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Introduction What are Composites?

1.1. What are Composites?

Introduction

e Structural material consisting of multiple non-soluble macro-constituents.

o Main motivation: material properties tailored to applications.

o Both stiffness and strength comes from the fibers/particles, and the matrix holdes
everything together.
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Types of composite materials (Figure from NPTEL Online-II'T KANPUR (2025))

Examples

@ Reinforced concrete

@® Wood (lignin matrix reinforced by cellulose
fibers)

@ Carbon-Fiber Reinforced Plastics (CFRP)
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Introduction What are Composites?

1.1. What are Composites?

Introduction

e Structural material consisting of multiple non-soluble macro-constituents.

b CFRP Helicopter Blades
°
Woven glass outr skin
+45Carvon e
Gross Py Outer Wrap Carbon Firs
Cross Ply Skins
“Greert Nomex
Honeycamb Core
Foaming Adhesive
245" Carbon Fibre
Gross Pl Roar Wall
Giass Fibre
Staniess Sl ©a5 Carvon e
Eostom Shfedd Cross Py lnner Wrap
Hoato Mat Giass Fibre
Balance Tube
(Figures from Carbon Fiber Top Helicopter Blades 2025)
9 AA.
@® Wood (lignin matrix reinforced by cellulose @ High fatigue resistance. But quite brittle.
fibers)
® Main- and tail-planes, fuselages, etc. Helicopter

@ Carbon-Fiber Reinforced Plastics (CFRP) blades.

Balaji, N. N. (AE, IITM) AS2070 January 21, 2026 3/34



Introduction What are Composites?
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Introduction
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Laminated Composites
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Introduction

1.2. Modeling Composite Material

Introduction

Two main approaches:

Micro-Mechanics

Square array Unit cell

Cross-sectional view of continuous
fiber reinforced composites

Hexagonal array Unit cell

(Figure from “Micro-Mechanics of Failure” 2024)
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Macro-Mechanics
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Homogenization of micro-structure (Figure from Skovsgaard and

Heide-Jorgensen 2021)

Modeling Composite Material
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Introduction Constitutive Modeling for Composites

1.3. Constitutive Modeling for Composites

Introduction

Axial Elongation

-— e
- Matrix [
!
-— | —
/, A Filament ! 9
-— [—
i
- Matrix P
[ I

|
! / R
@ Strain is fixed, but stress experienced by media
differ.

o = Eje;
@ Stress-strain relationship simplifies as,

om = Emey, oszfsl

A =omAm +opAg

A A
— ElzifEf_'_imEm
A A

(Figures from Megson 2013)
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Introduction

1.3. Constitutive Modeling for Composites

Introduction

Axial Elongation
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- Matrix [
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@ Strain is fixed, but stress experienced by media
differ.
o = Eje;
@ Stress-strain relationship simplifies as,
om = Emey, oszfsl
A =omAm +opAg
A A
— | E; = —fEf + "B,
A A
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Transverse Elongation

Constitutive Modeling for Composites

—

Matrix
Filament h
Matrix Im /2

@ Stress is fixed, strains differ:

=5mlm+5flf

ot ot
= —lm+ —lf
Em Ef

etlt
ot
—
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1
= | —
By

11 11
mo b s

Bm Ly Byl
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(Figures from Megson 2013)
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Introduction Constitutive Modeling for Composites

1.3. Constitutive Modeling for Composites

Introduction: Poisson Effects

Axial-Transverse Coupling

Matrix
A o, Filament
-— Matrix
[ I |

@ Transverse displacement written as

Ay = vmeglm +vpelp=vyely

lm ly
== |viy = —e¢ + ——ef
Ly Ly
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Introduction Constitutive Modeling for Composites

1.3. Constitutive Modeling for Composites

Introduction: Poisson Effects

Transverse-Axial Coupling

a
¢
Axial-Transverse Coupling T T 1 T 1 T
Matrix i . Matrix Im/2
|
I, o T Filament i i / Filament s
‘\ — t
-— Motix P — -
o [— Matrix I 12

@ Transverse displacement written as

At =vmelm fvpelp= vl @ Axial displacement written as
lm Ly ot ot ot
e ult:?sl+Z5f . umafufE—fzfutlE—t,
v
Ey

= |vy = —vpg
By

v

(Figures from Megson 2013)
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Introduction Constitutive Modeling for Composites

1.3. Constitutive Modeling for Composites

Introduction: Poisson Effects

Transverse-Axial Coupling

a
¢
Axial-Transverse Coupling T T 1 T 1 T
- Matrix i . Matrix Inl2
A o, Filament ! % / Filament hs
— [— f
1
! —
-— Matrix §—
-— i —— Matrix Iml2
Clearly, the modulii are differ-
ent along different directions! l l
L | \ v
@ Transverse displacement written as %
Ay = vimeyl peqlpi= vy el
t = vmeplm Frvpely= el @ Axial displacement written as
I, Ly ot ot ot
= v, = —e; + Leg | Ve = v = vy
st Em B By
v
Ey
= vy = —v
=g,
v

(Figures from Megson 2013)
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1.3. Constitutive Modeling for Composites

Introduction: Anisotropy

General Anisotropy (aka “Triclinic”)

Introduction

Constitutive Modeling for Composites

Oxx Ci1 Ciz2 Ciz Cia Cis  Cie] [€aa
Tyy Cia Caz Caz3 Cay Cas  Cag| |eyy
02| _ |Ciz Ca23 Cz3 (34 C35 Cze| |22
Ozy| ~ [Cia C2a Cszs Caa Cas  Cus| |Vay
Oz Cis Czs Csz5 Cas Cs5  Cse| |Vaz
Oyz Cie Ca6 C36 Cus Cs6  Cesel Lvy=
o
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Introduction

1.3. Constitutive Modeling for Composites

Introduction: Anisotropy

Constitutive Modeling for Composites

General Anisotropy (aka “Triclinic”)

Oxx Ci1 Ciz2 Ciz Cia Cis  Cie] [€aa
Tyy Ciz Caz Caz Caa Ca5  Cag| |eyy
ozz| _ [Ciza Caz Csz Csys Css  Cse| €2z
Ozy Cis Cay C34 Cus Cus  Cus| |Vay
[ Cis5 C25 Cszs Cus Cs5 Cse| |Vaz
Oyz Cie Ca6 C36 Cus Cs6  Cesel Lvy=
Monoclinic: Single Plane of Symmetry
Oxx Ci1 Ci2 Ciz Cua 0 0 [
Tyy Cia Caa Ca3 Cay 0 0 Eyy
0.2 _ [Ciz Caz C33 Cszy 0 0 €2z
Tay Cia Caa Czs Cus 0 0 Yoy
e 0 0 0 0 Cs5 Cse Yz
Oyz 0 0 0 0  Cse Cesl Lvy=
o
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Introduction Constitutive Modeling for Composites

1.3. Constitutive Modeling for Composites

Introduction: Anisotropy

Orthotropic: Three Orthogonal Planes of Symmetry

Oz Ci1 Ci2 Ciz 0 0 0 (o
Tyy Ci2 Caa Cas 0 0 0 Eyy
0.2| _ [Ciz Caz Csz3 0 0 0 €22
Oxy - 0 0 0 Caa 0 0 Yzy
Ogz 0 0 0 0 Css 0 Yz
Oyz 0 0 0 0 0 Cse Yyz
Transversely Isotropic
Ooa Cii Ciz Cis O 0 0 o
Oyy Ciz Caz Ciz 0 0 0 Eyy
o..| _ |Cis Ciz Czs 0 0 0 €2r
ooy =10 0 0 Cu 0 0 Yow
O 0 0 0 0 Cu 0 o
Tyz 0 0 0 0 0 % Yy
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Introduction Classical Laminate Theory

1.4. Classical Laminate Theory

Introduction

Reference plane

A
1 4
- ->
T ?y
1
- - ->
Ay z
1
| |
- S '
T

Figures from Kollar and Springer 2003
(=]
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Composite Materials

2. Composite Materials

600,000 Extrapolates to 1.600.000 psi (11.000 MN/m?)
500,000
~
8
S 400,000
£
i3
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@ strength of bulk glass
Q)
= 25.000 psi (170 MN/m?) ——
Z 200,000 pei( )
&
100,000

1000 1000 1000 1000
Thickness of fiber, in

Griffith’s experiments with glass fibres (1920) (Figure from Gibson
2012)
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Composite Materials

2. Composite Materials
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Composite Materials Types of Composite Materials

2.1. Types of Composite Materials

Composite Materials

FIGURE 1.4
Types of fiber-reinforced composites. (a) Continuous fiber composite, (b) woven composite,
(c) chopped fiber composite, and (d) hybrid composite.

(Figure from Gibson 2012)
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Micro-Mechanics Descriptions The Rule of Mixtures

3.1. The Rule of Mixtures

Micro-Mechanics Descriptions

The rule of mixtures is introduced as a very simple framework for developing
“overall” /representative mechanical properties.

Basic Definitions

Subscripts (1) f, (*)m, (-)v, and (-). denote quantities corresponding to the fiber, matrix, void
composite (as a whole).

Volume Fraction vy = Vf s U = “//c S Uy = V“ such that vy 4+ vy + v, = 1.
Note that composite density p. = prvs + pmVm-

Weight Fraction w; = %vf

, and

Matrix 2 A, = Total area E1 = 'UfEf =+ vm Em

_f_ Fiber 1 v ) -1
7 _‘LL‘ Ag = Fiber area (X)EQ (i + 77"’)
/ Ly Matrix E f Em

#2

V12 = VfVf + UmVUm

. —1
A,, = Matrix area vf Um
(xX)Grz = (A& + =
G; ' Gm
(Figure 3.5a from Gibson 2012)
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Micro-Mechanics Descriptions The Rule of Mixtures

3.1. The Rule of Mixtures

Micro-Mechanics Descriptions

The rule of mixtures is introduced as a very simple framework for developing

“overall” lvnrmwanantativra vnanhanicaal vasandiag
RoM is not always satisfactory!
Basic L ¢ Finite difference
Subscrip E, o
composi =k H-T 5 #i
4 m
Volume MRoM 4 g
3 3 H-T
‘Weight 2 fou 4 o
1 1
0 + t — 0 + + —
1 10 100 1000 E, ! 10 100 1000 Gp
E, G

o

Balaji, N. N.

Figure 11.8: The transverse Young and shear moduli calculated by the rule of mixtures (ROM),
the modified rule of mixtures (MROM), the Halpin-Tsai (H-T) cquations, and the finite differ-
ence solutions (arcles) of Adams and Doner (v = 0.55).

(Figure 11.8 from Kolldr and Springer 2003)

\Gyr

(Figure 3.5a from Gibson 2012)
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Micro-Mechanics Descriptions The Rule of Mixtures

3.1. The Rule of Mixtures

Micro-Mechanics Descriptions

e The mismatch is related to the fact that our idealized picture was a poor representation
of reality to begin with. More geometrical details of the fiber arrangement are necessary.

T e o (1)

_f

SN BN -
1L A

S S — S
Eo = Epy-L + B —L
S S

= EBa\/U5 + Em(1 — /U7)

(Figure 3.8 from Gibson 2012)

™ ™
=/ ds=/—d. =B, |-y +— YT
Sf 4 38 4’Uf f 1 ’Uf(l— %’}L)

Balaji, N. N. (AE, IITM) AS2070 January 21, 2026 13 /34



Micro-Mechanics Descriptions

3.1. The Rule of Mixtures

Micro-Mechanics Descriptions

The Rule of Mixtures

(Recommended reading: Sec. 3.2.3 in Daniel and Ishai 2006)

The Halpin-Tsai Equation

1+ &no Ef — Enm
By = Ep L=t

1—nvy Ef +&En,

_p Br +EBm +&us(By — Ei)

mEf"rfEm_vf(Ef_Em)

Note: £ = 2 for circular section fibers. £ = 27“ for rectangular fibers (b being loaded side).

Case 1: £ - 0 Case 2: £ — oo

vf 1—’L)f -1
E, = + E2:Ef’uf+Em(17’Uf)
Br o Bm Parallel, Voigt model
Series, Reuss model. araze, vorgt mode.

o
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Micro-Mechanics Descriptions The Rule of Mixtures

3.1. The Rule of Mixtures

Micro-Mechanics Descriptions

. . . Ey
Graphical Comparison for varying
m
[shai 2006)
5 10
o 4 5]
« “w
2 2
3, -k
= =
2 2
3 K
a2 =3
5 & ~
S o 2 y
2 —
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 . 0.75 1.00
Note: 5 Fiber volume fraction v, Fiber volume fraction v,
20
_ —— Voigt Model
o ——Reuss Model
S ——Modified RoM
& 15| |——Halpin-Tsai Equation
E}
El
H
S10
2
@
8
. £ s
Series, H £
8]
0.00 0.25 0.50 . 0.75 1.00
Fiber volume fraction v,
AS2070 January 21, 2026 14 /34
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Micro-Mechanics Descriptions Numerical Example

3.2. Numerical Example

Micro-Mechanics Descriptions

(from Kolldar and Springer 2003)

Consider a Graphite/Epoxy unidirectional ply. Matrix properties are given with subscript m
in the table below. Nominal properties with fiber volume fraction vy = 60 % are also given.
Assume that the fibers show anisotropy (Eyi # Ef2).

Ey Ey G2 vig | BEm Gm  vm
Value 148 9.65 4.55 0.3 4.1 1.5 0.35

All modulii in GPa.

Estimate the following:
e Fiber modulus properties

e Composite material modulii for volume fraction vy = 0.55.

(Also discussed sensitivity analysis)

Balaji, N. N. (AE, IITM) AS2070 January 21, 2026 15 /34



Macro-Mechanics Descriptions  Material Symmetry and Anisotropy

4.1. Macro-Mechanics Descriptions

Material Symmetry and Anisotropy

Material Symmetry

The study of material symmetry is concerned with finding answers to the question:
If the strain field on a deformable object is changed, how does the stress field change?

Balaji, N. N. (AE, IITM) AS2070 January 21, 2026
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Macro-Mechanics Descriptions  Material Symmetry and Anisotropy

4.1. Macro-Mechanics Descriptions

Material Symmetry and Anisotropy

Material Symmetry

The study of material symmetry is concerned with finding answers to the question:
If the strain field on a deformable object is changed, how does the stress field change?

Consider the following Deformation Fields

Deformation Case 1 Deformation Case 2 (Case 1 Rotated)
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Macro-Mechanics Descriptions  Material Symmetry and Anisotropy

4.1. Macro-Mechanics Descriptions

Material Symmetry and Anisotropy

Material Symmetry

The study of material symmetry is concerned with finding answers to the question:
If the strain field on a deformable object is changed, how does the stress field change?

Consider the following Deformation Fields

Stress and Strain Field

Strain ¢, Strain ¢, Strain ¢,
2 10
@ 1 05
o o
®
-2 10
Stress o, Stress o, Stress o,

0.50 03
02
025 o1
o o
~025 ol
—02
~0.50 —03

Isotropic Stress-Strain Relationship

Deformation Case 2 (Case 1 Rotated)
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Macro-Mechanics Descriptions Material Symmetry and Anisotropy

4.1. Macro-Mechanics Descriptions

Material Symmetry and Anisotropy

Material Symmetry

The study of material symmetry is concerned with finding answers to the question:
If the strain field on a deformable object is changed, how does the stress field change?

Consider the following Deformation Fields

Stress and Strain Field Stress and Strain Field
Strain ¢, Strain ¢, Strain ¢, Strain ¢, Strain ¢, Strain ¢,
s 100 5
2 10 > 075 2
030
@ N 0s R 050 )
0 o o o o
Zos0
-2 -10 -2 o5 -2
-3 -1.00 -3
Stress o, Stress o, Stress o, Stress o, Stress o, Stress o,
03
0.50 gj 02 o0 050
02 oz 01 0 025
o o o 0 o
—025 ";; ~01 -01 025
~050 03 “02 —02 ~0.50
03
Isotropic Stress-Strain Relationship

Isotropic Stress-Strain Relationship
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4.1. Macro-Mechanics Descriptions

Material Symmetry and Anisotropy

Material Symmetry

The study of material symmetry is concerned with finding answers to the question:
If the strain field on a deformable object is changed, how does the stress field change?

Consider the following Deformation Fields

Stress and Strain Field Stress and Strain Field
Strain ¢, Strain ¢, Strain ¢, Strain ¢, Strain ¢, Strain ¢,
5 100 5 N
2 10 > 075 2 2
030

@ N 0s R 050 ) N

0 o o o o o

@ .- - w - .
-2 ~10 -2 o -2 -2

-3 ~1.00 -3 -3

Stress o, Stress o, Stress o, Stress o, Stress o, Stress o,

020 020 0.03 020
050 0015 020 o o 020

oas 0,010 010 0.10 010

0.005 0.05 0,05 o001 005

o 0 0 0 0 o
§ oot ~00s ot
025 009 o “ore oo o
0010 —01s ~015 -0.02 o1t
050 o015 o o1 o o
Anisotropic Case Anisotropic Case
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4.1. Macro-Mechanics Descriptions

Material Symmetry and Anisotropy

Material Symmetry

The study of material symmetry is concerned with finding answers to the question:
If the strain field on a deformable object is changed, how does the stress field change?

Consider the following Deformation Fields

Most materials exhibit some
Stress and Str4 sort of symmetry and gen- and Strain Field
Strain e, Strain e, eral anisotropy is almost Strain ¢, Strain e,
. . 3 3
> ‘ never encountered in practice. > )
1 T 025 1 1
ﬂ 0 0 0 0 0 o
050
-2 -10 -2 -075 -2 -2
-3 -1.00 -3 -3
Stress o, Stress o, Stress o, Stress o, Stress g, Stress o,
0.20 0.20 = 0.03 020
050 o015 020 0z oo 020
025 0010 0.10 0.10 0.10
0.005 0.05 0.05 0.01 0.05
0 0 o 0 0 o
i o0 -00s : “oos
-025 oo o1 010 o “oac
015 -015 —0.1s
-050 o015 o o s

—0.2¢

Anisotropic Case Anisotropic Case
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Macro-Mechanics Descriptions  Material Symmetry and Anisotropy

4.1. Material Symmetry and Anisotropy

Macro-Mechanics Descriptions

How do stresses and strains transform under coordinate change?

e Suppose x € R? are the coordinates of a point in 3D space.

e Let 2/ € R3 be the coordinates under transformation.

o We will write: , with Q‘l QT

St Stresses

Reflections

1
Note that reflections may be expressed as a coordinate change with @ = [0 1 0 | (reflection
o 0

about the zy plane).

Balaji, N. N. (AE, IITM) AS2070 January 21, 2026 17 /34



Macro-Mechanics Descriptions Material Symmetry and Anisotropy

4.1. Material Symmetry and Anisotropy

Macro-Mechanics Descriptions

o Under reflection about the zy plane, the strain transforms as,

/ ’
! Jzy Yoz . . Jzy Jaz
I 5 3 1 £z 5 2 1
S/ Yyz = 1 Ey gz . 1 .
Y 2 R —1
sym
sym e, Y €z
Y

€a ;y _ 'Y;z

_ _y=z

= ey y

sym £z
e So in Voigt notation we have,
! !’
571 1 Ex U; 1 O
EV 1 . £y U;/ 1 - oy
gy | _ 1 = oy | _ 1 o2
I = / =
Ty o1 : : Yy Toy 1 Ty
’Y;;z ) ) : . -1 . Yoz Ta/‘,z —1 Tz
Vy= < 1] Ly . —1] Lry-
January 21, 2026 18 /34

Balaji, N. N. (AE, IITM) AS2070



Macro-Mechanics Descriptions Material Symmetry and Anisotropy

4.1. Material Symmetry and Anisotropy

Macro-Mechanics Descriptions

o Under reflection about the xy plane, the strain transforms as,

[ 2w ] 1r Yoy vw=7 [y 1

If a material were symmetric about the zy plane, then re-
flecting the strain field about the zy plane will result in
a stress field that is reflected about the same zy plane.

Note

@ Strain field reflection is a kinematic operation/configuration change.

e S
@ Change in the Stress field is the effect that the above kinematic change
/ results in.
>4 =
E; @ If the material happens to be symmetric about the reflection plane, then
€y this change will be a reflection. L
'Yg:gy y
Ty ; :
VT =TT 7] ] T =TT -
January 21, 2026 18 /34
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Macro-Mechanics Descriptions Material Symmetry and Anisotropy

4.1. Material Symmetry and Anisotropy

Macro-Mechanics Descriptions

o We have said the following :

[ ] Ci11 Ci2 Ci3 Ciga Cis  Cig] [€a
oy Coa Ca3 Cgq Cy5 Cogf | ey
oz C33 C34 O35 Oz6| | ez

Ty Caa  Cas  Cug| |Vay
Twz sym Cs5  Cs6| |Vxz
L7y 2] Ceed Lyyzl

Recall that this symmetry follows from strain energy existence

r~' 1 ’
o e
o7 C11 Ci12 Ciz Cia Ci5 Ci6) | 7
¥ Ca2 C23 Czq4 C25 Ca6 y
7z | = C33  Csa  C35 Cz6| | “z
Try Caa Cas  Cae| |Vay
T./ . sym Cs5 Cs6 'V,,z
7 Cged |F
LTy z ] Vyz |

(The C matrix is the same in both the original and the reflected
coordinate systems)

Balaji, N. N. (AE, IITM) AS2070 January 21, 2026 19 /34



Macro-Mechanics Descriptions Material Symmetry and Anisotropy

4.1. Material Symmetry and Anisotropy

Macro-Mechanics Descriptions

a We have gaid the following -

This leads to

Ci1 Ciz2 Ciz Cig —Ci5 —Cig C11 Ci2 Ciz Cig Ci5 Cig
Co2  Ca3 Cgy —Ca5 —Cag Coo  Ca3 Cagq Cz5 Cag
Czz C3q4 —Cgs —Cgzg| _ C33 C3zq C35 Cgg

Caqa —Cus —Cue Caqa Cs5 Oue

sym Css Csg sym Cs5 Cse
Ce6 Ce6

T T

Recall that this symmetry follows from strain energy existence

’ ’
- e
o7 C11 Ci12 Ciz Cia Ci5 Ci6) | 7

¥ Ca2 C23 Czq4 C25 Ca6 y
7z | = C33  Csa  C35 Cz6| | “z
Try Caa Cas  Cae| |Vay
! sym C55  Cse| |4/
7= Cee 7z
Tyz Tyz

(The C matrix is the same in both the original and the reflected
coordinate systems)
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Macro-Mechanics Descriptions Material Symmetry and Anisotropy

4.1. Material Symmetry and Anisotropy

Macro-Mechanics Descriptions

a We have gaid the following -

This leads to
Ci1 Ci2 Ciz Cig |=Ci5 —Cie C11 Ci2 Ciz Cia |C15 Cie
Co2  Ca3 Caq |—-C25 —Cag Coa  Ca3 Cgg | C25 Cag
Czz C3q4 |—Cs5 —Cgzg| _ C33 C3q4 | C35 Cgg
Caqa | =Cas5 _ —Cue Caq | C45 Cip
sym T55 T56 sym Cr5 Cre
Ce6 4 Ce6-

T T

Recall that this symmetry follows from strain energy existence

’ ’
o e
o7 C11 Ci12 Ciz Cia Ci5 Ci6) | 7

¥ Ca2 C23 Czq4 C25 Ca6 y
7z | = C33  Csa  C35 Cz6| | “z
Try Caa Cas  Cae| |Vay
! sym Cs5 Cs6 ~!
7= Cge F=
Tyz Vyz

(The C matrix is the same in both the original and the reflected
coordinate systems)
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Macro-Mechanics Descriptions

4.1. Material Symmetry and Anisotropy

Macro-Mechanics Descriptions

a We have gaid the following -

Material Symmetry and Anisotropy

Ci1 Ciz2  Cis
Co2  Cag
C33

sym

Ciq
Coq
C34
Caa

This leads to

—Ci15  —Cie
—Cy5 —Cg
—C35 —C3¢
—C45  —Cue
T55 56
66 A

C11

Ci2
Ca2

sym

Ci3
Ca3
C33

Cia
Coyq
C34
Caa

Ci15  Cie
Co5  Cag
C35 C36
Cas  Cuag
Cs55  Chse

Cge

T

Recall that this symmetry follows from strain energy existence

Tx

Ty

Oz
Tmy
Txz
Tyz

C11 Ci2  Ci3
Caa  Ca3
C33

sym

C1q
Coyq
C34
Caaq

cooo

Css

0
0
0
0

Cs6
Ce66

Yzy
TYrz
Yyz

Finally we see that material symmetry about the xz plane im-
plies the following simplification to the constitutive relationship.

This is known as a Monoclinic Material (13 con-
stants). This is also quite rare to encounter in practice.
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Macro-Mechanics Descriptions Material Symmetry and Anisotropy

4.1. Material Symmetry and Anisotropy

Macro-Mechanics Descriptions

Suppose all the three fundamental planes are planes of sym-
metry, we have an Orthotropic Material (9 constants).

o1 Ci11 Ci2  Ci3 0 0 0 e1
oo Cap  Cag 0 0 0 e
o3 | _ Ca3 0 0 0 €3
T12 Caaq 0 0 Y12
T13 sym Css 0 Y13
723 Ceed Lvas

(Figure 2.5 from Gibson 2012)
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Macro-Mechanics Descriptions Material Symmetry and Anisotropy

4.1. Material Symmetry and Anisotropy

Macro-Mechanics Descriptions

Suppose all the three fundamental planes are planes of sym-
metry, we have an Orthotropic Material (9 constants).

o1 Ci11 Ci2  Ci3 0 0 0 e1
oo Cap  Cag 0 0 0 e
o3| _ Ca3 0 0 0 €3
T12 Caaq 0 0 Y12
T13 sym Css 0 Y13
723 Ceed Lvas

|3,z

Notice that (0(1,2,3),2(1,2,3)) and (7(12,13,23), ¥(12,13,23))
are naturally decoupled as a consequence
of symmetry in this coordinate system.
Also note,
e Specially orthotropic

o Generally orthotropic

7
x

(Figure 2.5 from Gibson 2012)

Balaji, N. N. (AE, IITM) AS2070 January 21, 2026 19 /34



Macro-Mechanics Descriptions Material Symmetry and Anisotropy

4.1. Material Symmetry and Anisotropy: Transverse Isotropy

Macro-Mechanics Descriptions

e In continuous fiber reinforced composites, @ How do the stresses and strains transform
it is often the case that the fibers are on the plane?
randomly distributed on a plane. This
leads to planar isotropy in the plane
perpendicular to the fiber stacking
direction.

Fibers are randomly packed
in the 2-3 plane (02,0y, 0y Tay, Taz, Tyz) — (0¢, 00,02, Ten, Tez, Tnz)

(Figure 2.6 from Gibson 2012) (x»Eys €2y Yays Yazs Yyz) = (€€, €n» €25 Yen, Vezs Ynz)
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Macro-Mechanics Descriptions Material Symmetry and Anisotropy

4.1. Material Symmetry and Anisotropy

Macro-Mechanics Descriptions

@ The stresses and strains transform as follows on the plane:

O + 0y Oz — Oy R
_ 5 € €y — €
e 7t g 08204 Tuysin20 e = 7””; Y T eos20 + L;y sin 20
op + oy Ty — Oy .
=2 Y 7T Y 0820 — Tyy S € € Ex — & .
oy 5 5 €08 20 — Ty sin 20 - x ;‘ y _ €x - Y cos 20 — 'Y;y sin 20
o, =0
(02 =02) T
Oy — O .
Ten = —% sin 20 + 74, cos 20 Yen = —(€x — €y) 8in 20 + 74, cos 20
Ter = Ty» cOSO + Ty sin 6 Vez = Yaz cos.G + Yy= sin 6
Tnz = —TazsSinf + 7, cos Tnz = ~Ya2 sin0 + y. cosd

o For an orthotropic material, the straight stresses/strains and shear stresses/strains are
fully decoupled.

o So we will consider different cases of kinematic deformation fields to see if more can be
said.
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Macro-Mechanics Descriptions Material Symmetry and Anisotropy

4.1. Material Symmetry and Anisotropy

Macro-Mechanics Descriptions

o The

(o2 =1

Tez = Tl

Tnz

e For
fully

e So
said|

1. Pure Out-Of-Plane Shear (vz-

@ The stresses and strains are,

g¢g = 0
o, =0
(02 =0)
Ten =0
Tex| _ | cos@ sin@| [74»
Tnz " |—sinf cosf Tyz |:
_ | Cs5YazcosO | _ [Css5ven
—Cs5vzzsin0| " |Cesynz| "

£ 0)

65 =0

en =20

(e2 =0)

Yen =0
Yez | _ | Yoz cosO
Ynz — ez sin 6

e Under symmetry, (7¢., =) is related to (vez,vy2) in the same way

that (Tzz, Ty-) is related to (Yaz,Vyz)-

e So we have,

Ci1 Ci2 Ci3 0 0
Css 0 0
sym Css

[eNeNeNoNo]

Cs

¥ sin 20

¥ sin 260

ns are

can be
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Macro-Mechanics Descriptions

4.1. Material Symmetry and Anisotropy

Material Symmetry and Anisotropy

Macro-Med|
o The

o]

0’5 = —

]

on =
(0. = o
Ten = 7

Te= = 7| e For planar isotropy, the relationship between (o¢,0y) and o, must be

2. Pure Out-Of-Plane Stretch (e,

o We have straight stresses o, = C13e,,0y = Caze>.

e Upon transformation we have,

Ci3 — Ca3

(013 + Ca3
g¢ =

2

cos 29) £z

(013 + Cas
0'77 =

2

Oy = 02

Ten = —

Tez = Tpz =0

C13 — Caz |
— 81

Ci3 —C
— 132 23 c0520> I

n 20

#

0)

Ee = 0
en =0
€z = &z
Yen =0

Yz = Tnz =0

F sin 26

F sin 20

ns are

can be

Tne = independent of #. This is only possible for Ci3 = Cas.
o For e So we have,
fully] Cin Ciz2 Ciz 0 0 0
C13
e So W Caa % 0 0 0
. Cs3 0 0 0
said » o 0
sym Css 0
Css
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Macro-Mechanics Descriptions Material Symmetry and Anisotropy

4.1. Material Symmetry and Anisotropy

Macro-Mechanics Descriptions

3. Pure In-Plane Stretch (¢, # 0,y = 0)
o From the constitutive properties we have o, = C11e, and
oy = Cioey.
e Th v e
o Using this all the other components can be written as
= C C Ci1 —C
oe e = ( 11 + Ci2 4 Gu 12 cos26) . o 14cos20 EY Gin 20
2 2 & 2 * p
In = C C Ci1—C 1 — cos 26 27
il oy = 11 + Ci2 I 11 12 s20 . ey = £ b sin 260
(0s = 2 2 2
= Ci2ez + Ca2ey
Ten = o, =0 £z =
Tez = Ten = 0 Yen =0
Thz = Tez = Tnz = 0. Vez = Ynz = 0.
e Foil e For the o, equality to hold, we need C22 = C11. So we have ins are
full
C11 Cia  Ci3 0 0 0
e So C11 can be
sai C33 0 0 0
Cua 0 0
sym Css 0
Css5
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Macro-Mechanics Descriptions Material Symmetry and Anisotropy

4.1. Material Symmetry and Anisotropy

Macro-Mechanics Descriptions

ol 4. Pure In-Plane Shear (y;y # 0)
o From the constitutive properties we have 74y = Ca47vzy.
1 e Using this all the other components can be written as
¢
= TPV Ginog
oy g = Cyqvaysin20 = Cr1e¢ + Craey e = s
(0, 1 on = —Caqvaysin20 = Ciaee + Crien en = =Y sin20
oy =0 e —o
Ten 3 =c 205 20 s
& én day o8 Yen = Yay cos 20
i Te, = Tha = 0.
Tez 3 nz Yez = Vnz = 0.
Ty E . —_ .
n= @ So we have Cyqvzy sin 20 = %*ﬁy sin 20. Therefore,
e I
f C11 Ci2  Ci3 0 0 0
Cci1  Cis 0 0 0
e S Csg 0 0
S 01155'12
oa’ o 0
sym Css 0
Css

sin 20

sin 260

rains are

re can be
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Macro-Mechanics Descriptions Material Symmetry and Anisotropy

4.1. Material Symmetry and Anisotropy

Macro-Mechanics Descriptions

@ The stresses and strains transform as follows on the plane:

a. b O — T
T¢ To Summarize, T2y in 20
a Transversely Isotropic Material
n constitution can be expressed as Jry op
(o2 Ci Ci C 0 0 0 ’
O 11 12 13 €z
Ten oy Ci1 Cis 0 0 0 ey 260
oz | Cs3 0 0 0 €2
TEz Tay = 011;(712 0 0 Yoy
Tnz Tez sym Css 0 Yoz
° Tyz Cs5| Lyyz trains are
The material is fully characterized by five engineering constants.
° ore can be
said.
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Macro-Mechanics Descriptions Material Symmetry and Anisotropy

4.1. Material Symmetry and Anisotropy: Engineering Constants

Macro-Mechanics Descriptions

o In engineering practice, the constants are usually written easier in terms of compliance.

e For a specially orthotropic material the strain-stress relationship are usually expressed

as,

1 _v21 V31 0 0 0

€1 Eqy Ea2 E33 o1
_ Vi2 1 __ V32 0 0 0

€2 1;3131 E3223 ffss o2
—Zs —z23 = 0 0 0

€3 | _ E11 Eap E33 1 93

= 0 0 T

Y12 Gia . 7-12

13 —_— 13
Y sym PP 0

V23 1 T23
Gas
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Analysis of Planar Laminates

5. Analysis of Planar Laminates

o Let us just consider one thin layer of a transversely isotropic material (continuously
reinforced composite along a single direction).

o Ci1 Ci2  Ci3 0 0 0

€x
oy €11 Ci3 0 0 0 ey
os C33 0 0 0 e
Toy - Skl ;Cl? 0 0 | |vey
Trz sym Css 0 Yz
Tyz Cs5d Hy=
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Analysis of Planar Laminates

5. Analysis of Planar Laminates

o Let us just consider one thin layer of a transversely isotropic material (continuously
reinforced composite along a single direction).

€11 Ci12  Ci3 Y 0 0

€x
Cci1  Cis 0 0 0 ey
Cs3 0 0 0 5
- C11-Ci2
- 0 0 Yay
sym Css 0 Yoz
Css |‘"’yz

e We invoke plane stress assumptions, setting oy = 0. Let us also assume small shears,
Tey = 0, 7y2 = 0.
(Note: €. is not zero, and is implicitly defined)

o1 Cit Ci2 O €1
o2 | =|Ci2 Ca2 O €2 | |(4 constants)
T12 0 0  Cs3] [m2

(Note change in notation in Cij)
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Analysis of Planar Laminates Generally Orthotropic Laminates

5.1. Generally Orthotropic Laminates: In-Plane Rotational
Transformations

Analysis of Planar Laminates .
Up|  [cos® —sinB| [ug
Uy sin 0 cos 6 Uo
—_——————
2 Q
\ y -
— T (xy) = Q0 (1, 2>Q ‘
,Ee ! e What if the coordinate system is not
+! . .
x aligned with the fiber axes? The stress
and strains transform
/: o In the constitutive relationship we have,
Positive 6 Z(1,2) = Q§(1 2)
(Figure 2.11 from Gibson 2012) TU T(ay) =F(1,2) = Cg(l 2) = (;'TE ey
= ey =LoCL tay
O cos? 0 sin? 0 —2cos0sin 6 o1 cr
oy | = sin? 6 cos? 6 2 cos 6 sin 6 o2 o
Tay cosfsinf —cosfsinf cosZ6 —sin? 0 T12 C11 Ch2 0
2 where C = [Ci2  Caz 0
=7 o 0 0 Cs
cos? 6 sin? 0 2cosfsin 6
T ;1 = sin? 0 cos? 6 —2cos0sin 6
—cosfsin® cosOsinf cos? 60 —sin0
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Analysis of Planar Laminates Generally Orthotropic Laminates

5.1. Generally Orthotropic Laminates: In-Plane Rotational

Transformations
Analysis of Planar Laminates wo] _ [cosd —sind] [us
Uy sin 0 cos 6 Uo
—_——————
2 Q
\ y -
— T (zy) = Q0 (1,2Q ‘
/ 3 L e What if the coordinate system is not
ey aligned with the fiber axes? The stress
ansform

Note that Strain Transformation looks slightly different
because of our definition of shear strain vz, = 2ezy.

€x cos” 6 sin” 0 —cos 0 sin 6 €1
ey | = sin? @ cos? 0 cos 0 sin 6 £9
Yy 2cosfsinf —2cosfsinf cos? O — sin? 0 Y12

lutive relationship we have,
F(1,2) = Q§(1.2)
r12) =Cean =CT e,

o) = LoCL " ey
h\,—/
25 C
()y — SIIT U COS™ U COSUSIITU 072 -
szJ Lcos&sinQ —cosOsinf cos? O — sin? GJ Lﬁzj Ciy1 Cia 0
2 where C = |:C12 Caa 0 :| .
=7 0 0 Csg
cos? 6 sin? 0 2cosfsin 6
T ;1 = sin® 0 cos? 0 —2cos 0 sin 6
- —cosfsin® cosOsinf cos? 60 —sin0
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Analysis of Planar Laminates Generally Orthotropic Laminates

5.1. Generally Orthotropic Laminates: In-Plane Rotational
Transformations

Analysis of Planar Laminates .
Up|  [cos® —sinB| [ug
Uy sin 0 cos 6 Uo
|

2
y
r;!: = ‘gw,y) =Q%<LQ>QT‘

Transformed C Matrix (¢ = Cg) he coordinate system is not
, , , hith the fiber axes? The stress

— , C}l C}z 0}3 [ )ansform

g = gi Czi sz lutive relationship we have,

Cyy = Cr1c* + Cons® + (2033 + C12)2¢°s” F1,2) = L2

Chy = Cr1s* + Casc® + (2033 4 C12)20% 57 rao) =Cea,2) = CTa E(a,y)

Ch3 = (C11 + Caz — 2C33 — 2C12)c”s” + Cas(c” + s) L) = LoCT o ey

;o 2 2 4 4 S——

Oy = (C11 + Ca2 — 4C33)c"s” + Cia(c” +s7) cr
oy || Cls = (C11 = 2C33 — C12)c®s — (Ca — 2053 — Cra)es® Cii Ci 0

Cly = (Ci1 — 2C33 — Cra)es® — (Cag — 2C33 — Cia)c’s. fre € = [Ci2 Ca2 0

0 0 Csg
cos? 6 sin? 0 2cosfsin 6

Z;l = sin® 0 cos? 0 —2cos 0 sin 6
- —cosfsin® cosOsinf cos? 60 —sin0
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Analysis of Planar Laminates Generally Orthotropic Laminates

5.1. Generally Orthotropic Laminates

Analysis of Planar Laminates

. . Lo o Based on this we can write,
o Compliance is often more convenient:

4 4 -1
1 c s 1 2u91
(o) LS gy Ep=|—+ —+(— - 2s?
, , , E1 B2 Gi12 1]
ez sty Sty Sig] [ow
_ ¥ s 4 4 -1
ey | = SHo 3?3 oy = s . c . 1 2v97 2 2
Yxy S33 Txy Yy = — - T ¢ =
k By E2 G12 E2
S1p = S11¢? + Sanst + (8 S12)c2s?
11 = S11¢ + S22s" + (S33 +2S12)c”s o4 g ost " "
4 4 2 2 G =[7 ( +—
Spp = S118% + Sgpct + (33 + 2512)c”s Y G1a By By
/ 2 2 4 4 -
Sag = (2511 + 2822 — S33 — 4S12)2¢%s” + Sgz(c” + 5) B Loz )46282} 1
2G19 By

’ 2 2 4 4
Sip = (S11 + S22 — S33)c”s” 4+ S12(c” +57) .
21,4, 4

’ 3 3 =Ey|—(c 5
Si3 = (2511 — S33 — 2S12)c”s — (2539 — S33 — 2S7)es” YYZ y[E2 (e 49

3 3
Sha = (2511 — S33 — 25132)cs® — (2S99 — S33 — 2512)c"s. ( 1 1 1 ) 5 2}
- (= — ) 2s
. L . . E1 By Gio
o In the material principal directions we have,

11° It is customary to express the laminate

€1 . . . .
é _% 0 constitutive relationship as
e2 | = |—FF I 0 g2
1 2 €x 1 Yyz  Nay.x Ox
0 0 o= Be T E Cay
G2 Va v oY
Y12 T12 c | _kzy 1 Doy y o
v | = By Ey Guy y
E, E, Ty
Yy * Y oY Try

[Engineering Constants: Eq, Eg, G1a, V12 ]
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Analysis of Planar Laminates

Generally Orthotropic Laminates

5.1. Generally Orthotropic Laminates

Analysis of Planar Laminates

o Based on this we can write,

e Compliance is often more convenient:

The Shear Constants can be written as
Eay) =LeSLs I(a,y) e 2 1 2v27 3
= —_— - =+ c’s
|:E:c:| Sil S/}Z giS oz Mey,w Y E1 G12 E2
Sy | = 22 3| | 7w
Yy S§3 Ty _ (i B 1 21/21) cs3:|
Sh1 = Sy1et + Sopst 4 (S33 + 2512)c?s? Ey Giz  Es
2 1 2001
59y = S11s” + Sape? + (S + 2519)cs7 Nay,y Gmy[<— - = cs®
’ 2 2 E, Gi2 E>
S33 = (2511 + 2822 — S33 — 4512)2c¢”s” + S33( ) . .
21 3
2 2 4 4 — R
Slp = (S11 + S22 — S33)e”s” + S1a(c* +5%) (E2 Cra o ) c s]
Siz = (2511 — S33 — 2512)c®s — (2599 — S33 — IS g)es” TUT N j
Sha = (2511 — S33 — 2813)es® — (289 — Sz3 — 2S19)cs.

o In the material principal directions we have,

Balaji, N. N.

el 1 _wm 71
z 1z
— |42 1 0
€2 = B, Ey g2
1
0 0 eTp
Y12 T12

[Engineering Constants: Eq, Eg, G1a, V12 ]

(AE, IITM)

AS2070

L)

( 1 1 1

By Bz  Gi2

o It is customary to express the laminate
constitutive relationship as

Ex vy O
By
_ 1
€y | = Ey Ty
Ny, zy
By
Yzy Txy
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5.1. Generally Orthotropic Laminates

Analysis of Planar Laminate

o Compliance is often |

E(z,y)

Ex
€y
Yry
’
S11
’
S22
’
S33
’
Si2
’
Si3

’
Sa3

o In the material princ

Balaji, N. N.

Analysis of Planar Laminates

—1

=LeST 5 (g,
/ /
511 Sj2
= S22

= S11¢* + S99t
=5115% + Sgpc?
= (2511 + 2505 —
= (S11 + S22 — S
= (2511 — S33 —

= (2511 — S33 —

el 1]
E
N
E2 = E
0
Y12

Off- Axis Modulii

=5 Carbon/epoxy
—=— Boron/a
—6— Glass/epoxy

Generally Orthotropic Laminates

vrite,

T A R B
0 10 20 30 40 50 60 70 80 90

1) S S N B B
0 10 20 30 40 50 60 70 80 90

0.6!

0.5

0.4

0.3

0.2

0.1

1) S I S S A B B
0 10 20 30 40 50 60 70 80 90

—S-Carbon/epoxy
—#—Boron/aluminum
—6—Glass/epoxy

be written as
1 2 .
—+ V21> css
E>

2U21> 3:|
F+——)cs
b Es

1

I~
€3

2v.
n 21) s
12 E;

)]
F+——c’s
b Es

o

-2 A I
0 10 20 30 40 50 60 70 80 90

o

(Figure 2.14 from Gibson 2012)

[Engineering Constants: Eq, Eg, G1a, V12 ]

(AE, IITM)

AS2070

LTzyd
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Gi2

ess the laminate
p as

| vyz  nzy.e O
By Gy
1 nay.y o
Ty Gy y
Y,y 1
E, [P
y zy Toy
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Analysis of Planar Laminates Numerical Examples

5.2. Numerical Examples: 1

Analysis of Planar Laminates(Example 2.2 from Gibson 2012)
Consider an orthotropic laminate with the properties
FE1 = 140 GPa, E5 = 10 GPa, G12 = 7GPa, v12 = 0.3, v23 = 0.2.

Compute the strains if it is subjected to the following state of stress in the principal
coordinates:

o1 = 70 MPa, o2 = 140 MPa, 112 = 35 MPa, o3 = 712 = 723 = 0.

o

R

=l

—
l Note: 63 =T13=Ty3=0

(Figure 2.10 from Gibson 2012)
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Analysis of Planar Laminates Numerical Examples

5.2. Numerical Examples: 2

Analysis of Planar Laminates(Example 2.3 from Gibson 2012)

A 45° off-axis tensile test is conducted on a generally orthotropic test specimen by applying
a normal stress o,. The specimen has strain gauges attached to measure axial and transverse
strains (ez,ey). How many engineering parameters can be estimated from measurements of
Oz,€x,Ey !

45° off-axis tensile
test specimen

y
2 1
- o
45°
' /
Strain gage for Strain gage for
measuring €, measuring €,

(Figure 2.15 from Gibson 2012)
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Classical Laminate Theory

6. Classical Laminate Theory

e In the Kirchhoff-Love Plate Theory we had,

El=
I
loo][SS
[il]fss]
I 1=,

where
1 v 0 1 v 0
E Et3
A= t2y1 0 ,Q:%Vl 0|, B=o0.
= 1=y o 1;u = 120-v?) |y o 1zv = =
@ This can also be written in terms of thickness moments of the constitutive matrix
v
C=1=5|v 1 10 as
—V
0 0 5

[FS
I
—u
1oy
u
R
[>3]
I
\w\»
N
I
&
[}
I
\w\
N
N
lie}
Qu
IS

ol
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Classical Laminate Theory

6. Classical Laminate Theory

o Suppose we had different laminate plies along the thickness, such that the constitutive
matrix is C'; for z € (2, z4+1) and —% =21 << zy= %
e Then the A — B — D matrices are written as the sums,

2 2
z Z;

— 3
=y e, b =Z%Qi~

|+S

= (ziy1—2)C4,

[Is]

Unlike isotropic plates, composite laminates can have non-zero B matrix
(moment-planar coupling), bending-twisting coupling, etc.

D

o This

[Sv1E

} matrix is known as the Laminate Stiffness Matrix.

Balaji, N. N. (AE, IITM) AS2070 January 21, 2026 29 /34



Classical Laminate Theory The Laminate Orientation Code

6.1. The Laminate Orientation Code

Classical Laminate Theory

[0/90/45], [(0/730),]
S —
(80" |
+30°
o
(=
. ) | 00 ]
o Ply angles separated by slashes, ordered
from top to bottom _
[(0/90),/45],
e Subscript “s” for symmetric laminates %
o Numerical subscripts for repetitions 507
45° i
o Center ply with an overbar for odd T
. | o ]
laminates S
o 1
(See sec. 7.1 in Gibson 2012)
Types 0/745/0/90], [90/45/30/0/90/45]
© s 7
@ Symmetric, Antisymmetric, Asymmetric —45°
S
@ Angle-Ply, Cross-Ply, Balanced, 7/4 . © o )
. 2 (90 %
laminates g
sy

(Figure 7.1 from Gibson 2012)
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6.1. The Laminate Orientation Code

Classical Laminate Theory

The Laminate Orientation Code

Summary of Laminate Stiffnesses

Table 3.4. The [A], [B], [D] matrices for laminates. When the laminate is
symmetrical, the [B] matrix is zero. Cross-ply laminates are orthotropic.

[(0/730),]

Gibson 2012)

[A] 8] 01
Symmetrical
(4 A 4] [ooo Dy D Dy
Ap An Ay 000 Dy Dn Dy
o Ply angles separate LA A Au] 000 | D Dy Dy
from top to bottom|  puuncea
o Subscript “s” for sy] [A: 4: 0]  [B: B: Bu (Dw D: Du
) . Ar Az 0 B: Bz B Dy Dz D
o Numerical subscripf 0 0 Aw B Bx Buw D Du De
o Center ply with an Orthotropic
laminates [ A 0 (B, B, 0 Dy Dy 0
Ay Ay 0 By By 0 Dy Dy 0
0 0 A 0 0 B 0 0 Dy
Isotropic
T, B & =
YB Ay Ap 0 B, By 0 Dy Dy 0
@ Symmetric, Antisym ”"03 ':)“ ,”?AI_, l:;’ ‘:;' 5,,9M, l::],; l()]" :-.,(:)n;
@ Angle-Pl -P1 5 i : ' ) i
ng‘ © ¥, Cross o Quasi-isotropic
laminates 5 ~ _
Ay Az 0 By By By Dy Dy Dy
Ay Ay 0 By By By Dy Dy Dy
0 0 M| |B By By Dy Dy Des
(Table 3.4 from Kolldr and Springer 2003)
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6.2. Laminated Beams

Classical Laminate Theory

o Consider a beam with a symmetric section on the x — y plane. Invoking Kirchhoff
kinematic assumptions we have: g, = u/ — yv”’.

The stress distribution will depend on the section-coordinate. In general we will have:
oz = Bz (y)ee = Ex(y) (v — yv”).
o We get the effective normal reaction N, by integrating the stress over the section:

e ] [ e

e Similarly we get the bending moment M. as the first moment of the stress,

M = /A*ycz = [/A nyz(y)} u + [/A yzEz(y)} v,

o In summary we have the beam-analog of the laminate stiffness matrix,

AR eI

Important note: We
have assumed that no
torsion/twist is present.
See Kollar and Springer
2003 for the general form.
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6.2. Laminated Beams

Classical Laminate Theory

e For a laminated composite with a rectangular section with width b, the integrals may be
simplified as,

N N 2 2

Yit1 — Y

A:/AEw(y) = Baib(yit1 — i), B:/Anym(y): -> Eub%
i=1

i=1

N ¥
D:/ VB, (y) = Y By b=ttt
A i=1 3

e For plies of uniform thickness we can write

h h
i = T3 '_177
Y p Pi-Dg

which leads to:

h & n? X
A= NZEI B= WZEM(QF N —1),
i=1 =1
h X
= 5N > " E.i(12i — 12Ni 4 12N? 4+ 3N? + 6N +4)
i=1
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6.3. Numerical Example

Classical Laminate Theory

Determine the ABD matrix for the following composite beams where the ply thickness is
1 mm and beam width is 10 mm:

e [0/90]s, and
e [0/90,/0/90].

Assume the following properties for each lamina: F1 = 140 GPa, F3 = 10 GPa, G12 = 7GPa,
vi2 = 0.3, vo3 = 0.2.

Balaji, N. N. (AE, IITM) AS2070 January 21, 2026 33 /34



Classical Laminate Theory Numerical Example

References I

[1]

[2]

13]

[4]

[5]

[6]

18]
19]

Ronald F. Gibson. Principles of Composite Material Mechanics, 3rd ed. Dekker Mechanical Engineering. Boca
Raton, Fla: Taylor & Francis, 2012. 1sBN: 978-1-4398-5005-3 (cit. on pp. 2, 17-22, 35-41, 51-58, 61, 62).

Lészl6 P. Kollar and George S. Springer. Mechanics of Composite Structures, Cambridge: Cambridge
University Press, 2003. 1sBN: 978-0-521-80165-2. pol: 10.1017/CB09780511647140. (Visited on 01/11/2025) (cit. on
pp. 2, 16, 20, 21, 25, 61 63).

T. H. G. Megson. Aircraft Structures for Engineering Students, Elsevier, 2013. 1spn: 978-0-08-096905-3
(cit. on pp. 2, 8-12).

Isaac M. Daniel and Ori Ishai. Engineering Mechanics of Composite Materials, 2nd ed. New York: Oxford
University Press, 2006. 1SBN: 978-0-19-515097-1 (cit. on pp. 2, 23, 24).

NPTEL Online-1IIT KANPUR.
https://archive.nptel.ac.in/content /storage2/courses/101104010/ui/Course-home-1.html. Jan. 2025. (Visited
on 01/22/2025) (cit. on pp. 3-6).

Carbon Fiber Top Helicopter Blades. Jan. 2025. (Visited on 01/22/2025) (cit. on pp. 3-6).

Sevket Kalkan. “TECHNICAL INVESTGATION FOR THE USE OF TEXTILE WASTE FIBER TYPES IN
NEW GENERATION COMPOSITE PLASTERS”. PhD thesis. July 2017 (cit. on pp. 3-6).

“Micro-Mechanics of Failure”. Wikipedia, (May 2024). (Visited on 01/22/2025) (cit. on p. 7).
Simon Skovsgaard and Simon Heide-Jgrgensen. “Three-Dimensional Mechanical Behavior of Composite with

Fibre-Matrix Delamination through Homogenization of Micro-Structure”. Composite Structures, 275, (July
2021), pp. 114418, DOI: 10.1016/j.compstruct.2021.114418 (cit. on p. 7).

Balaji, N. N. (AE, IITM) AS2070 January 21, 2026 34/34


https://doi.org/10.1017/CBO9780511547140
https://doi.org/10.1016/j.compstruct.2021.114418

	Introduction
	What are Composites?
	Modeling Composite Material
	Constitutive Modeling for Composites
	Classical Laminate Theory

	Composite Materials
	Types of Composite Materials

	Micro-Mechanics Descriptions
	The Rule of Mixtures
	Numerical Example

	Macro-Mechanics Descriptions
	Material Symmetry and Anisotropy

	Analysis of Planar Laminates
	Generally Orthotropic Laminates
	Numerical Examples

	Classical Laminate Theory
	The Laminate Orientation Code
	Laminated Beams
	Numerical Example

	References

