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Introduction Structure of Materials

1.1. Structure of Materials
Introduction

Types of crystal structures in metals Sparky (2013)

Crystal and Grain Structures New Technique Provides Detailed
Views of Metals’ Crystal Structure (2016). “Polycrystallinity”

Dislocations and their “motion” under load

Figure from Sparky (2013)
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Introduction Understanding the Stress-Strain Curve

1.2. Understanding the Stress-Strain Curve
Introduction

The Uniaxial Tensile Test

Figure from Rajendran 2011

Figure from Connor 2020

Terminology

1 Proportionality Limit;

2 Elastic Limit;

3 Yield Point;

4 Ultimate Strength;

5 Fracture Point;

6 Elongation at Failure;

Ductile Fracture

Figure from Rajendran 2011
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Introduction Failure Mechanisms

1.3. Failure Mechanisms: Fracture
1. Introduction

“Griffith Theory” of brittle fracture

Theoretical fracture stress ∼ E
5 − E

30

(steel ∼ E
1000 )

Fracture occurs when
Estrain = Esurface

Crack propagates when
dEstrain

dL =
dEsurface

dL

Ductile Fracture

Ductile Fracture Rajendran 2011

Ductile vs Brittle Fracture Rajendran 2011
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Introduction Failure Mechanisms

1.3. Failure Mechanisms: Fatigue
1. Introduction

..over 90% of mechanical failures are caused because of metal fatigue What Is Metal Fatigue?
2021...

Fatigue variables Megson 2013

The S-n Diagram Megson 2013

The De Havilland Comet The deHavilland Comet Disaster
2019 [lecture]

A more recent example (2021 United Airlines Boeing
777) DCA21FA085.Aspx 2024. [video]

Fatigue Crack Propagation: Beech Marks

Figure from Fatigue Physics 2024

S-N Curves for Common Metals ( Jr and Rethwisch 2012)

Homework: Watch this video on Fatigue testing.
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Introduction Energy Release Rate

1.4. Energy Release Rate: Griffith’s Analysis
Introduction

Simplistic picture of the introduction of a crack in a stretched
specimen(Figure from sec 2.5 in Kumar 2009)

Because of the crack, we assume σ ≈ 0 in
the triangles.

Corresponding energy loss:

ER = V∆ × (
σ2

2E
) =

2a2λtσ2

E
.

For thin plates, λ = π
2
. So,

ER =
πa2tσ2

E
.

The “creation” of a surface takes energy.
We write this as,

ES = 2(2at)γ = 4atγ.

(Figure from Kumar 2009)

Food For Thought

What would a “safe size” of crack be, for a given
loading condition? Hint: Think incrementally

What type of an experiment would be necessary to
confirm this mathematical framework?
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Introduction Linear Elastic Fracture Mechanics

1.5. Linear Elastic Fracture Mechanics
Introduction

Consider the following two cases.
Question: Where will the point of peak stress occur? And which will have higher maximum
stress?

Case 1

Analytical Solution

σr = T (1 − r21
r2

), σθ = T (1 +
r21
r2

)

=⇒ σmax = 2T

Case 2

Analytical Solution

σr = T (1 − r21
r2

) + (·) cos(2θ), σθ = . . .

=⇒ σmax = 3T

(Ref: Sec. 8.4.2 in Sadd 2009)

Case 3

σmax = 4T
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Introduction Modes of Fracture

1.6. Modes of Fracture
Introduction

(Figure from Kumar 2009)
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Introduction to Fatigue

2. Introduction to Fatigue

Concepts

Safe Life: RUL

Fail-Safe: Redundancy

Tensile Stresses: The Goodman Diagram

(Figure 15.2 from Megson 2013)Sa

Sa,0

= 1 −
(

Sm

Su

)m

(Figure 15.1 from Megson 2013)

The S-N Curve

(Figure from Megson 2013)

σalt = σ∞

(
1 +

C
√
N

)
, N ∝

1

σmean

.
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Introduction to Fatigue The deHavilland Comet

2.1. The deHavilland Comet
Introduction to Fatigue

No aircraft has contributed more to safety in the jet age than the Comet. The lessons it
taught the world of aeronautics live in every jet airliner flying today. – D.D. Dempster,
1959, in The Tale of the Comet

(Figures from “De Havilland Comet” 2025)
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Introduction to Fatigue Miner’s Rule

2.2. Miner’s Rule
Introduction to Fatigue

Suppose at an operation level of σm, σa, the fatigue life is N and the structure undergoes
n cycles, Miner’s rule posits that n

N
is the fraction of life that has been consumed.

Suppose a structure undergoes multiple stress levels in its loading history, the total
fraction of fatigue life that has been consumed is written as

n1

N1
+

n2

N2
+

n3

N3
+ . . . .

The structure is expected to fail when this sum becomes 1.0..
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Linear Elastic Fracture Mechanics Griffith’s Analysis and Energy Release Rate

3.1. Griffith’s Analysis and Energy Release Rate
Linear Elastic Fracture Mechanics

The total energy of a loaded elastic body is written as

Π = U︸︷︷︸
elastic

− W︸︷︷︸
external

.

Griffith’s principle: The energy lost due to the creation of a cracked surface must
be equal to the energy required for the creation of the cracked surface.

Surface energy is usually expressed as ES = Aγ.

This is a general principle agnostic of the exact structure under consideration.

G = −
dΠ

dA
= 2γ .

(note: 2A is the effective total “new” surface area that has been created)
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Linear Elastic Fracture Mechanics Griffith’s Analysis and Energy Release Rate

3.1. Griffith’s Analysis and Energy Release Rate: Examples
Linear Elastic Fracture Mechanics

Crack in Stretched Specimen

(Figure from sec 2.5 in Kumar 2009)

Crack: A = 2at, ∂A = 1
2t∂a

Π = U = σ2t
2E′ (Atot − 4λa2).

ES = 2Aγ,
dES
dA = 2γ.

G = − dΠ
dA = − 1

2t
dΠ
da = λa

2E′ σ
2.

σcr =

√
E′γ
λa =

√
2E′γ
πa .

Double Cantilever Beam (DCB)

(Figure 4.14 in Gdoutos 2005)

u = CP = 2a3

3EI P , C = 2a3

3EI .

U = Pu
2 = CP2

2 = P2

3EI a
3,

W = Pu = CP 2 = 2P2

3EI a
3,

Π = −P2

2 C = − P2

3EI a
3.

A = aB, ∂A = 1
B ∂a.

G = − dΠ
dA = P2

2B
dC
da = P2a2

EIB = 12P2a2

EB2h3

Additional Cases to Consider

(Figure 4.23 from Gdoutos (2005)

(Figure 4.20 from Gdoutos (2005)
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Linear Elastic Fracture Mechanics A Primer on 2D Elasticity

3.2. A Primer on 2D Elasticity
Linear Elastic Fracture Mechanics

In 2D, the governing equations of elasticity (let us assume no body loads for simplicity)
are written as,

σx,x + τxy,y = 0, τxy,x + σy,y = 0.

If we seek to obtain solutions expressed directly in the stresses, 2 equations won’t
cut it (we have 3 unique stresses σx, σy , τxy). So we invoke strain compatibility, which is
written as

εx,yy + εy,xx = γxy,xy

This can be expressed in terms of the stresses if we invoke the stress-strain
constitutive relationships.

Recall: These are conditions
that the strains must satisfy

in order for them to have been
generated by a continuously

differentiable displacement field.
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Linear Elastic Fracture Mechanics A Primer on 2D Elasticity

3.2. A Primer on 2D Elasticity
Linear Elastic Fracture Mechanics

Plane Stress

 εx
εy
γxy

 =
1

E

 1 −ν 0
−ν 1 0
0 0 2(1 + ν)

 σx

σy

τxy


Compatibility

σx,yy + σy,xx − ν(σx,xx + σy,yy) = 2(1 + ν)τxy,xy.

Plane Strain

 εx
εy
γxy

 =
1 + ν

E

1 − ν −ν 0
−ν 1 − ν 0
0 0 2

 σx

σy

τxy


Compatibility

(1−ν)(σx,yy +σy,xx)−ν(σx,xx +σy,yy) = 2τxy,xy.

Making the substitution σx = ϕ,yy , σy = ϕ,xx, τxy = −ϕ,xy , it is trivial to see that the
equilibrium equations are satisfied automatically.

In both the above cases, the compatibility equation comes out to be:

ϕ,xxxx + ϕ,yyyy + 2ϕ,xxyy = (∂xx + ∂yy)
2ϕ = ∇4ϕ = 0.

Since the Laplacian when set to zero (∇2ϕ = 0) is referred to as the harmonic
equation (recall complex analyticity), ∇4ϕ = 0 is referred to as the bi-harmonic
equation. ϕ is the Airy Stress Function.
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Linear Elastic Fracture Mechanics Classical Solutions

3.3. Classical Solutions
Linear Elastic Fracture Mechanics

Restricting ourselves to 2D problems, the governing equations may be written using the
Airy’s stress formulation as the biharmonic equation

∇4ϕ = 0

Let us look at this with cylindrical coordinates (x = r cos θ, y = r sin θ).

∇ϕ =
[
er eθ

] [ϕ,r
ϕ,θ

r

]
, ∇u =

[
er eθ

] [ur,r
ur,θ−uθ

r

uθ,r
uθ,θ+ur

r

] [
er
eθ

]

∇2 ϕ =
[
er eθ

] [ ϕ,rr ∂r(
ϕ,θ

r
)

∂r(
ϕ,θ

r
)

ϕ,r

r
+

ϕ,θθ

r2

][
er
eθ

]
.

The stresses are expressed (to satisfy equilibrium) as

σrr =
ϕ,r

r
+

ϕ,θθ

r2
, σθθ = ϕ,rr, τrθ = −∂r(

ϕ,θ

r
).

General form of the Airy’s Stress Function
(Michell Solution, see Barber 2022, Ch. 8-9)

ϕ =a0 + a1 log r + a2r
2 + a3r

2 log r

(a4 + a5 log r + a6r
2 + a7r

2 log r)θ

(a11r + a12r log r +
a13

r
+ a14r

3 + a15rθ + a16rθ log r) cos θ

(b11r + b12r log r +
b13

r
+ b14r

3 + b15rθ + b16rθ log r) sin θ

∞∑
n=2

(an1r
n + an2r

2+n + an3r
−n + an4r

2−n) cosnθ

∞∑
n=2

(bn1r
n + bn2r

2+n + bn3r
−n + bn4r

2−n) sinnθ.
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Linear Elastic Fracture Mechanics Classical Solutions

3.3.1. The Michell Solution: Tabled Expressions
Classical Solutions

Stress Components

(Table 8.1 from Barber 2022)

We set rigid body motion compo-
nents to zero for the displacements

Displacement Components

(Table 9.1 from Barber 2022)

Plane Stress κ = 3−ν
1+ν

Plane Strain κ = 3 − 4ν
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Linear Elastic Fracture Mechanics Classical Solutions

3.3.Plate with a Hole. Plate With a Hole Under Tension
Linear Elastic Fracture Mechanics

Let us now try to use the above table for obtaining the stress distribution around a hole
in a tension field.

Problem A

The 2D stress field (cartesian) is

σ cart =

[
0 0
0 σ0

]
.

Transforming to cylindrical coordinates,

σ cyl =

[
cos θ sin θ
− sin θ cos θ

] [
0 0
0 σ0

] [
cos θ − sin θ
sinθ cos θ

]
= σ0

[
sin2 θ sin θ cos θ

sin θ cos θ cos2 θ

]
The components can be written as

σrr = σ0

(
1

2
−

cos 2θ

2

)
, σrθ = σ0

sin 2θ

2
,

σθθ = σ0

(
1

2
+

cos 2θ

2

)
.

Displacement Field

ur =
σ0

2
(κ − 1)r −

σ0

2
r cos 2θ

uθ =
σ0

2
r sin 2θ

Problem B

At r = a we want

σrr = σ0

(
1

2
−

cos 2θ

2

)
, σrθ = σ0

sin 2θ

2
.

(no hoop component specified)

As r → ∞, we want σrr, σrθ, σθθ → 0 to match the
far-field.

Based on inspection (shown in class), we find the
following Airy stress function to be a good starting
point: ϕ = A log r + Bθ + C cos 2θ + D cos 2θ

r2
.

Solving for A,B,C,D based on the B.C.s we get,

σrr = −
σ0

2

(
a

r

)2

+ 2σ0

(
a

r

)2 (
1 −

3

4

(
a

r

)2)
cos 2θ,

σθθ =
σ0

2

(
a

r

)2

+
3σ0

4

(
a

r

)4

cos 2θ,

σrθ = σ0

(
a

r

)2 (
1 −

3

2

(
a

r

)2)
sin 2θ

Displacement Field

ur =
σ0a

2

2r

(
1 − (κ + 1 − (

a

r
)
2
) cos 2θ

)
uθ =

σ0a
2

2r

(
κ − 1 + (

a

r
)
2

)
sin 2θ.
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3.3.Plate with a Hole. Plate With a Hole Under Tension
Linear Elastic Fracture Mechanics
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3.3.Plate with a Hole. Plate With a Hole Under Tension
Linear Elastic Fracture Mechanics
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3.3.3. Notch Crack
Classical Solutions

We seek an analytical solution for this problem setting
very close to the crack.

While we may intuitively expect stress to be singular at
the crack tip, the strain energy has to be finite.

Suppose σ ∼ O(rλ), ε ∼ O(rλ) necessarily.

So U =
∫ ∫

σε
2 rdrdθ ∼ O(r2λ+1).

For this to be finite, 2λ + 1 ≥ 0 =⇒ λ ≥ − 1
2 .

We list out the only Airy stress functions that can
show this in the following table (refer sl. 18).

ϕ σrr σrθ σθθ

rn+2 cosnθ (..)rn cosnθ (..)rn sinnθ (..)rn cosnθ
rn cosnθ (..)rn−2 cosnθ (..)rn−2 sinnθ (..)rn−2 cosnθ

rn+2 sinnθ (..)rn sinnθ (..)rn cosnθ (..)rn sinnθ
rn sinnθ (..)rn−2 sinnθ (..)rn−2 cosnθ (..)rn−2 sinnθ
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3.3.3. Singularity Close to Notch Crack
Classical Solutions

For the Notch crack problem, we posit the Airy stress function

ϕ = rλ+1 (A1 cos((λ− 1)θ) +A2 cos((λ+ 1)θ) +B1 sin((λ− 1)θ) +B2 sin((λ+ 1)θ)) .

Applying the boundary conditions (along with α = π), we get a nonlinear eigenvalue
problem that has the following solutions:

λ Eigenfunction
1
2

A2 = A1
3
, B2 = −B1

1 A2 = −A1, B2 = 0 (B1 = 0)
3
2

A2 = −A1
5
, B2 = −B1

...

λ = 1
2
corresponds to the near-field singular stress field, given by

σrr =
KI√
2πr

(
5

4
cos

θ

2
−

1

4
cos

3θ

2

)
+

KII√
2πr

(
−

5

4
sin

θ

2
+

3

4
sin

3θ

2

)
σθθ =

KI√
2πr

(
3

4
cos

θ

2
+

1

4
cos

3θ

2

)
+

KII√
2πr

(
−

3

4
sin

θ

2
−

3

4
sin

3θ

2

)
σrθ =

KI√
2πr

(
1

4
sin

θ

2
+

1

4
sin

3θ

2

)
+

KII√
2πr

(
1

4
cos

θ

2
+

3

4
cos

3θ

2

)

(Figure 11.7 from Barber 2022)

Displacement Field

2µur = KI

√
r

2π

(
(κ −

1

2
) cos

θ

2
−

1

2
cos

3θ

2

)
− KII

√
r

2π

(
(κ −

1

2
) sin

θ

2
−

3

2
sin

3θ

2

)
2µuθ = KI

√
r

2π

(
−(κ +

1

2
) sin

θ

2
+

1

2
sin

3θ

2

)
− KII

√
r

2π

(
(κ +

1

2
) cos

θ

2
−

3

2
cos

3θ

2

)

Mode 1 Loading (unit KI)Mode 2 Loading (unit KII)

Balaji, N. N. (AE, IITM) AS2070 January 21, 2026 21 / 27



Linear Elastic Fracture Mechanics Classical Solutions
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3.3.3. Singularity Close to Notch Crack
Classical Solutions

For the Notch crack problem, we posit the Airy stress function
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3.3.3. Singularity Close to Notch Crack
Classical Solutions

For the Notch crack problem, we posit the Airy stress function

ϕ = rλ+1 (A1 cos((λ− 1)θ) +A2 cos((λ+ 1)θ) +B1 sin((λ− 1)θ) +B2 sin((λ+ 1)θ)) .

Applying the boundary conditions (along with α = π), we get a nonlinear eigenvalue
problem that has the following solutions:
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3.3.3. Energy Release Rate
Classical Solutions

Let us think of how much energy will be necessary to “close” a crack.

We observe that (all quantities in cylindrical):

@ θ = 0, σ =
KI√
2πr
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1 0
0 1

]
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1 0

]
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√
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√
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For virtual crack closure, the work done can be written as,

W (a) = 2

a∫
0

1

2

(
σθθ

∣∣∣∣
θ=0

(−uθ)

∣∣∣∣
θ=π
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2
a =
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K2

I+K2
II

E a Plane-σ
K2

I+K2
II

E (1 − ν2)a Plane-ε
.

The Griffith Energy Release Rate is the derivative lima→0
1
B

dW
da

, which evaluates as

G =
1

B


K2

I
E +

K2
II
E Plane Stress

K2
I

E (1 − ν2) +
K2

II
E (1 − ν2) Plane Strain

.
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3.3.3. Stress Intensity Factor
Classical Solutions

A crack is said to propagate when G exceeds Gcr.

Therefore, under “pure” mode 1 loading, the Critical Stress Intensity Factor (KI,cr) is

KI,cr =

{√
BGcrE Plane Stress√
BGcrE
1−ν2 Plane Strain

.

But how do we relate KI ,KII with far-field applied stresses?

The answer is
very closely tied in to the exact geometry, loading conditions, etc.
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3.3.3. Griffith-Inglis Crack Revisited
Classical Solutions

For the flat crack of length 2a (aka the Griffith-Inglis crack), the SIF is related to tensile
stresses by

KI = σ0
√
πa.

Note that this is why we chose λ = π
2

in sl. 7. If we left it in, we’ll have to satisfy (plane
stress considered here):

4λa

E
σ2
0 =

2K2
I

E
=

2πa

E
σ2
0 .
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3.4. Crack Propagation and the Paris Law
Linear Elastic Fracture Mechanics

Paris Law: da
dN

= C(∆K)m.

Usually af is specified and we are
interested in finding how many cycles
until a crack of size ai grows to af . This
is the “life” of the material.

Values for common engineering materials, from Kumar 2009

Material C m

Ferrite-Pearlite (S) 6.8×10−12 3.0

Martensite (S) 1.33×10−10 2.25

Austenite (S) 5.5×10−12 3.25

Cast Iron (S) 5.5×10−12 3.25

Al-Alloy 1.1×10−11 3.89
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