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Introduction  Structure of Materials

1.1. Structure of Materials
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Introduction  Structure of Materials

1.1. Structure of Materials

Introduction

islocations and their “motion” under load
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Introduction Understanding the Stress-Strain Curve

1.2. Understanding the Stress-Strain Curve

Introduction

The Uniaxial Tensile Test

T Load
p77727727727777717777 17774
<«—Object —»]
l Load ¢ Load
Figure from Rajendran 2011
v
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Introduction Understanding the Stress-Strain Curve

1.2. Understanding the Stress-Strain Curve

Introduction

Ductile Material Stress-Strain Curve
low carbon steel

Terminolo,
24 true curve
Strain Hardening | Necking
T

@ Proportionality Limit;
@ Elastic Limit; T
: it Fracture

@ Yield Point; Proportional limit | Paint
@ Ultimate Strength; .
@ Fracture Point;

Ultimate Strength

@ Elongation at Failure; Yield Paint

.
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Ductile Fracture
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Figure from Connor 2020
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Figure from Rajendran 2011
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Introduction Failure Mechanisms

1.3. Failure Mechanisms: Fracture

1. Introduction

“Griffith Theory” of brittle fracture

@ Theoretical fracture stress ~ % —

B
30
(steel ~ TEOO)
@ Fracture occurs when
Estrain = Esurface
@ Crack propagates when

dBsirain _ “Psurface
dL -

dL
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1.3. Failure Mechanisms: Fracture
1. Introduction

Ductile Fracture
“Griffith Theory” of brittle fracture 1 i 1

@ Theoretical fracture stress ~ % — 3—%
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@ Fracture occurs when
Estrain = Esurface

Tl Tl Tl
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1.3. Failure Mechanisms:

1. Introduction

Introduction

Fracture

“Griffith Theory” of brittle fracture

@ Theoretical fracture stress ~

E £
30

5

(steel ~ £5)

@ Fracture occurs when

Estrain = Esurface

@ Crack propagates when

AEstrain

dL

Esurface
dL

Balaji, N. N.

Failure Mechanisms

Ductile Fracture

Tl

(@ () ©

Ductile Fracture Rajendran 2011

Cone

«@

Sr. No

Britile Fracture

Ductile Fracture

It occurs with no or little plastic deformation.

It occurs with large plastic deformation.

2. | The rate of propagation of the crack is fast. | The rate of propagation of the crack is slow.

3 It occurs suddenly without any warning. It occurs slowly.

4. | The fractured surface is flat. The fractured surface has rough contour and the
shape is similar to cup and cone arrangement.

5. | The fractured surface appears shiny. The fractured surface is dull when viewed
with naked eye and the surface has dimpled
appearance when viewed with scanning electron
microscope.

[ It occurs where micro crack is larger. It occurs in localised region where the
deformation is larger.

Ductile vs Brittle Fracture Rajendran 2011
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1. Introduction

1.3. Failure Mechanisms: Fatigue

2021...

Introduction

Failure Mechanisms

..over 90% of mechanical failures are caused because of metal fatigue What Is Metal Fatigue?
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Introduction Failure Mechanisms

1.3. Failure Mechanisms: Fatigue

1. Introduction

..over 90% of mechanical failures are caused because of metal fatigue What Is Metal Fatigue?
2021... J

Stress distrbution at 56.9 kPa cabin pressure
and 1.3 g inerta loading

Fan Blade

Fan Blade " No. 19

No. 18 o

The De Havilland Comet The deHavilland Comet Disaster
2019 [lecture]

A more recent example (2021 United Airlines Boeing
777) DCA21FA085. Aspr 2024. [video]
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Introduction Failure Mechanisms
1.3. Failure Mechanisms: Fatigue

1. Introduction

..over 90% of mechanical failures are caused because of metal fatigue What Is Metal Fatigue?

2021... J

Fatigue Crack Propagation: Beech Marks

)

Fan Blade
No. 18

N eHavilland Comet Disaster
- Figure from Fatigue Physics 202/ cture]
A more recent exampl
777) DCA21FA v
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1.3. Failure Mechanisms: Fatigue

1. Introduction

..over 90% of mechanical failures are caused because of metal fatigue What Is Metal Fatigue? J
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Failure Mechanisms

Introduction

1.3. Failure Mechanisms: Fatigue
1. Introduction
..over 90% of mechanical failures are caused because of metal fatigue What Is Metal Fatigue?
2021...
Stress, o
i
T
7
R
T
forward escape hatch

_ Omin
Fatique variables Megson 2013

Stress, o
Mild steel
Endurance
/ limit

Aluminium
alloy

S S S S
10 102 10° 10* 10° 10° 107 10°
Number of cycles to failure
The S-n Diagram Megson 2013
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Introduction Failure Mechanisms

1.3. Failure Mechanisms: Fatigue

1. Introduction

..over 90% of mechanical failures are caused because of metal fatigue What Is Metal Fatigue?
2021...
S-N Curves for Common Metals ( Jr and Rethwisch 2012)
Stress, o
K
O \ | | |
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v
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Introduction Failure Mechanisms

1.3. Failure Mechanisms: Fatigue

1. Introduction

..over 90% of mechanical failures are caused because of metal fatigue What Is Metal Fatigue?
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S-N Curves for Common Metals ( Jr and Rethwisch 2012)
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Introduction Energy Release Rate

1.4. Energy Release Rate: Griffith’s Analysis

Introduction

2a

I [ | [

Simplistic picture of the introduction of a crack in a stretched
specimen(Figure from sec 2.5 in Kumar 2009)

e Because of the crack, we assume o =~ 0 in
the triangles.
o Corresponding energy loss:

o2 2a? \to?
Er=VaAX(—)= ———
R ax( 2E) E
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Introduction

Energy Release Rate

1.4. Energy Release Rate: Griffith’s Analysis
Introduction

=
i

2a
[

Simplistic picture of the introduction of a crack in a stretched
specimen(Figure from sec 2.5 in Kumar 2009)

e Because of the crack, we assume o =~ 0 in
the triangles.

o Corresponding energy loss:
B —V X(U2)72a2)\t02
R8T R T T E
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e For thin plates, A = 7. So,
2, 2
ma“to
E —
" E
o The “creation” of a surface takes energy.
We write this as,

Es = 2(2at)y = 4aty.

Ep. Es

dy 3

(Figure from Kumar 2009)
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Introduction Energy Release Rate

1.4. Energy Release Rate: Griffith’s Analysis

Introduction

| \‘ e For thin plates, A = % So,
1

1 Ep = raZto?

- E A
A2a .
T o The “creation” of a surface takes energy.
2a

We write this as,

[

Es = 2(2at)y = 4aty.
[ |
1
Simplistic picture o] Food For Thought
specimen(Figure fro

o What would a “safe size” of crack be, for a given

loading condition? Hint: Think incrementally
@ Because

the triang

o Corresponding energy loss:

Ee =V X(U2)72a2)\t02 '
R=TAT R T '

E

(Figure from Kumar 2009)
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Introduction Energy Release Rate

1.4. Energy Release Rate: Griffith’s Analysis

Introduction

g e For thin plates, A = 7. So,
[ | 2, 2
ma“to
1 Er = -
| 120 .
T o The “creation” of a surface takes energy.
o We write this as,
Es = 2(2at)y = 4aty.
L1 [ [ |
L
Simplistic picture o Food For Thought
specimen(Figure fro

o What would a “safe size” of crack be, for a given

loading condition? Hint: Think incrementally
@ Because

the triang

e What type of an experiment would be necessary to
confirm this mathematical framework?
o Corresponding energy loss:

pvie
2

B —V X(U)72a2)\t02
R = VA 2F =

E

(Figure from Kumar 2009)
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Introduction Linear Elastic Fracture Mechanics

1.5. Linear Elastic Fracture Mechanics

Introduction
(Ref: Sec. 8.4.2 in Sadd 2009)

Consider the following two cases.
Question: Where will the point of peak stress occur? And which will have higher maximum
stress?

Case 1 Case 2
T e mmme T T S— .

IT,I—TT T.l — —

} L ] ]
R b - [
-—i — T i ] T
- O = | .
— [ — i
-~ P — [
B . { !

e it - \\ // —

I S .

v 4
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Introduction Linear Elastic Fracture Mechanics

1.5. Linear Elastic Fracture Mechanics

Introduction
(Ref: Sec. 8.4.2 in Sadd 2009)

Consider the following two cases.
Question: Where will the point of peak stress occur? And which will have higher maximum
stress?

Case 1 Case 2
T e mmme T T S— .

IT,—T—TT x.l — —
R b \ I
1 — P T
- O - — T
— j— - f—
— {— i i
B . { !

e R - - \‘ // —

I S .

v 4

Analytical Solution

ri i
op =T(1— %), 0p =T(1+ k)
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Introduction Linear Elastic Fracture Mechanics

1.5. Linear Elastic Fracture Mechanics

Introduction
(Ref: Sec. 8.4.2 in Sadd 2009)

Consider the following two cases.
Question: Where will the point of peak stress occur? And which will have higher maximum

stress?

Case 1 Case 2

L,
i

!

1
]
BERRE

T

I
T

-
i
-
-—
i
-~
|
/
7
i
-—
4
\
-~
/
/
\

v
Analytical Solution Analytical Solution
T2 ’!‘2 T‘2
o =T(1— rTl)’ og =T(1+ TTI) o, =T(1— ,Tl) + (+) cos(20), op = ...
_ Z
4 4
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Introduction Linear Elastic Fracture Mechanics

1.5. Linear Elastic Fracture Mechanics

Introduction
(Ref: Sec. 8.4.2 in Sadd 2009)

Consider the following two cases.
Question: Where will the point of peak stress occur? And which will have higher maximum

stress?
Case 1 Case 3
L N
PRn ARRKEA L
-~ T T [
; ~ - !
- -~ - =
= 50 F P
i - ] N
— - = ,"4’
- 4 ~ (—
-— -\ J— |=
T PR S S
Dy
Analytical Solution
7‘2 ks T
o, =T — ,ﬁl)’ oo =T(1+ T71 or=T(1 — ﬁl) + (+) cos(20), op = ...
= =
y
o
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Introduction Modes of Fracture

1.6. Modes of Fracture

Introduction

(opening mode)

P
P “ Crack front
|
P
Mode 11 Mode IIT
(sliding mode) (tearing mode)
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Introduction to Fatigue

2. Introduction to Fatigue

Concepts Stress
amplitude Confidence limit curves
ife: s,
@ Safe Life: RUL g Mean curve
@ Fail-Safe: Redundancy
v
N cycles
Tensile Stresses: The Goodman Diagram
(Figure 15.1 from Megson 2018)
The S-N Curve
Stress, 7y,
id stoe
Endurance
it
"""""""""" At
aloy
NN =
10 102 10° 10* 10 10° 107 10°
0 Number of cycles to failure
SIS, 10
(Figure from Megson 2013)
(Figge 15.2 {To'm (l@%ﬂ)?ﬂ}.?)
Sa,o Su C 1
v —
Oalt =00 (1 + —= ), Nox ——.
VN Omean
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Introduction to Fatigue The deHavilland Comet

2.1. The deHavilland Comet

Introduction to Fatigue

No aircraft has contributed more to safety in the jet age than the Comet. The lessons it
taught the world of aeronautics live in every jet airliner flying today. — D.D. Dempster,
1959, in The Tale of the Comet

FIG. 7. VIEW FROM INSIDE OF FAILURE AT THE FORWARD ESCAPE HATCH ON THE
POR G-ALYU

(Figures from “De Havilland Comet” 2025)
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Introduction to Fatigue

2.1. The deHavilland Comet

Introduction to Fatigue

No aircraft has contributed more to safety in the jet age than the Comet. The lessons it
taught the world of aeronautics live in every jet airliner flying today. — D.D. Dempster,

10E0 e The Mol £l [ 4

FIG. 12 PHOTOGRAPH OF WRECKAGE AROUND ADF AERIAL WINDOWS—G-ALYP.

The deHavilland Comet
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FIG. 7. VIEW FROM INSIDE OF FAILURE AT THE FORWARD ESCAPE HATCH ON THE
PORT SIDE—COMET G-ALYU

(Figures from “De Havilland Comet” 2025)
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Introduction to Fatigue The deHavilland Comet

2.1. The d|

Introduction to

No aircr
taught th
_  doro s

FiG. 12 prorol

crack along top center line of fuselage

front fuselage separated at front spar
attachments in downward direction

rear fuselage
and tail unit
separated at
rear spar
failure probably downwards
symmetrical with starboard
wing failure

main failure
between ribs.
12and 13

fr 26
pecling off failure e

frame 13a

secondary cracking by bending
of center portion over outer portion

direction of propagation
of main cracks

o ———————

essons it
empster,

Balaji, N. N.
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gns 2] secondary 1
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plates |
I
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Introduction to Fatigue Miner’s Rule

2.2. Miner’s Rule

Introduction to Fatigue

@ Suppose at an operation level of oy, 04, the fatigue life is N and the structure undergoes
n cycles, Miner’s rule posits that  is the fraction of life that has been consumed.

@ Suppose a structure undergoes multiple stress levels in its loading history, the total

fraction of fatigue life that has been consumed is written as
ni na  ng
—t—+—+....
N1 N> N3

o The structure is expected to fail when this sum becomes 1.0..
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3.1. Griffith’s Analysis and Energy Release Rate

Linear Elastic Fracture Mechanics

The total energy of a loaded elastic body is written as

Linear Elastic Fracture Mechanics

II =

U_
~~

elastic

144

external

Griffith’s Analysis and Energy Release Rate

Griffith’s principle: The energy lost due to the creation of a cracked surface must
be equal to the energy required for the creation of the cracked surface.

Surface energy is usually expressed as Eg = A~.

This is a general principle agnostic of the exact structure under consideration.

_d _
dA

27 |

(note: 2A is the effective total “new” surface area that has been created)
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Linear Elastic Fracture Mechanics Griffith’s Analysis and Energy Release Rate

3.1. Griffith’s Analysis and Energy Release Rate: Examples

Linear Elastic Fracture Mechanics

Crack in Stretched Specimen

Double Cantilever Beam (DCB)

s I n—

I

(S w—

(Figure from sec 2.5 in Kumar 2009)

@ Crack: A = 2at, 04 = %Oa

—1

—Jsl—

L1

e Il=U=

2
=t (Ator — 4Xa?).

dA
_ 4l _ _ 1 4l _ Xa .2
© G=—0x = "2ida = 357°
E’/ 2B/
@ Ocr = Aa’y = ﬂa’y
P
o
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Linear Elastic Fracture Mechanics

Griffith’s Analysis and Energy Release Rate

3.1. Griffith’s Analysis and Energy Release Rate: Examples

Linear Elastic Fracture Mechanics

Crack in Stre

—1

L1

N

(Figure from sec

@ Crack: A = 2at, ¢

2
oH:U:;’E’f( ‘o
B
° BEg =2Ay, £ -
o (o _dl _ _ 1,

Balaji, N. N. (AE, IITM)

Additional Cases to Consider

P

f

_—
N
a

!

P

(Figure 4.23 from Gdoutos (2005)

= a } b {

(Figure 4.20 from Gdoutos (2005)

e

gz~

er Beam (DCB)
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Linear Elastic Fracture Mechanics A Primer on 2D Elasticity

3.2. A Primer on 2D Elasticity

Linear Elastic Fracture Mechanics

e In 2D, the governing equations of elasticity (let us assume no body loads for simplicity)
are written as,

Oze +Tayy =0, Taya +o0yy =0.

o If we seek to obtain solutions expressed directly in the stresses, 2 equations won’t
cut it (we have 3 unique stresses o4, 0y, Tey). So we invoke strain compatibility, which is
written as

Ex,yy T Ey,xa = Vay,ay

o This can be expressed in terms of the stresses if we invoke the stress-strain
constitutive relationships.

Balaji, N. N. (AE, IITM) AS2070 January 21, 2026 15 /27



Linear Elastic Fracture Mechanics A Primer on 2D Elasticity

3.2. A Primer on 2D Elasticity

Linear Elastic Fracture Mechanics

e In 2D, the governing equations of elasticity (let us assume no body loads for simplicity)
are written as,

Oze +Tayy =0, Taya +o0yy =0.

o If we seek to obtain solutions expressed directly in the stresses, 2 equations won’t

cut it (we have 3 unique stresses oz, oy, Tey). S0 we invoke ™ rocam,

written as v that the strains must satisfy
in order for them to have been

Ex,yy T Ey,xx = Yay,zy generated by a continuously
differentiable displacement field.

o This can be expressed in terms of the stresses if we invoke the stress-strain
constitutive relationships.

These are conditions
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Linear Elastic Fracture Mechanics

3.2. A Primer on 2D Elasticity

Linear Elastic Fracture Mechanics

Plane Stress

£z 1 1 —v 0 e

gy | = —v 1 0 oy

Yey|  E |0 0 20+40)| |Tay
Compatibility

oz,yy + oy,zz —v(oz,zz + oy,yy) = 2(1 + V) Tzy zy-

A Primer on 2D Elasticity

Plane Strain

Ex 14 v 1—v —v

gy = —V 1—v

Yy B 0 0
Compatibility

A =v)(ox,yy +toy,zz) —v(oz,zx +oy,yy) = 2Tay,xy-

e Making the substitution oz = ¢ yy, 0y = @ 20, Tey = —@ 2y, it is trivial to see that the
equilibrium equations are satisfied automatically.

o In both the above cases, the compatibility equation comes out to be:

e Since the Laplacian when set to zero (V2¢ = 0) is referred to as the harmonic

¢,:Ezzz + ¢,yyyy + 2¢,a:zyy = (8ma: + ayy)2¢ = V4¢ =0.

equation (recall complex analyticity), V%¢ = 0 is referred to as the bi-harmonic
equation. ¢ is the Airy Stress Function.

Balaji, N. N.
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Linear Elastic Fracture Mechanics Classical Solutions

3.3. Classical Solutions

Linear Elastic Fracture Mechanics

@ Restricting ourselves to 2D problems, the governing equations may be written using the
Airy’s stress formulation as the biharmonic equation

Vip =0

o Let us look at this with cylindrical coordinates (z = r cosf, y = rsin6).

w Uro—uo ] o
Vu = [e e ] wr r {*r]
) Yy u p=2 =2 u “+u
X r ug 9,9T | leg

e } ¢,rr ar(q%g) €,
=0 s (M) Sur d’,ge el
T\ p r P )

o The stresses are expressed (to satisfy equilibrium) as

Vo=l e {fi

T

YV2¢g=|e

3

?.0

T

).

Oprpr =

d),r ¢, 0
” 2 00 = G,rrs  Tro = —Or(
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Linear Elastic Fracture Mechanics Classical Solutions

3.3. Classical Solutions

Linear Elastic Fracture Mechanics

e R General form of the Airy’s Stress Function
N (Michell Solution, see Barber 2022, Ch. 8-9)
¢ =ao + a1 logr + asr? + asr? logr

(aa + as logr + agr? + a7r? log r)0

(a117 + ararlogr + 222 1 a147® + a1570 + arerflog ) cos
T

b .
(b117 + biarlogr + 213 + b1ar® + bi5r0 + bigro log r)sin6
r

o0

Z (anp1r™ + Anar? T+ apsr™ + an4r27”) cos nb
n=2

o0

o | Z(bmr” + bpar? T 4 bpgr ™ 4 bn4r27") sinnf.
n=2

I using the

D.r D00
” + 2 , 0y = ¢,rm Tro = _ar(

Do
).
r

Oprpr =
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Linear Elastic Fracture Mechanics

3.3.1. The Michell Solution:

Classical Solutions

Stress Components

Classical Solutions

Tabled Expressions

Displacement Components

o o ow » 2y, 25
r? 2 0 2 ” (= Dr 0
r2In(r) 2In(r) +1 0 2m() +3 7 n(r) = Drin(y—r G+ Drd
In(r) 1 0 _iy In(r) —1/r 0
0 0 1/r2 0 ! 0 s

3 = rdcosd (=2 cos (4 2)r% sin0
ricosd 2rcosd 2rsinf 6rcosd 0sin0 10— DOsing - cos 1~ D0cost — sind
rfsinf 2cosf/r 0 0 +(k + 1) In(r) cos ) —(k+ DIn(r)sinf)
rin(r)cosf | cosb/r sinf/r cosf/r rin(r)cosf 3G+ 1)Fsin6 — cos 0 $0s + D cosd - sinf
cosf/r —2cosb/r? —2sin6/r3 2cos6/r? +(5 = D) In(r) cos 0} — (5 — D) In(r) sin 0)
Fsing 2rsin0 “2rcosd 6rsind cos ”/; costyr? . sin ”/”2 —

. sin (=27 sin —(s+ 2D cos
rﬁmﬁ_ ~2sin6/r 0 0_ rcosd Lt = 1) cosd +sind) %(f(Kf)l)ﬂ\mﬂfcm[/
rIn@sing | sin/r \ —cmﬁ/r‘ sin6/r \ et e sind) et D inyeont)
siné/r —2sinb/r 2cos0/r” 2sinf/r In@)sing | 4{=Ge+ Docosd —sind s+ 1)0sin0 + cosd
reosnf | @+ @m=2)r"cosnd [ nn+1)r"sinng (D)@ +2)r"cosn 05— DInr)sind) 05— DIn(r) cos )
rcos nf —n(n—1)r"2cosnf n(n—1)yr"2sinng n(n—=1)r"2cosnf sinf/r sinf/r? —cosb/r?
r™2sinnd | —(n+1)m—-2)r"sinng | —n(n+1)r"cosnf (1) (n+2)r"sin nf) r#2cosnd | (s —n— D cosnd (s n o+ D sinng
rsinng —n(n—1r"2sinnd —n(n—1r"2cosnf nin—1)r"2sinnf 7" cosnd —nr" cosng "~ sinng

42 sinng (5 —n = Dr*Lsinng —( A+ Dr cosnd
" sinnf —nr"Vsinnd —nr = cosnd

(Table 8.1 from Barber 2022)

We set rigid body motion compo-
nents to zero for the displacements

(Table 9.1 from Barber 2022)

3—v
e

Plane Strain x =3 — 4v

Plane Stress x
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~ Lincar Flastic Fracture Mechanics  Classical Solutions
3.3.Plate with a Hole. Plate With a Hole Under Tension

Linear Elastic Fracture Mechanics

o Let us now try to use the above table for obtaining the stress distribution around a hole

in a tension field.
a0
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Linear Elastic Fracture Mechanics

Classical Solutions

3.3.Plate with a Hole. Plate With a Hole Under Tension

Linear Elastic Fracture Mechanics

o Let us now try to use the above table for obtaining the stress distribution around a hole

in a tension field.
a0
1tttttttrettt

Displacement Field
oo

Uy = ?(n —1)r— %Tcos20

ug = @r sin 20
2

Problem A
The 2D stress field (cartesian) is

0 0
9 cart = 0 ool "

TR INANNARN

A B
@)

I I

Balaji, N. N. (AE, IITM)

@ Transforming to cylindrical coordinates,

| cos® sinf| {0 0| [cosf —sinf
Zevl = | _sin® cos@| |0 ool | sinb cos 0

_ sin? 0 sin 0 cos 0

=70 |sinfcos o cos? 0

The components can be written as

(1 cos 29) sin 260
orr =00 | 5 — , Org =0
o{3 2 0 0

1 . cos 260
ogg =00 | = .
06 0 2 2

)

]
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Linear Elastic Fracture Mechanics

Classical Solutions

3.3.Plate with a Hole. Plate With a Hole Under Tension

Linear Elastic Fracture Mechanics

o Let us now try to use the above table for obtaining the stress distribution around a hole

in a tension field.

70 [

Problem B

Displacement Field

2
Uy = goa (17(/{+17(g)2)cos29)
2r T
ooa® [
ug = (K,—l-‘r(*) >sin20.
r

At r = a we want

1 cos 26
Oryr = 00 - - B
2 2

(no hoop component specified)

As r — oo, we want 0., 09,099 — 0 to match the

TR

INANNARN

A

Q)

I

Balaji, N. N.

(AE, IITM)

I

far-field.

@ Based on inspection (shown in class), we find the
following Airy stress function to be a good starting
point: ¢ = Alogr 4+ B6 + C cos 20 + DCO:TQQ.

@ Solving for A, B, C, D based on the B.C.s we get,

oo [a\? a\? 3/7a\?2
Opp = —— | — + 200 | — 1——(- cos 26,
2 \r T 4\ r

2 4
oo [a 300 [a
= — - — | — ) cos26,
7T (r) T (r)

a\? 3/a\? )
org =00 — 1——( - sin 26
T 2\r
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Linear Elastic Fracture Mechanics

Classical Solutions

3.3.Plate with a Hole. Plate With a Hole Under Tension

Linear Elastic Fracture Mechanics

o I le
i 5 Stress o, 5 Stress o, Stress ., |
2 05
g " e
_ ] /
w=| § o] @ ool (Y o
>
up = 0 -0.5
-5 T -5 T
-5 0 -5 0 5
Disp. u, Disp. u, Hole Def. ( x .5
5 P s D- U, 5 (x.5)
2
5
° 1
8
80 0 0 0 0+
> -1
-5
-2
-5 -5 -5 T
-5 0 5 -5 0 5 -5 0 5
X Coord X Coord X Coord
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Linear Elastic Fracture Mechanics Classical Solutions

3.3.3. Notch Crack

Classical Solutions

We seek an analytical solution for this problem setting
very close to the crack.

e While we may intuitively expect stress to be singular at
the crack tip, the strain energy has to be finite.
e Suppose o ~ O(r*), & ~ O(r) necessarily.
o SoU = [ [ ZErdrd) ~ O(r**F1).
o For this to be finite, 2\ +1 >0 = A > —1.

e We list out the only Airy stress functions that can
show this in the following table (refer sl. 18).
¢ Orr Iro 900
r"+2 cosnf (..)r™ cosnd (.)r™sinnd (.)r™ cosnf
rPcosnf | (.)r""2cosnf  (.)r*2sinnf  (.)r" 2 cosnf
"2 sinnd (.)r"sinnd (.)r™ cosnf (.)r"sinnd
rPsinnd | ()r?"2sinnd  ()r""2cosnd  (.)r""2sinnd
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Linear Elastic Fracture Mechanics Classical Solutions

3.3.3. Singularity Close to Notch Crack

Classical Solutions

e For the Notch crack problem, we posit the Airy stress function

& = r 1 (A] cos((A — 1)0) + Az cos((A + 1)0) + By sin((A — 1)0) + By sin((A + 1)0)) |
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Linear Elastic Fracture Mechanics Classical Solutions

3.3.3. Singularity Close to Notch Crack

Classical Solutions

e For the Notch crack problem, we posit the Airy stress function

& = r 1 (A] cos((A — 1)0) + Az cos((A + 1)0) + By sin((A — 1)0) + By sin((A + 1)0)) |

Antisymmetric

(A1)

Symmetric

-05 &

(Figure 11.7 from Barber 2022)
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Linear Elastic Fracture Mechanics Classical Solutions

3.3.3. Singularity Close to Notch Crack

Classical Solutions

e For the Notch crack problem, we posit the Airy stress function

& = r 1 (A] cos((A — 1)0) + Az cos((A + 1)0) + By sin((A — 1)0) + By sin((A + 1)0)) |

e Applying the boundary conditions (along with a = 7), we get a nonlinear eigenvalue

problem that has the following solutions:

‘ Eigenfunction
Ay =241, By =-B)
Ay =—A;, Bo=0(B1 =0)

Ay = —%, By = =B

RS- N

o \= % corresponds to the near-field singular stress field, given by

Kr (5 0 1 39) Kir < 5.0 3 . 36)
Oprp = —CcoS — — —cos — | + ——sin — + — sin —
27r 4 2 4 2 27r 4

Ki (800 1 80\ Ki 3.0 3 30
0pg = —— | — cos — + — cos — ——sin = — — sin —
00 omr \4 2T ] 2 oar 4y Tyt

Kr 1 . 0 1 . 360 Krr 1 0 3 30
org = —sin — + —sin — | + — Ccos — + — cos —

27r 4 2 4 2 27r 4 2 4 2
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Linear Elastic Fracture Mechanics Classical Solutions

3.3.3. Singularity Close to Notch Crack

Classical Solutions

e For the Notch crack problem, we posit the Airy stress function

& = r 1 (A] cos((A — 1)0) + Az cos((A + 1)0) + By sin((A — 1)0) + By sin((A + 1)0)) |

e Applying the boundary conditions (along with a = 7), we get a nonlinear eigenvalue

problem that has the following solutions:

A [ Eigenfunction

Displacement Field
9 - K T ( 1) 0 130 % T ( 1)‘, 0 3 .30
pu, = Ki o K 5 cos 5 5 cos 5 LRV K 5 sin 5 5 sin 5

2 2

) o T (+1),0+1,39> X« r<(+1) 0 3 30)
Uy = —_— — (R — ) sin — — S1n — — —_— K —)COS — — — COS —
puo = R1\[ 50 g/ Sy TR 1\ or 2 2

e A = 5 corresponds to the near-field singular stress field, given by

Kr (5 0 1 39) Kir < 5.0 3 . 36)
Opp = ———= | —COS — — —cos — | + ——sin — + — sin —
2mr \ 4 2 4 2 4 2

27r 4 2
Kr 3 60 1 30 K 3 .60 3 . 30
UQQZW(ZC0§5+ZCOb?>+ T (—ZSIHE—Zbln?)
Kr .60 1 30 Krr 1 0 3 30
org = m (Z sm§ + Zsm 7) + e (Z 0055 + ZCOS ?>
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Linear Elastic Fracture Mechanics Classical Solutions

3.3.3. Singularity Close to Notch Crack

Classical Solutions

o H Mode 1 Loading (unit Kr)
Stress o, Stress o, Stress o,
10 y 10
0.75 0.25
N . 5 0.9 5
H S o 050 o S| 06  of 0.00
>
-5 025 _g 03 -5 025
-10 -10 -10 ——
21 -10-5 0 5 10 -10-5 0 5 10 -10-5 0 5 10
Disp. u, Disp. u, Crack Opening
2yt 10 . 10 y 10 rack Opening
— Top
° - 5 3 5 25 51 — Bottom
g o 2 0 0.0 o—}
>
-5 1 -5 o5 51
-10 0 -10 -10 T T T
-10-5 0 5 10 -10-5 0 5 10 -10 -5 0 5 10
X Coord X Coord X Coord
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Linear Elastic Fracture Mechanics Classical Solutions

3.3.3. Singularity Close to Notch Crack

Classical Solutions

o K Mode 2 Loading (unit Kr;)
Stress o, Stress o Stress o
10 10 - 10 =
1.0
_ 1 _ _
of - 5 5 \ 05 B 05
Ho2 oof =f o of & 00 0 0o
s ) .
-5+ 4 51 05 51
-1.0 -0.5
-10 —— -10 ——T -10
2p -10-5 0 10 -10-5 0 5 10 -10-5 0 5 10
Disp. u, Crack Opening
2pu 10 L 10 10 ek CPAINS
— Top
0.0
o) _ 5 3 5 51 — Bottom
2 0 0o 0 05
g ]
e -1.0
-5 3 -5 45 51
-10 -10 -10 ——
-10-5 0 5 10 -10-5 0 5 10 -10 -5 0 5 10
X Coord X Coord X Coord
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Linear Elastic Fracture Mechanics Classical Solutions

3.3.3. Energy Release Rate

Classical Solutions

o Let us think of how much energy will be necessary to “close” a crack.
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Linear Elastic Fracture Mechanics Classical Solutions

3.3.3. Energy Release Rate

Classical Solutions

o Let us think of how much energy will be necessary to “close” a crack.
o We observe that (all quantities in cylindrical):

Kr [1 0 Krr [o 1 r [k—1 T 0
Q@ =0, = — — , 2uu = Ky — — Krra] —
Z 2r |:0 1i| + 2nx |:1 0} pa ! 27 0 o or |k —1
Kir [-2 0 T 0 r [k+1
Qg =, = , 2uu = Ky — — Ky — .
g 27Tr |: 0 Oi| H ! 27 |:_("‘€ + 1)i| " 27 0
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Linear Elastic Fracture Mechanics Classical Solutions

3.3.3. Energy Release Rate

Classical Solutions

o Let us think of how much energy will be necessary to “close” a crack.
o We observe that (all quantities in cylindrical):

Kr [1 0 Krr [o 1 k—1 T 0
@f =0, = — . 2uu =K 1/ - K —
Z 2r |:O 1i| + 2nx |:1 0} p = 27 0 o or |k —1

- Krir [-2 0 /T 0 / k41
@9—7‘(, o = 27rr|:0 O:|7 2/I,U—K] |: (K+1)i| K][ 271'|: 0 i|

e For virtual crack closure, the work done can be written as,

oen
5 o=m
i / 1 K / 1
/ a—T K+ i Ir K1, a—T K+ d
2m 21 27r 2m 2
0
a
:K“K?I““/ “74:"?”{?1(“1)%:

27 2u T 82

IS}
|

+ore |9:0(7u7')|9:7r> dz

(—uo)

l\)\H

2
N"ﬂ

2. w2
K24+ K
—I 1L, Plane-o

K24 K2 :
%(1 —v?)a  Plane-e

o The Griffith Energy Release Rate is the derivative limg— 0 % %, which evaluates as
K2 K2
oo L[St

Plane Stress
2 2 :
B %(1 _ VQ) + %(1 — 1/2) Plane Strain
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Linear Elastic Fracture Mechanics Classical Solutions

3.3.3. Stress Intensity Factor

Classical Solutions

e A crack is said to propagate when G exceeds Ger.
o Therefore, under “pure” mode 1 loading, the Critical Stress Intensity Factor (Ky .,) is

% VBG-E  Plane Stress
Ler = \/@ Plane Strain

o But how do we relate K;, K;; with far-field applied stresses?
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Linear Elastic Fracture Mechanics Classical Solutions

3.3.3. Stress Intensity Factor

Classical Solutions

e A crack is said to propagate when G exceeds Ger.

o Therefore, under “pure” mode 1 loading, the Critical Stress Intensity Factor (Ky .,) is

% VBG-E  Plane Stress
Ler = \/@ Plane Strain

o But how do we relate K, K;; with far-field applied stresses? The answer is
very closely tied in to the exact geometry, loading conditions, etc.
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Linear Elastic Fracture Mechanics Classical Solutions

3.3.3. Griffith-Inglis Crack Revisited

Classical Solutions

e For the flat crack of length 2a (aka the Griffith-Inglis crack), the SIF is related to tensile

stresses by
Ki = ogv/ma.

™

o Note that this is why we chose A = 7 in sl. 7. If we left it in, we’ll have to satisfy (plane
stress considered here):
4Xa 2K?  2ma 4

F= 5 = F 0
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Linear Elastic Fracture Mechanics Crack Propagation and the Paris Law

3.4. Crack Propagation and the Paris Law

Linear Elastic Fracture Mechanics

Values for common engineering materials, from Kumar 2009

e Paris Law: (‘ii—]‘\l, =C(AK)™.

Material C m

e Usually ay is specified and we are Ferrite-Pearlite (S)  6.8x10~ 12 3.0
interested in finding how many cycles Martensite (S)  1.33x107'°%  2.25
until a crack of size a; grows to ay. This Austenite (S)  5.5x107 2 3.25

Cast Iron (S)  5.5x107'2  3.25

is the “life” of the material.
Al-Alloy  1.1x10~'1  3.89
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