\frac{1}{4} \cos \frac{\theta}{2} + \frac{3}{4} \cos \frac{3\theta}{2} \right)$$

3.3.3. Singularity Close to Notch Crack

Classical Solutions

- For the Notch crack problem, we posit the Airy stress function

$$\phi = r^{\lambda+1} (A_1 \cos((\lambda-1)\theta) + A_2 \cos((\lambda+1)\theta) + B_1 \sin((\lambda-1)\theta) + B_2 \sin((\lambda+1)\theta)).$$

- Applying the boundary conditions (along with $\alpha = \pi$), we get a nonlinear eigenvalue problem that has the following solutions:

λ	Eigenfunction
-----------	---------------

Displacement Field	
--------------------	--

$$2\mu u_r = K_I \sqrt{\frac{r}{2\pi}} \left(\left(\kappa - \frac{1}{2} \right) \cos \frac{\theta}{2} - \frac{1}{2} \cos \frac{3\theta}{2} \right) - K_{II} \sqrt{\frac{r}{2\pi}} \left(\left(\kappa - \frac{1}{2} \right) \sin \frac{\theta}{2} - \frac{3}{2} \sin \frac{3\theta}{2} \right)$$

$$2\mu u_\theta = K_I \sqrt{\frac{r}{2\pi}} \left(-\left(\kappa + \frac{1}{2} \right) \sin \frac{\theta}{2} + \frac{1}{2} \sin \frac{3\theta}{2} \right) - K_{II} \sqrt{\frac{r}{2\pi}} \left(\left(\kappa + \frac{1}{2} \right) \cos \frac{\theta}{2} - \frac{3}{2} \cos \frac{3\theta}{2} \right)$$

- $\lambda = \frac{1}{2}$ corresponds to the near-field singular stress field, given by

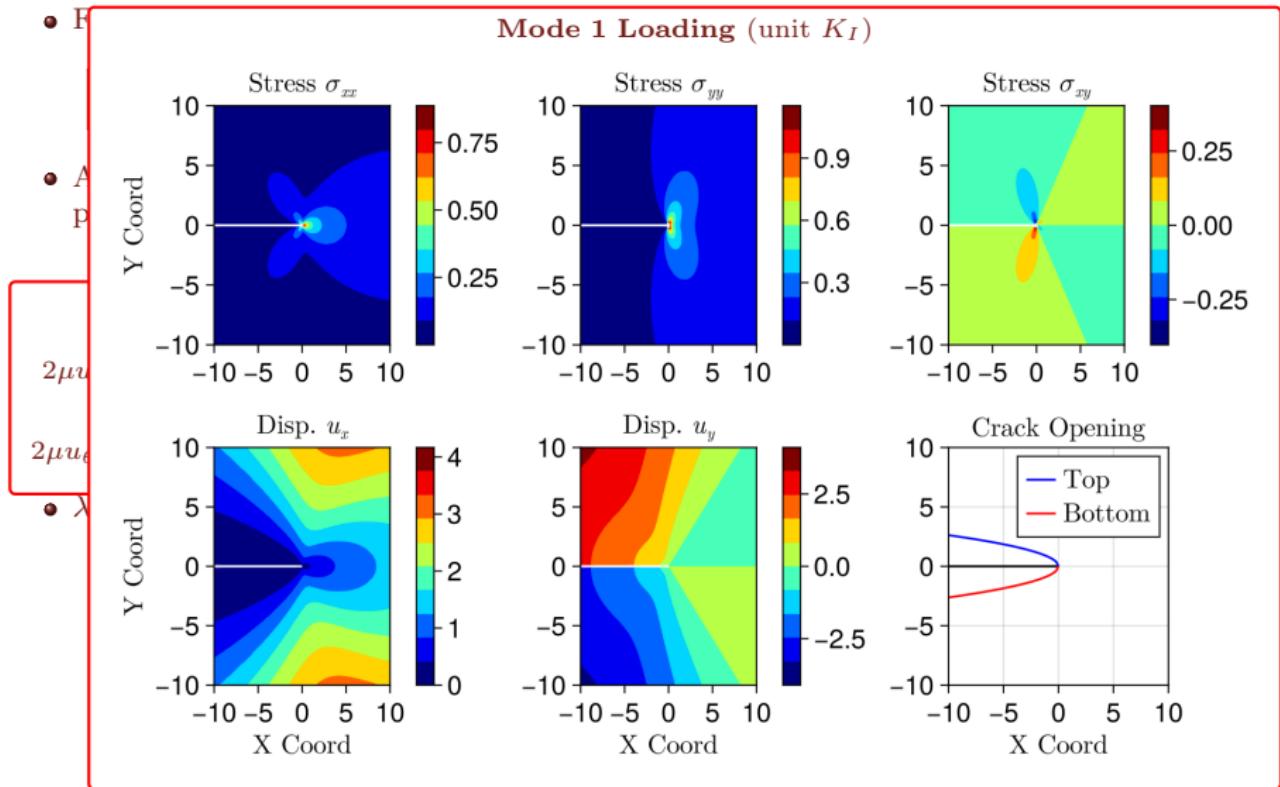
$$\sigma_{rr} = \frac{K_I}{\sqrt{2\pi r}} \left(\frac{5}{4} \cos \frac{\theta}{2} - \frac{1}{4} \cos \frac{3\theta}{2} \right) + \frac{K_{II}}{\sqrt{2\pi r}} \left(-\frac{5}{4} \sin \frac{\theta}{2} + \frac{3}{4} \sin \frac{3\theta}{2} \right)$$

$$\sigma_{\theta\theta} = \frac{K_I}{\sqrt{2\pi r}} \left(\frac{3}{4} \cos \frac{\theta}{2} + \frac{1}{4} \cos \frac{3\theta}{2} \right) + \frac{K_{II}}{\sqrt{2\pi r}} \left(-\frac{3}{4} \sin \frac{\theta}{2} - \frac{3}{4} \sin \frac{3\theta}{2} \right)$$

$$\sigma_{r\theta} = \frac{K_I}{\sqrt{2\pi r}} \left(\frac{1}{4} \sin \frac{\theta}{2} + \frac{1}{4} \sin \frac{3\theta}{2} \right) + \frac{K_{II}}{\sqrt{2\pi r}} \left(\frac{1}{4} \cos \frac{\theta}{2} + \frac{3}{4} \cos \frac{3\theta}{2} \right)$$

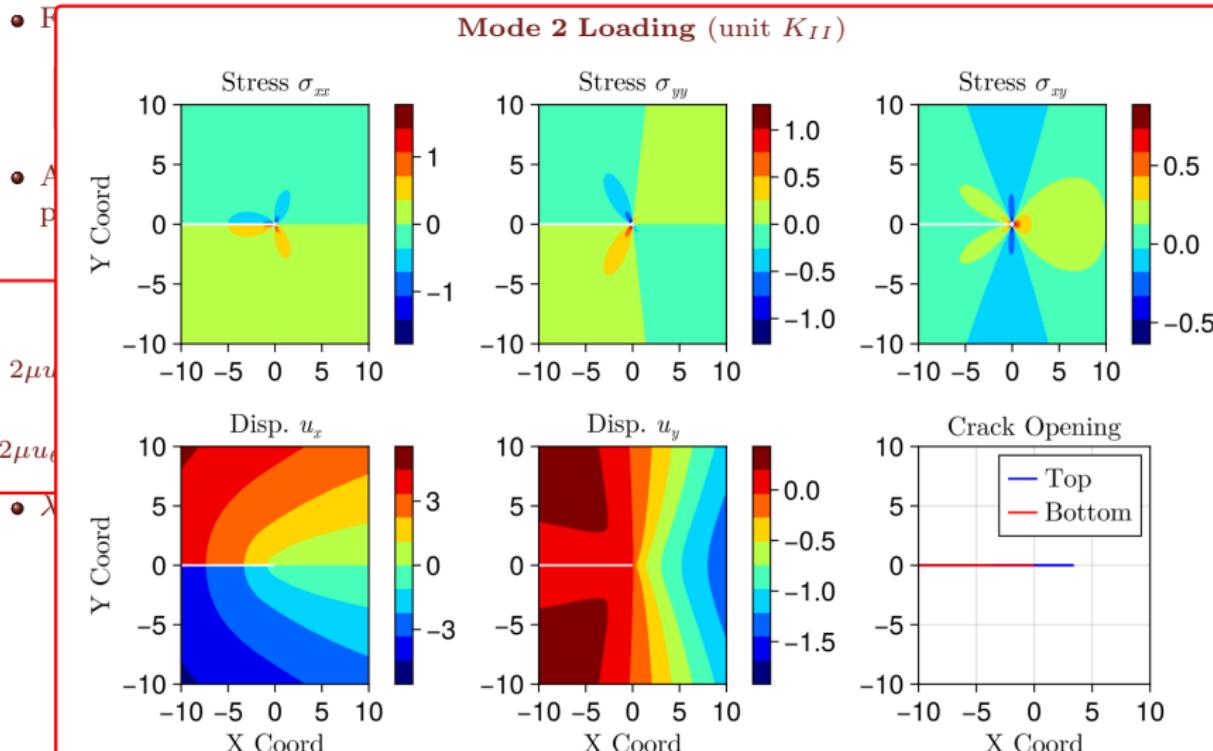
3.3.3. Singularity Close to Notch Crack

Classical Solutions



3.3.3. Singularity Close to Notch Crack

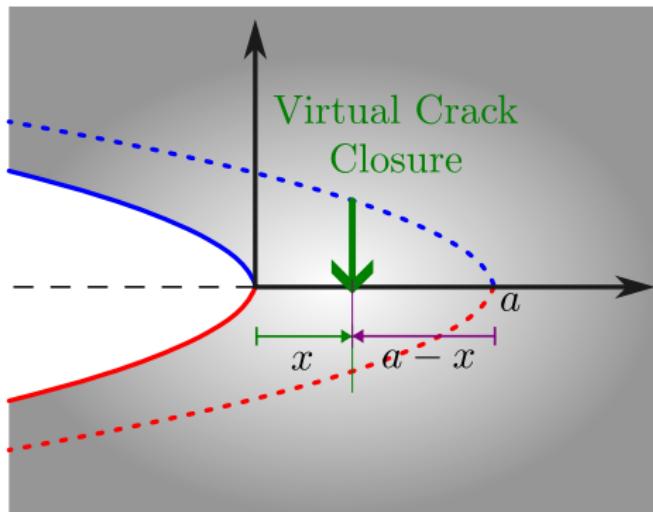
Classical Solutions



3.3.3. Energy Release Rate

Classical Solutions

- Let us think of how much energy will be necessary to “close” a crack.



3.3.3. Energy Release Rate

Classical Solutions

- Let us think of how much energy will be necessary to “close” a crack.
- We observe that (all quantities in cylindrical):

$$\text{at } \theta = 0, \quad \underline{\sigma} = \frac{K_I}{\sqrt{2\pi r}} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \frac{K_{II}}{\sqrt{2\pi x}} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad 2\mu\underline{u} = K_I \sqrt{\frac{r}{2\pi}} \begin{bmatrix} \kappa - 1 \\ 0 \end{bmatrix} - K_{II} \sqrt{\frac{r}{2\pi}} \begin{bmatrix} 0 \\ \kappa - 1 \end{bmatrix}$$

$$\text{at } \theta = \pi, \quad \underline{\sigma} = \frac{K_{II}}{\sqrt{2\pi r}} \begin{bmatrix} -2 & 0 \\ 0 & 0 \end{bmatrix}, \quad 2\mu\underline{u} = K_I \sqrt{\frac{r}{2\pi}} \begin{bmatrix} 0 \\ -(\kappa + 1) \end{bmatrix} - K_{II} \sqrt{\frac{r}{2\pi}} \begin{bmatrix} \kappa + 1 \\ 0 \end{bmatrix}.$$

3.3.3. Energy Release Rate

Classical Solutions

- Let us think of how much energy will be necessary to “close” a crack.
- We observe that (all quantities in cylindrical):

$$\begin{aligned} @ \theta = 0, \quad \underline{\sigma} &= \frac{K_I}{\sqrt{2\pi r}} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \frac{K_{II}}{\sqrt{2\pi x}} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad 2\mu \underline{u} = K_I \sqrt{\frac{r}{2\pi}} \begin{bmatrix} \kappa - 1 \\ 0 \end{bmatrix} - K_{II} \sqrt{\frac{r}{2\pi}} \begin{bmatrix} 0 \\ \kappa - 1 \end{bmatrix} \\ @ \theta = \pi, \quad \underline{\sigma} &= \frac{K_{II}}{\sqrt{2\pi r}} \begin{bmatrix} -2 & 0 \\ 0 & 0 \end{bmatrix}, \quad 2\mu \underline{u} = K_I \sqrt{\frac{r}{2\pi}} \begin{bmatrix} 0 \\ -(\kappa + 1) \end{bmatrix} - K_{II} \sqrt{\frac{r}{2\pi}} \begin{bmatrix} \kappa + 1 \\ 0 \end{bmatrix}. \end{aligned}$$

- For virtual crack closure, the work done can be written as,

$$\begin{aligned} W(a) &= 2 \int_0^a \frac{1}{2} \left(\sigma_{\theta\theta} \Big|_{\theta=0} (-u_\theta) \Big|_{\theta=\pi} + \sigma_{r\theta} \Big|_{\theta=0} (-u_r) \Big|_{\theta=\pi} \right) dx \\ &= \int_0^a \frac{K_I}{\sqrt{2\pi x}} K_I \sqrt{\frac{a-x}{2\pi}} \frac{\kappa+1}{2\mu} + \frac{K_{II}}{\sqrt{2\pi r}} K_{II} \sqrt{\frac{a-x}{2\pi}} \frac{\kappa+1}{2\mu} dx \\ &= \frac{K_I^2 + K_{II}^2}{2\pi} \frac{\kappa+1}{2\mu} \int_0^a \sqrt{\frac{a-x}{x}} dx = \frac{K_I^2 + K_{II}^2}{8\mu^2} (\kappa+1)^2 a = \begin{cases} \frac{K_I^2 + K_{II}^2}{E} a & \text{Plane-}\sigma \\ \frac{K_I^2 + K_{II}^2}{E} (1-\nu^2) a & \text{Plane-}\epsilon \end{cases} \end{aligned}$$

- The Griffith Energy Release Rate is the derivative $\lim_{a \rightarrow 0} \frac{1}{B} \frac{dW}{da}$, which evaluates as

$$G = \frac{1}{B} \begin{cases} \frac{K_I^2}{E} + \frac{K_{II}^2}{E} & \text{Plane Stress} \\ \frac{K_I^2}{E} (1-\nu^2) + \frac{K_{II}^2}{E} (1-\nu^2) & \text{Plane Strain} \end{cases}.$$

3.3.3. Stress Intensity Factor

Classical Solutions

- A crack is said to propagate when G exceeds G_{cr} .
- Therefore, under “pure” mode 1 loading, the *Critical Stress Intensity Factor* ($K_{I,cr}$) is

$$K_{I,cr} = \begin{cases} \sqrt{BG_{cr}E} & \text{Plane Stress} \\ \sqrt{\frac{BG_{cr}E}{1-\nu^2}} & \text{Plane Strain} \end{cases}.$$

- **But how do we relate K_I, K_{II} with far-field applied stresses?**

3.3.3. Stress Intensity Factor

Classical Solutions

- A crack is said to propagate when G exceeds G_{cr} .
- Therefore, under “pure” mode 1 loading, the *Critical Stress Intensity Factor* ($K_{I,cr}$) is

$$K_{I,cr} = \begin{cases} \sqrt{BG_{cr}E} & \text{Plane Stress} \\ \sqrt{\frac{BG_{cr}E}{1-\nu^2}} & \text{Plane Strain} \end{cases}.$$

- **But how do we relate K_I, K_{II} with far-field applied stresses?** The answer is very closely tied in to the exact geometry, loading conditions, etc.

3.3.3. Griffith-Inglis Crack Revisited

Classical Solutions

- For the flat crack of length $2a$ (aka the Griffith-Inglis crack), the SIF is related to tensile stresses by

$$K_I = \sigma_0 \sqrt{\pi a}.$$

- Note that this is why we chose $\lambda = \frac{\pi}{2}$ in sl. 7. If we left it in, we'll have to satisfy (plane stress considered here):

$$\frac{4\lambda a}{E} \sigma_0^2 = \frac{2K_I^2}{E} = \frac{2\pi a}{E} \sigma_0^2.$$

3.4. Crack Propagation and the Paris Law

Linear Elastic Fracture Mechanics

- **Paris Law:** $\frac{da}{dN} = C(\Delta K)^m$.
- Usually a_f is specified and we are interested in finding how many cycles until a crack of size a_i grows to a_f . This is the “life” of the material.

Values for common engineering materials, from Kumar 2009

Material	C	m
Ferrite-Pearlite (S)	6.8×10^{-12}	3.0
Martensite (S)	1.33×10^{-10}	2.25
Austenite (S)	5.5×10^{-12}	3.25
Cast Iron (S)	5.5×10^{-12}	3.25
Al-Alloy	1.1×10^{-11}	3.89

References I

- [1] Emmanuël Gdoutos. **Fracture Mechanics: An Introduction**, Second Edition. Solid Mechanics and Its Applications 123. Dordrecht: Springer Netherlands, 2005. ISBN: 978-1-4020-2863-2 978-1-4020-3153-3. DOI: [10.1007/1-4020-3153-X](https://doi.org/10.1007/1-4020-3153-X) (cit. on pp. 2, 33, 34).
- [2] S. Suresh. **Fatigue of Materials**, 2nd ed. Cambridge ; New York: Cambridge University Press, 1998. ISBN: 978-0-521-57046-6 978-0-521-57847-9 (cit. on p. 2).
- [3] William D. Callister Jr and David G. Rethwisch. **Fundamentals of Materials Science and Engineering: An Integrated Approach**, John Wiley & Sons, 2012. ISBN: 978-1-118-06160-2 (cit. on pp. 2, 11–17).
- [4] Prashant Kumar. **Elements of Fracture Mechanics**, 1st Edition. McGraw-Hill Education, 2009. ISBN: 978-0-07-065696-3. (Visited on 12/15/2024) (cit. on pp. 2, 18–21, 26, 33, 34, 58).
- [5] T. H. G. Megson. **Aircraft Structures for Engineering Students**, Elsevier, 2013. ISBN: 978-0-08-096905-3 (cit. on pp. 2, 11–17, 27).
- [6] Sparky. *Sparky's Sword Science: Introduction to Crystal Structure*. Dec. 2013. (Visited on 08/09/2024) (cit. on pp. 3–5).
- [7] *New Technique Provides Detailed Views of Metals' Crystal Structure*. <https://news.mit.edu/2016/metals-crystal-structure-0706>. July 2016. (Visited on 08/09/2024) (cit. on pp. 3–5).
- [8] V Rajendran. **Materials Science**, Tata McGraw-Hill Education, 2011. ISBN: 978-1-259-05006-0 (cit. on pp. 6–10).
- [9] Nick Connor. *What Is Stress-strain Curve - Stress-strain Diagram - Definition*. <https://material-properties.org/what-is-stress-strain-curve-stress-strain-diagram-definition/>. July 2020. (Visited on 08/07/2024) (cit. on pp. 6, 7).
- [10] *What Is Metal Fatigue? Metal Fatigue Failure Examples*. Apr. 2021. (Visited on 08/09/2024) (cit. on pp. 11–17).
- [11] *The deHavilland Comet Disaster*. July 2019. (Visited on 08/09/2024) (cit. on pp. 11–17).
- [12] *DCA21FA085.Aspx*. <https://www.ntsb.gov/investigations/Pages/DCA21FA085.aspx>. Aug. 2024. (Visited on 08/09/2024) (cit. on pp. 11–17).
- [13] *Fatigue Physics*. Aug. 2024. (Visited on 08/09/2024) (cit. on pp. 11–17).
- [14] Martin H. Sadd. **Elasticity: Theory, Applications, and Numerics**, 2nd ed. Amsterdam ; Boston: Elsevier/AP, 2009. ISBN: 978-0-12-374446-3 (cit. on pp. 22–25).

References II

- [15] "De Havilland Comet". [Wikipedia](#), (Apr. 2025). (Visited on 04/08/2025) (cit. on pp. 28–30).
- [16] J. R. Barber. [Elasticity](#), vol. 172. Solid Mechanics and Its Applications. Cham: Springer International Publishing, 2022. ISBN: 978-3-031-15213-9 978-3-031-15214-6. doi: [10.1007/978-3-031-15214-6](https://doi.org/10.1007/978-3-031-15214-6). (Visited on 12/17/2024) (cit. on pp. 38–40, 46–51).