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Introduction What are Composites?

1.1. What are Composites?

Introduction

e Structural material consisting of multiple non-soluble macro-constituents.

e Main motivation: material properties tailored to applications.

e Both stiffness and strength comes from the fibers/particles, and the

matrix holdes everything together.
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Types of composite materials (Figure from NPTELOnlineITKANPUR)

Examples
@ Reinforced concrete

@ Wood (lignin matrix reinforced by
cellulose fibers)

@ Carbon-Fiber Reinforced Plastics
(CFRP)
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Introduction What are Composites?

1.1. What are Composites?

Introduction

e Structural material consisting of multiple non-soluble macro-constituents.

CFRP Helicopter Blades
q
e
o
s Py utr o PN caenrive
e e
oo

i 245’ Carbon Fibre.
[Eration Sijd Cross Ply Inner Wrap

Heater Mat Glass Fibre.

et
EX (Figures from CarbonFiberTop)
ICITITOTCEA COTICTCTC @ ~2Z2X STIIINess, ~3X strength, ~ (U7

@ Wood (lignin matrix reinforced by weight of AA.

cellulose fibers) @ High fatigue resistance. But quite brittle.
@ Carbon-Fiber Reinforced Plastics @ Main- and tail-planes, fuselages, etc.
(CFRP) Helicopter blades.
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1.1. What are Composites?

Introduction

e Structural material consisting of multiple non-soluble macro-constituents.

B e Laminated Composites
< WP
Woven glass outer ski LAMINA —_—
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Gross Py O o
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@ Wood (lignin » Kalhan 2
cellulose fibey (Figure from Kalkan 2017) But quite brittle.
@ Carbon-Fiber Remforced Plastics @ Main- and tail-planes, tuselages, etc.
(CFRP) J Helicopter blades.

Balaji, N. N. (AE, IITM) AS2070 January 19, 2026 3/34



Introduction Modeling Composite Material

1.2. Modeling Composite Material

Introduction

Two main approaches:

Macro-Mechanics

Micro-Mechanics

Square array Unit cell

- ﬁ . (m @

AiA
Cross-sectional view of continuous < o =
fiber reinforced composites

Hexagonal array Unit cell

(Figure from “Micro-Mechanics of Failure” 2024)

@ ®)

Homogenization of micro-structure (Figure
from Skovsgaard and Heide-Jorgensen 2021)
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(Figure from “Micro-Mechanics of Failure” 2024)
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Homogenization of micro-structure (Figure
from Skovsgaard and Heide-Jorgensen 2021)
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Introduction

1.3. Constitutive Modeling

Introduction

Axial Elongation

— )
Matrix [—
I
-— —
2 2 Filament i o
-_— L [
|
-— Matrix !
-— f—t
[ | |

@ Strain is fixed, but stress experienced by
media differ.

g = ELEZ
@ Stress-strain relationship simplifies as,

Om :Em&‘[, o'f:EfEl
oA =0mAnm +t7fAf

Am

A
— ElziEf%* A

A

En |

Constitutive Modeling for Composites

for Composites
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Introduction

Constitutive Modeling for Composites

1.3. Constitutive Modeling for Composites

Introduction

Axial Elongation

)
Matrix [—
|
— —
4 i Filament 3 q
— _ [
|
-— Matrix P
— [—

@ Strain is fixed, but stress experienced by
media differ.

o] :ElEl

Transverse Elongation

Filament

Matrix

@ Stress is fixed,

strains differ:

etlt = emlm +eyly
@ Stress-strain relationship simplifies as, o oy o
L L L
E, E., Ey
O’m=Em81, Uf=EfEl
0lA=0mAm + oAy — 1t 1y
E, E,, 1 Ey l;
— B =2 4+ Arp ‘
P T
(Figures from Megson 2013)
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Introduction Constitutive Modeling for Composites

1.3. Constitutive Modeling for Composites

Introduction: Poisson Effects

Axial-Transverse Coupling

—_ -— ,
Matrix [
i
-— o
A a Filament ! 9
— | —
3
- Matrix B
-— j —
| |

.

/ [ arl

@ Transverse displacement written as

Aty = vmeilm + ufallf:: vizerly

l l
= Vlt:ﬂel“l’i

lt ltSf .

(Figures from Megson 2013)
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Introduction Constitutive Modeling for Composites

1.3. Constitutive Modeling for Composites

Introduction: Poisson Effects

Transverse-Axial Coupling

0!
Axial-Transverse Coupling T T T T T t
T : Matrix i Matrix In/2
[ -
A a : Filament i e i Eilament I
T B
- Matrix e
- ) Matrix I 12
[ | |
T b
g

@ Transverse displacement written as

At = vmely +vielyi= viely @ Axial displacement written as

lm lf Ot

t t
— Vf§— = V¢ —
= | V¢ I ElJrltEf . Em fEf t E,,’

E
= |Vt = — Vit |
Ey

v

(Figures from Megson 2013)
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Introduction

Constitutive Modeling for Composites

1.3. Constitutive Modeling for Composites

Introduction: Poisson Effects

Transverse-Axial Coupling

Axial-Transverse Coupling T ! T T t f
: Matrix . Matrix
, o T Filament i Filament

ig

@ Transverse displacement written as

Matrix

Clearly, the modulii are differ-
ent along different directions!

\i l

@ Axial displacement written as

ot

t £
= Vil />

ve—:
T E; E;

t
v = Vit |
E;

v

Ay = vmelm +vely:= viely
lm l
= v = 2o+ Leg | Vm
It It
v
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1.3. Constitutive

Introduction: Anisotropy

Introduction

Constitutive Modeling for Composites

Modeling for Composites

General Anisotropy

Oz Cnn Ci2 Ciz Cu Cis Cie Exa

Oyy Ciz2 Caa Ch Coy (a5 Oy Eyy

Oz Ciz Caz C33 O34 O35 Csel| |ez

Oy Cia Cos Csza Cua Cus Cue Yy

Ozxz Cis Cos Cs5 Cus Css  Cse Yz

Oy- Cie Cx Css Cis Cse Cos] [Vy= )

a
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1.3. Constitutive

Introduction: Anisotropy

O-‘Tfl/'
Tyy
UZZ
Oxy
Oxz
Uyz

Introduction

Constitutive Modeling for Composites

Modeling for Composites

Cn
CIQ
Cis
Cia
Cis
Cie

General Anisotropy

Cis
Cae
Cse
Cas
Cse
Ces

Oxx Cii Ci2 Ciz Cu 0 0 Exax

Oyy Ciz Ca Coz3 Caa O 0 Eyy

02| _|Ciz Caz C33 C3a 0 0 €2z

Oy T |Cy Oy Czq Cug 0 0 Yoy

o 0 0 0 0 Css Cse| [7Va=

O'yz 0 0 0 O 056 066 ’yyz )
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Introduction Constitutive Modeling for Composites

1.3. Constitutive Modeling for Composites

Introduction: Anisotropy

Orthotropic: Three Orthogonal Planes of Symmetry

Oxx Cll ClQ CIB O 0 0 Exx
Tyy 012 022 023 0 0 0 Eyy
0.2  |Ciz Caz Czz 0 0 0 €2z
Oxy o 0 0 0 Cua 0 0 Yy
Oxz 0 0 0 0 055 0 Yz
Tyz 0 0 0 0 0 066 Yyz
.
Transversely Isotropic
Oza Cii Ciz2 Ciz O 0 0 Caw
Tyy 012 022 013 0 0 0 Eyy
02|  |Ciz Ciz Csz 0 0 0 €2z
osy| | O 0 0 Cay 0 0 Yy
Oxz 0 0 0 0 044 0 Yz
Ci11—Ci2
Oyz 0 0 0 0 0 o2 Vyz
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Introduction Classical Laminate Theory

1.4. Classical Laminate Theory

Introduction

Reference plane

Figures from Kollar and Springer 2003
(=]
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Composite Materials

2. Composite Materials

600,000 Nk irapolates to 1.600.000 psi (11.000 MN/m?)
500,000
~
i)
5 400,000
=
I3
§ 300,000 Extrapolates to approximate
@ strength of bulk glass
)
=5 25.4 i (170 MN/m?) ——
Z 200,000 - 5.000 psi (170 /m?)
2
100,000

1000 1000 1000 1000
Thickness of fiber, in

Griffith’s experiments with glass fibres (1920)
(Figure from Gibson 2012)
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Composite Materials

2. Composite Materials

600,000
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Griffith’s
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Extrapolates to 1.600.000 psi (11.000 MN/m?)

Extrapolates to approximate
strength of bulk glass
25.000 psi (170 MN/m?) —

(AE, IITM)

1000 1000 1000
Thickness of fiber, in

experiments with glass fibres (1920)
(Figure from Gibson 2012)
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Composite Materials Types of Composite Materials

2.1. Types of Composite Materials

Composite Materials

FIGURE 1.4
Types of fiber-reinforced composites. (a) Continuous fiber composite, (b) woven composite,
() chopped fiber composite, and (d) hybrid composite.

(Figure from Gibson 2012)
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Micro-Mechanics Descriptions The Rule of Mixtures

3.1. The Rule of Mixtures

Micro-Mechanics Descriptions

The rule of miztures is introduced as a very simple framework for developing
“overall” /representative mechanical properties.

Basic Definitions

Subscripts ()¢, (+)m, (-)v, and (-). denote quantities corresponding to the fiber,
matrix, void, and composite (as a whole).

Volume Fraction vy = Zf,fum = Vv,v —= V—’{ such that vy + v, + v, = 1.

Note that composite densrcy Pe = Pfvf + PmUm.

Weight Fraction w; = 2Lu;

E = UfEf + v B,

-1
vf Um
(Ef - Em)
V12 = VfVf + UmlUm
A, = Matrix area —1
vy
xX)G1g9 =
(x)Gh2 (Gf +Gm
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Micro-Mechanics Descriptions The Rule of Mixtures

3.1. The Rule of Mixtures

Micro-Mechanics Descriptions

The rule of miztures is introduced as a very simple framework for developing

“overa’ RoM is not always satisfactory!
Basic ¢ Finite difference
Subscri s gl iz 5 gu > fiber,
matrix, 4 { * T o MROM
Volum * ’ . 1
olum = 1.
3 ROM 2 ROM
Weigh | :
¢ 0 4 t t > 0
1 10 100 1000 E ! 10 100 1000 Gy
E, G
Figure 11.8: The transverse Young and shear moduli calculated by the rule of mixtures (ROM), Em
the modified rule of mixtures (MROM). the Halpin-Tsai (H-T) equations, and the finite differ-
ence solutions (circles) of Adams and Doner (v = 0.55).
-a‘
T'“ (Figure 11.8 from Kolldr and Springer 2003)

/ _— A, = Matrix area

vy
(Figure 3.5a from Gibson 2012) <X >Glz - ( +
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Micro-Mechanics Descriptions The Rule of Mixtures

3.1. The Rule of Mixtures

Micro-Mechanics Descriptions

@ The mismatch is related to the fact that our idealized picture was a poor
representation of reality to begin with. More geometrical details of the
fiber arrangement are necessary.

I

Eps

Sf (v Ly
| R e L
1L "B

B
7
N

S—S8f

S
(Figure 3.8 from Gibson 2012) E2 — EB2 l J'_ Em
S

= Epa/Us + En(1 — /vy)

T Y ’Uf
sp=1/7ds=/—d = En |(1—/v5) + v
4 dvg 1—op(1— &)
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Micro-Mechanics Descriptions The Rule of Mixtures

3.1. The Rule of Mixtures

Micro-Mechanics Descriptions

(Recommended reading: Sec. 3.2.3 in Daniel and Ishai 2006)

The Halpin-Tsai Equation

14 &noy E;—FEn,

B =By, . p=
? 1 —nvy K Ef +&En
. Ef +EEu + v (Ef — En)
" Ef +¢Em —vi(Ef — Em)

Note: £ = 2 for circular section fibers. £ = 27" for rectangular fibers (b being loaded

side).

Case 1: £ =0 Case 2: £ - oo

-1
v 1—-wv
Ez:(—f—k f) Ey = Eyvy + En (1 —vy)
Ey E., A
Series, Reuss model. Parallel, Voigt model. y
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Micro-Mechanics Descriptions The Rule of Mixtures

3.1. The Rule of Mixtures

Micro-Mechanics Descriptions

Graphical Comparison for varying ==

shai 2006)
5 10
: <
4 o 8
o
2
E]
3 3
=
2
3
2 2
£
s
o
1 -
0.00 0.25 0.50 . 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Fiber volume fraction v, Fiber volume fraction v,
Note: 2 loaded
. B Voigt Model
51de) . < Reuss Model
! Modified RoM
w15 Halpin-Tsai —
w
2
E]
2
210
2
B
8
a
£ 5
S
o
0.00 0.25 050 075 1.00
Fiber volume fraction v,
Series, y; )
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Micro-Mechanics Descriptions Numerical Example

3.2. Numerical Example

Micro-Mechanics Descriptions

(from Kolldr and Springer 2003)

Consider a Graphite/Epoxy unidirectional ply. Matrix properties are given
with subscript m in the table below. Nominal properties with fiber volume

fraction vy = 60 % are also given. Assume that the fibers show anisotropy
(Ef1 # Efa2).

By Ey G vig | Epn Gpn  Un
Value | 148 9.65 4.55 0.3 | 4.1 1.5 0.35

All modulit in GPa.

Estimate the following:
e Fiber modulus properties

e Composite material modulii for volume fraction vy = 0.55.

(Also discussed sensitivity analysis)

Balaji, N. N. (AE, IITM) AS2070 January 19, 2026 15 /34



Macro-Mechanics Descriptions Material Symmetry and Anisotropy

4.1. Macro-Mechanics Descriptions

Material Symmetry and Anisotropy

Material Symmetry

The study of material symmetry is concerned with finding answers to the question:
If the strain field on a deformable object is changed, how does the stress field change?

Balaji, N. N. (AE, IITM) AS2070 January 19, 2026 16 /34



Macro-Mechanics Descriptions  Material Symmetry and Anisotropy

4.1. Macro-Mechanics Descriptions

Material Symmetry and Anisotropy

Material Symmetry

The study of material symmetry is concerned with finding answers to the question:
If the strain field on a deformable object is changed, how does the stress field change?

Consider the following Deformation Fields

Deformation Case 1

Deformation Case 2 (Case 1 Rotated)

Balaji, N. N. (AE, IITM) AS2070 January 19, 2026 16 /34



Macro-Mechanics Descriptions  Material Symmetry and Anisotropy

4.1. Macro-Mechanics Descriptions

Material Symmetry and Anisotropy

Material Symmetry

The study of material symmetry is concerned with finding answers to the question:
If the strain field on a deformable object is changed, how does the stress field change?

Consider the following Deformation Fields
Stress and Strain Field

Strain ¢, Strain e

Eyy Straine,,
3
2 10 )
1 0s N
o 0 o
-1 -0.5 -1
-2 -1.0 -2
-3
Stress o, Stress o, Stress o,
030 03 02
02
025 o 01
o 0 o
—0.25 -0l -01
-0z
-050 —03 —02

Isotropic Stress-Strain Relationship

Deformation Case 2 (Case 1 Rotated)
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Macro-Mechanics Descriptions Material Symmetry and Anisotropy

4.1. Macro-Mechanics Descriptions

Material Symmetry and Anisotropy

Material Symmetry

The study of material symmetry is concerned with finding answers to the question:
If the strain field on a deformable object is changed, how does the stress field change?

Consider the following Deformation Fields

Stress and Strain Field Stress and Strain Field
Strain ¢, Straine,, Straine,, Strain ¢, Straine,, Strain e,
5 100 3 N
2 10 2 075 2 2
0350
1 0.5 1 0.25 1 N
o 0 o o o o
-1 -05 -1 -025 -1 -1
- - o - -
=3 -1.00 -3 -3
Stress o, Stress o, Stress o, Stress o, Stress o, Stress g,
o 0 o 0
025 b 01 01 025 01
o 0 o o o o
025 o o1 -01 025 o1
050 -03 ~02 02

Isotropic Stress-Strain Relationship Isotropic Stress-Strain Relationship
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4.1. Macro-Mechanics Descriptions

Material Symmetry and Anisotropy

Material Symmetry

The study of material symmetry is concerned with finding answers to the question:
If the strain field on a deformable object is changed, how does the stress field change?

Consider the following Deformation Fields

Stress and Strain Field Stress and Strain Field
Strain ¢, Straine,, Strain ¢, Strain ¢, Straine,, Strain e,
5 100 3 5
2 10 2 075 2 2
0350
1 0.5 1 0.25 1 N
o o o o o o
-1 -05 -1 oz = -1
-2 -1.0 -2 —0.75 -2 -2
=3 -1.00 -3 -3
Stress o, Stress o, Stress o, Stress o, Stress o, Stress g,
- 0.20 0.20 - 0.03 - 0.20
030 oois 015 o 015
010 010
0z oo o8 oo
o o o o o o
s oo o Toro o
~001 002
oae —o1s
050 ~o015,

~0.03

Anisotropic Case Anisotropic Case
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Macro-Mechanics Descriptions Material Symmetry and Anisotropy

4.1. Macro-Mechanics Descriptions

Material Symmetry and Anisotropy

Material Symmetry

The study of material symmetry is concerned with finding answers to the question:
If the strain field on a deformable object is changed, how does the stress field change?

Consid \[ost materials exhibit some [Eields
Stress and Str{ (.t of symmetry and general wnd Strain Field
Strain ¢, Strain <,, anisotropy is almost never  [Straine, Strain <.,
: encountered in practice. : :
0 — 0 0 0
-1 -05 :‘;:z -1 —:
- -10 —0.75 -2 -
Stress o, Stress o, Stress o, Stress o, Stress o, Stress g,
o o o
ooos 0 00
o o
—0.50 ~0.015 ~0.20 —0.03 412;

Anisotropic Case Anisotropic Case

Balaji, N. N. (AE, IITM)

AS2070
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Macro-Mechanics Descriptions Material Symmetry and Anisotropy

4.1. Material Symmetry and Anisotropy

Macro-Mechanics Descriptions

How do stresses and strains transform under coordinate change? )

e Suppose z € R? are the coordinates of a point in 3D space.
o Let 2’ € R? be the coordinates under transformation.

o We will write: |z’ = Qz|, with @ ' =Q7.

Strains

Stresses
°c =3 (yfﬂ+ quT) e C uchy Stress Definition: t =g n
o Vyu' =QVyuQ ™! e Qt=t'=g'n'=c'Qn=Qan
= |£'=QeQ" = QIIQQQT
— —— .

Reflections

Note that reflections may be expressed as a coordinate change with

1 0 0
Q=10 1 0 [ (reflection about the zy plane).
0 0 -1
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Macro-Mechanics Descriptions Material Symmetry and Anisotropy

4.1. Material Symmetry and Anisotropy

Macro-Mechanics Descriptions

@ Under reflection about the xy plane, the strain transforms as,

’

’
/ . . r Ya 7.
el ;y :/52 1 . . €x ;y ;z 1
/ Tyz = . 1 . [ Dyz 1
v 2 vz
sym e |- - —1] |sym € - =1
B € ’Y;y _ D=z
— _ y=z
= Ey 2
sym €z
° So in Voigt notation we have ,
/ /
Ey . 1 . . . . Ey O—y . 1 . . . . oy
EZJ I R . . €2 01’} I . . . o
/ - / -
Yoy e . Yey Thy e : Tay
! /
Yrz . . . . —1 . Yz Tix . . . . —1 . Tz
/ /
Vi e . —1] |y . S . —1] |7y=

Similarly for Stress
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Macro-Mechanics Descriptions Material Symmetry and Anisotropy

4.1. Material Symmetry and Anisotropy

Macro-Mechanics Descriptions

@ Under reflection about the xy plane, the strain transforms as,

If a material were symmetric about the xy plane, then re-
flecting the strain field about the xy plane will result in
a stress field that is reflected about the same zy plane.
Note
@ Strain field reflection is a kinematic operation/configuration
change.
° N @ Change in the Stress field is the effect that the above
5/1 kinematic change results in. O a
3’ @ [f the material happens to be symmetric about the reflection Zy
fd plane, then this change will be a reflection. ?
Yzy 4 Ty
’Y;Z T.’L‘Z
/ T
Yy L - M lwl In.l L - - - - 1] 1%

[ Similarly for Stress l
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Macro-Mechanics Descriptions

Material Symmetry and Anisotropy

4.1. Material Symmetry and Anisotropy

Macro-Mechanics Descriptions

e We have said the following :

Balaji, N. N.

O Ci11 Ci2
oy Cao
o. |

Toy |

4l @
Ty

Cis
Cas
Cs3

Cia
Cay
C3a
Caa

Css

Cie Ex
025 Ey
C3e €z
Cao | | Vay
Cse Yoz
Ce6 Yyz

Recall that this symmetry follows from strain energy existence

’

Ty Ci1 Ci2
‘-717/ Caa
UZ —
Tl -

zy
e sym
Ty x

Cis
Cas
Css

Cia
Cay
C3a
Caa

Cis
Cas
Css
Cus
Css

Cie 5:1
C26 E';/
Csg €,
Cue ’Y;y
gsa Vpa

(T I

(The C matrix is the same in both the original and the

reflected coordinate systems)

(AE, IITM)

AS2070
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Macro-Mechanics Descriptions Material Symmetry and Anisotropy

4.1. Material Symmetry and Anisotropy

Macro-Mechanics Descriptions

a Wo havo ¢aid the fallawing -

This leads to

Ci1 Ci2 Ciz Cis —Ci5 —Cis Cin Ci2 Ciz Cia Cis5 Cis
022 023 024 _025 _026 022 023 024 025 026

Csz3 Czqg —Cs35 —Cze| _ Cs3 Czq4 C35 Cse

Cys —Cus  —Cus| Cas Cus  Cae

sym Css Cse sym Cs5  Chse

Ceo Ceo

Recall that this symmetry follows from strain energy existence

U:;c Cin Ci2 Ciz Cia Ci5 Cis 5:1
Ty Coz  Caz Cay Caz5 Ca cy
7| = Cz3 Czq C35 Cs6 €,
Toy Cuaas Cus  Cue “/;y
*rg;z sym Css gss 'y;z
Tye 66l Ly,

(The C matrix is the same in both the original and the
reflected coordinate systems)
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Macro-Mechanics Descriptions Material Symmetry and Anisotropy

4.1. Material Symmetry and Anisotropy

Macro-Mechanics Descriptions

a Wo havo ¢aid the fallawing -

This leads to

Ci1 Ci2 Ciz Cia

022 023 024

Czz  C3y

- Cuag
sym

Ci1 Ci2 Ciz Cia
Caz Ca3  C24
Czz  Czy
Cag
sym

Recall that this symmetry follows from strain energy existence

U:;c Cin Ci2 Ciz Cia Ci5 Cis 5:1
Ty Coz  Caz Cay Caz5 Ca cy
7| = Cz3 Czq C35 Cs6 €,
Toy Cuaas Cus  Cue “/;y
*rg;z sym Css gss 'y;z
Tye 66l Ly,

(The C matrix is the same in both the original and the
reflected coordinate systems)
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Macro-Mechanics Descriptions Material Symmetry and Anisotropy

4.1. Material Symmetry and Anisotropy

Macro-Mechanics Descriptions

a Wo havo ¢aid the fallawing -

This leads to

Ci1 Ci2 Ciz Cia
Caz Ca3 C24
Cs3z  Csy

Cyp Ci2 Ciz Cig
Caz Ca3  C24

Cs3  Csy

Caa

sym sym

Finally we see that material symmetry about the xz plane im-
plies the following simplification to the constitutive relationship.

Oz Ci1 Ci2 Ciz Cia 0 0 o
Ty 022 023 024 0 0 Ey
ox | _ Cs3  Csq 0 0 €z
Ty | Caa 0 0 Yzy
Tez sym Css  Cs6| | Vo=
Tyz Ces Yyz

This is known as a Monoclinic Material (13 con-

stants). This is also quite rare to encounter in practice.
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Macro-Mechanics Descriptions Material Symmetry and Anisotropy

4.1. Material Symmetry and Anisotropy

Macro-Mechanics Descriptions

Suppose all the three fundamental planes are planes of sym-
metry, we have an Orthotropic Material (9 constants).

o1 C11 Ch2 Ci3 0 0 0 €1
o2 022 023 0 0 0 €2
g3 . 033 0 0 0 €3
Ti2| 0 0 Y12
T13 0 Y13
723 Y23

(Figure 2.5 from Gibson 2012)
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Macro-Mechanics Descriptions Material Symmetry and Anisotropy

4.1. Material Symmetry and Anisotropy

Macro-Mechanics Descriptions

Suppose all the three fundamental planes are planes of sym-
metry, we have an Orthotropic Material (9 constants).

o1 C11 Ch2 Ci3 0 0 0 €1
o2 022 023 0 0 0 €2
g3 . 033 0 0 0 €3
Ti2| Cua 0 0 Y12
Tac vm Clec 0 10

Notice that (0(1,2,3),&?(1,2,3)) and (7'(12,13,23)»7(12,13,23))
are naturally decoupled as a consequence
of symmetry in this coordinate system.
Also note,

@ Specially orthotropic

e Generally orthotropic

£3

(Figure 2.5 from Gibson 2012)
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Macro-Mechanics Descriptions Material Symmetry and Anisotropy

4.1. Material Symmetry and Anisotropy: Transverse
Isotropy

Macro-Mechanics Descriptions

e In continuous fiber reinforced
composites, it is often the case o How do the stresses and strains
that the fibers are randomly transform on the plane?
distributed on a plane. This leads
to planar isotropy in the plane
perpendicular to the fiber stacking
direction.

Fibers are randomly packed (02, 0y, 02, Tay, Toz, Tyz) — (06, 00,02, Ten, Tz, Tnz)
in the 2-3 plane
(5:75y75z771y772z77yz) - (5§7€n75Zv'Y§nu’Y£zv'Ynz)

(Figure 2.6 from Gibson 2012)
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Macro-Mechanics Descriptions Material Symmetry and Anisotropy

4.1. Material Symmetry and Anisotropy

Macro-Mechanics Descriptions

@ The stresses and strains transform as follows on the plane:

Oy + Oy Oy — Oy .
=2 Y477 Y cos2 sin 2 € € €x — € by

o¢ 5 + 5 cos 20 + T4, sin 20 e = % I %cos29+ Doy inog

Oz + Oy Ty — Oy .
oy = - - Tcos 20 — T4y sin 20 ) = Ex ;rsy €z ;sy 0820 — 'y;y sin 20
(0. =02) (62 = £2)

Oy — O .

Ten = 7% sin 20 + 74, cos 20 Yen = —(Ex — €y) $in 20 + 74y cos 20

Yez = Vaz cOs O + 7y sin 0

Ter = Tgz COS O + Ty sin )
Ynz = —Yaz sin 0 + 7, cos 6

Tnz = —Tgzsinf + 7, cos 0
e For an orthotropic material, the straight stresses/strains and shear
stresses/strains are fully decoupled.
@ So we will consider different cases of kinematic deformation fields to see if
more can be said.
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4.1.

Macro-Mechanics Descriptions Material Symmetry and Anisotropy

aterial Symmetrv and Anisotronv

. sin 20

£ sin 260

o see if

Macro-Me 1. Pure Out-Of-Plane Shear (v,. # 0)
@ The stresses and strains are,
o Tl oe =0
op =0 ge =0
oe=9 (02=0) en =0
Ten =0 (52 = 0)
q
on = *{ng] - [ cos 0 sin0i| ['rzz] Yen =0
(0. = Tnz —sinf  cosO| |1y |:’Y§z:| _ [ s COISQ ]
_ | Cs57vazcos0 | _ [Cssven Tnz Yoz sind
Ten = T [ ~Cs5Vazsinf| CGG'Y'r)z ’
re. == ® Under symmetry, (¢, 7,.) is related to (7ez,vyz) in the
Tye = same way that (7., 7,.) is related to (vzz, Vy=)-
e Fo| e So we have,
st
Cin Ci2 Ci3 0 0 0
o SO Coo Cas 0 0 0
Css 0 0 0
m Cu 0 0
sym Css 0
Css
6
Balaji, N. N. (AE, IITM) AS2070 January 19, 2026

21 /34



Macro-Mechanics Descriptions Material Symmetry and Anisotropy
2. Pure Out-Of-Plane Stretch (¢, # 0)

e We have straight stresses o, = Ci3e;, 0y = Caze..

4.1. N

Macro-Mec!
e Upon transformation we have,
Ciz +Cas  Ciz — Ca
e Th O'§:< 13: 26-&— 1‘52 23C0529>82
ge =0
Ci13+ Ca3  Ci3 — Cas ¢
ol oy = — cos20 ) e, e, =0
oe = 2 2 .
E—— - sin 26
o o, =0, 0
In =7 . _ Ciz3 —Cas sin 20 ’)’gn: ) L sin 260
(Uz — &y &n 42 Yéz = Ynz =
Tez = Tnz =0
Ter = - ) . .
e e For planar isotropy, the relationship between (o¢, o,) and
Tez = T

o, must be independent of . This is only possible for
e Ci3 = Cas.

o For o S0 we have,
str
@ So “n G O o) 00 b see if
ma Co Ci57 0O 0 0
Csz 0 0 0
Cua O 0
sym Css 0
Css
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Macro-Mechanics Descriptions Material Symmetry and Anisotropy

fledtacctell Qocrraraadione soadl A cnSaadbers

X

4.1.

3. Pure In-Plane Stretch (¢, # 0,¢, = 0)

FY sin 260

FY sin 260
2

to see if

Macro-Mq
@ From the constitutive properties we have o, = Cy1e, and
Oy = Clga’:‘ﬁ.
o T Using this all the other components can be written as
C C Ci1 —C 5
oe = J£:< 1142r 12, 112 12 cosQO)sw o 1«%(:20520&C
on = Ci1 + Ci2 C11 — Ci2 1 — cos 26
oy = 5 5 cos 20 ) e, En =y
o, =
( = Cr2es + Cazey
Ten = o, =0 €. =0
oo = | Ten =0 Yen =0
The = Tez = Tnz = 0. Vez =Yz =0
e For the o, equality to hold, we need Cyy = Cq1. So we
@ F n )
have
st] Ci1 Ci2 Ci3 0 0 0
C11
° S cs” Cis 0 0 0
Cz3 0 0 0
1 Cu 0 0
sym Css 0
Css
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Macro-Mechanics Descriptions

Material Symmetry and Anisotropy

4.1. Material Symmetry and Anisotropy

Macro-Mechanics Descriptions

4. Pure In-Plane Shear (v,, # 0)
° @ From the constitutive properties we have 7,y = Cis7vzy.
o Using this all the other components can be written as
7€ 7 Yzy . Jzy sin 260
_ : _ ge = —— sin 260 2
0¢ = CaaYay sin 20 = Cr1e¢ + Craey 2 5
oy . Ty .
K oy = —CuaYay sin 20 = Croee + Cr16y en = _ ey sin 20 5 sin 260
(02 4 o, =0 2
c 20 =0
T = xzy COS
Ten &n 44y Yen = Yay COS 20 o
Tez = Tnz = 0.
Tex Vez = Tz = 0.
=7 @ So we have Cyq7yy sin 20 = %%y sin 20. Therefore,
° ar
Ci1 Ci2 Cis 0 0 0
Ci1 Cis 0 0 0
° Cz 0 0 0 5 to see if
C11-C12
2
ca” o 0
sym Css 0
Css
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Macro-Mechanics Descriptions Material Symmetry and Anisotropy

4.1. Material Symmetry and Anisotropy

Macro-Mechanics Descriptions

@ Lho ctvrnconce and otvaine trancfarm ac fallawe an tha nlana:

To Summarize,
a Transversely Isotropic Material
. Yoy .
¢ constitution can be expressed as [ sin20
Tn | Yxy .
( o Cnn Ci2 Ci3 0 0 0 €z g Sn2f
Oz
Ty 011 013 0 0 0 Ey
Tén [ 033 0 0 0 Ey 20
= C11—Ch:
e Tay C11—Cha2 0 0 Yoy
Ty Taz sym Css 0 Yoz
° Tyz Css] [z par
The material is fully character- s t £
) . . .
ized by five engineering constants. 5 toseel
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Macro-Mechanics Descriptions Material Symmetry and Anisotropy

4.1. Material Symmetry and Anisotropy: Engineering
Constants

Macro-Mechanics Descriptions

e In engineering practice, the constants are usually written easier in terms
of compliance.

e For a specially orthotropic material the strain-stress relationship are
usually expressed as,

1 _ Va1 V31 T
€1 Eq, Eao E33 0 0 0 g1
_ V12 1 __ V32 0 0 0
€9 5‘11 Eﬁz %’33 02
_ Y3 _ V23 1
€3 — E11 Ea2 Es3 (1) 0 0 03
V12 g O 0] |72
713 sym G%s 0 T13
V23 G%g To3
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Analysis of Planar Laminates

5. Analysis of Planar Laminates

@ Let us just consider one thin layer of a transversely isotropic material
(continuously reinforced composite along a single direction).

roz [Ci1 Ci2 Cis 0 0 07 resT
oy Cii Cis 0 0 0 |e
o C33 0 0 0 €2
Tay - C11 5012 0 0 Yoy
Taz sym Css 0 Yz =
L7y L Css5] Lvy=d
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Analysis of Planar Laminates

5. Analysis of Planar Laminates

@ Let us just consider one thin layer of a transversely isotropic material
(continuously reinforced composite along a single direction).

Txy

Tz

\:ryz_

Ci1

sym

Ci3 0 0 07 res
Ci3 0 0 0 ey
C33 0 0 0 €2
C11 5012 0 0 Yoy

Css 0 Yoz

Css | lVyZ—

e We invoke plane stress assumptions, setting o, = 0. Let us also assume

small shears, 7., = 0,7,, = 0.

(Note: £, is not zero, and is implicitly defined)

(4 constants)

(Note change in notation in Cij)

o1 Cn Ci2 O €1

o2 | = [Ci2 Cpn 0 €2

T12 0 0 Cs3 |72
Balaji, N. N. (AE, IITM) AS2070
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Analysis of Planar Laminates Generally Orthotropic Laminates

5.1. Generally Orthotropic Laminates: In-Plane
Rotational Transformations

Analysis of Planar Laminates |%@| = [c0s€  —sinf] [u;
Uy sin 6 cos 6 ug

\2 y = 2@y =Qeane” ‘o What if the coordinate system is
not aligned with the fiber axes?
e : 1 The stress and strains transform
E " @ In the constitutive relationship we
have,
e

o0 =C¢ 1,2

Positive 6 | 1.2 =3 |

I, o =0 =Ceuo=CT_ "¢
(Figure 2.11 from Gibson 2012) =0 “@w) 12) TZ5WAN T =S )

-1
= Gy TLoCL. ey
C
o cos? 0 sin? ¢ —2cos0sind | [og
oy | = | sin26 cos? 0 2 cos 0 sin 6 oo where
Toy cosOsin@ —cosOsinf cos?6 —sin20] [T12
Ts Ci1 Ci2 0
0052 ] sin2 7] 2 cos 0 sin 6 g = CIZ 022 0
;=] sin20 cos2 6 —2cos 0 sin 0 0 0  Css
—cosOsin® cosfsinf cos?6 — sin2 6
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Analysis of Planar Laminates Generally Orthotropic Laminates

5.1. Generally Orthotropic Laminates: In-Plane
Rotational Transformations

Analysis of Planar Laminates [Zz] = [z:g 12;“99] [zﬂ
2 T . . .
\ y = |Z(ay) =2201,2Q ‘o What if the coordinate system is
@/ not aligned with the fiber axes?
] 1 The stress and strains transform
Note that Strain Transformation looks e constitutive relationship we
slightly different because of our def- )
inition of shear strain Yoy = 2€gy. - e
Ga1,2) T &Ea,2)
_ _ _ —1
[] cos? 6 sin? 0 — cos@5in0 [1] o) = 2a,2) =Ea2) =EL. ey
= in2 2 .
ey | = sin2 0 cos2 0 cos 0 sin 6 e _ -1
Yay 2cos0sin® —2cos@sin® cos? 0 — sin? 0] [V12 = Z(a,y) =L.C1. ’S(rn,y)
Te cr
ox cos? 6 sin” 6 —2cos0sinf | [og
[ oy } = | sinZ9¢ cos2 6 2 cos 6 sin 6 [62 ] where
Toy cosOsin@ —cosOsinf cos?6 —sin20] [T12
Ts Ci1 Ci2 0
0052 ] six)2 7] 2 cos 0 sin 6 g - CIZ 022 0
;=] sin20 cos2 0 —2cos 0 sin 0 0 0  Css
—cosOsin® cosfsinf cos?6 — sin2 6
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Analysis of Planar Laminates Generally Orthotropic Laminates

5.1. Generally Orthotropic Laminates: In-Plane
Rotational Transformations

Analysis of Planar Laminates |%@| = [c0s€  —sinf] [u;
u sin 6 cos 6

Y L)
2
\r

Transformed C Matrix (o = gg)

Sy =221,2Q7 ‘o What if the coordinate system is
ligned with the fiber axes?
stress and strains transform
e constitutive relationship we

! / !
PO st SRS R
£ =102 Cay Cog ¥
Ci3 C23 Css
= Cr1et 4 Cags? + (2033 + C19)2c2 2 T2y =CEx 9
’ 4 4 2 2 _ _ — -1
Chy = Cr1s” + Cage” + (2033 + C12)2¢7s L) =C1,2 =Ca,2) =CT . £,
/ 2 2 4, 4
Cg3 = (C11 + C23 — 2C33 — 2C12)c”s” + Cg3(c” +57) = o, y):IaQIE_lS(m v
2 2 4, 4 ' - '
Clg = (C11 + Cap — 4C33)c?s? 4 Cip(c +5%) ot d
3 3 =
o Cl3 = (C11 — 2Cg3 — C13)c”s — (Cag — 2033 — Cyg)es
3 3
o] Ch3 = (C11 — 2Cg3 — C1a)es® — (O — 2C33 — C1g)c’s.
T |G i i J
20' 011 C]2 0
00526 six)20 2 cos 0 sin 6 g = CIZ 022 0
;b= | sin20 cos2 0 —2cos0sin0 0 0 Css
—cosOsin® cosfsinf cos?6 — sin2 6
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Analysis of Planar Laminates Generally Orthotropic Laminates

5.1. Generally Orthotropic Laminates

Analysis of Planar Laminates

. . . @ Based on this we can write,
o Compliance is often more convenient:

st 1 2091\ o o] "
5(1,):Z§1 g(l,) By =|—+ —+|———]cs
v Y By Ep Gi2 Eg
SI
Ex }3 Tz 4 4 —1
- s c 1 20
[Ey] 7 [Uy} By =|—— 4 — 4+ —— - =2t ] 22
ey S33] LTey Ey  Ep G12 Eg
2 2
511 = S11¢® + Sppst + (S33 + 2512)¢s S 1 1
/ 4 4 2.2 Gay :[ ( +
Sho = S115% + Sggc® 4+ (Sz3 + 2512)c%s Gi12 Ep Bz
2 2 4, 4 1 v -1
Si3 = (2511 + 259y — Sz3 — 4512)2¢%s% + Sz3(c® +51) - + Qﬂ)4c252]
2G19 Eq

S%5 = (S11 + Saz — Szz)e?s? + Sya(e? + 5% ot 4
vya :Ey[—@ +sh
S15 = (281] — Sg3 — 2519)c>s — (2S99 — S33 — 2519)es® .

/ 3 3
Sgg = (2511 — S33 — 2S12)es” — (2522 — S33 — 2512)c”s. _ (i + Lo L) 2 \2]
By By  Gi2

@ In the material principal directions we

have, o It is customary to express the
1 4 - o[ laminate constitutive relationship as
_ |2 - o
€2 | = E E 92
0 ! 02 1 ex 1 _ryxz  Nzy,x ox
Y12 Gi2l |12 Eugy 1Ey Tgiyy
cy | = | T B, Ey Gy oy
Ne,zy Ny,zy 1
[ Engincering Constants: By, Eg, G2, v12 ] Yoy p “Ey  Gay Tay
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Analysis of Planar Laminates

Generally Orthotropic Laminates

5.1. Generally Orthotropic Laminates

Analysis of Planar Laminates

@ Based on this we can write,

o Compliance is often more convenien -
b The Shear Constants can be written as
E(z,y) = Le ég L(z,y) K 2 1 21./21) 3
Ny, :Gmy _— = — — | s
cx ;2 ;3 oz By G12 Ea
vl = Sa3| | 7w 2 1 2u91 3
Yy S33| LTy - —+ — cs‘}
, 4 5 o B2 G2 By
511 = S11¢® + Sppst + (S33 + 2512)¢s 5 1 2091 5
=G [ T 2 4
Shy = S115% + Sagc® + (533 + 2512)¢% 8% ey =Ry [(El Gia  Bg ) “
Sk = (2811 + 2590 — S33 — 4519)2¢%s% + S35 B (i e 2"&) CSS}
E G E
Siy = (511 + S22 — S33)e?s? + S12(et +5%) 2 12 2
— 7 T
’ 3 3 vyx =Ey \‘ (e” +s7)
S13 = (2511 — S33 — 2S12)¢”s — (2822 — S33 — 2S12)cs E
Shg = (2511 — Sg3 — 2512)cs® — (2529 — S35 — 2512)c>s. _ (i ot ) (;252]
By By  Gi2

@ In the material principal directions we

have,
€ 1 _r21 o
1 By )2 0 1
_ |2 - o
e2 | = E Eg o2
0 0 %
Y12 12 T12

[ Engineering Constants: E1, B, G1g, vi2 ]

Balaji, N. N. (AE, IITM)

AS2070

o It is customary to express the
laminate constitutive relationship as
1

_ Yyx Nry,x

Ex - ox
Egx Ey Gary
_ |- kzy 1 Nzy,y
fy | = Ex Ey Cay Ty
Nz, xy Ny, zy 1
Yoy = Ey Gy oy
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Analysis of Planar Laminates

Generally Orthotropic Laminates

ONrthaotronice T aminataoc

5.1. Generally

Analysis of Planar Laminate;

o Compliance is off]

Ea,y) = LeSL, oy
[Ez] S11 S/;2
cy | = S22
Yxy
siy = S11¢t + Sg98*
Shy = 5115% + Saget
S33 = (2511 + 2522 -
Shp = (S11 + S22 — §
Si3 = (2511 — S33 —
Sh3 = (2511 — S33 —

@ In the material p
have,

Off-Axis Modulii

5= Carbon/epoxy
—&— Boron/aluminum
—e— Glass/epoxy

can write,

/\\
AR

I I R R
10 20 30 40 50 60 70 80 90
o

1) S S R A AP B R
0 10 20 30 40 50 60 70 80 90
o

—SCarbon/epoxy
—#—Boron/aluminum
—e—Glass/epoxy

can be written as

1 2v.
I i) 35

F12 Ea
) 633}
) 3
cs
F12 E2

c s
b Ea

2vgq

b EBa

1 2u91
4+ 21

2v9q

1 ) 2 ‘2]
—_— c s
G2

express the

5 1 1) P P S P B Y B -2 (A R 3 ] ]
1 Eq 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 1wve relatlonShlp as
vy 0 o
2 | = |7 E]
0 , | Yyz  Nzy.x ox
Y12 (Figure 2.14 from Gibson 2012) E Gay
1 Nay.,y
Ey Gy Ty
T, TY Iy, zy 1
[ Engineering Constants: Eq, Eg, G1g, V12 ] [wlyj |_ Ex By Ty Ty
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Analysis of Planar Laminates Numerical Examples

5.2. Numerical Examples: 1

Analysis of Planar Laminates(Example 2.2 from Gibson 2012)
Consider an orthotropic laminate with the properties
E1 =140 GPa, E2 =10 GPa, G12 = 7GP&, Vig = 03, V93 = 0.2.

Compute the strains if it is subjected to the following state of stress in the
principal coordinates:

01 = 70 MPa, o9 = 140 MPa, 712 = 35 MPa, 03 = 712 = 723 = 0.

e

T
12
2
! T
o1
3
—
l Note: 63 =Ti3="Ty3=0
(Figure 2.10 from Gibson 2012)
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Analysis of Planar Laminates Numerical Examples

5.2. Numerical Examples: 2

Analysis of Planar Laminates(Example 2.3 from Gibson 2012)

A 45° off-axis tensile test is conducted on a generally orthotropic test
specimen by applying a normal stress o,. The specimen has strain gauges
attached to measure axial and transverse strains (e;,&,). How many
engineering parameters can be estimated from measurements of o,,e.,&, 7

45° off-axis tensile
test specimen

y
2 1
- o
45°
' /
Strain gage for Strain gage for
measuring €, measuring €,
(Figure 2.15 from Gibson 2012)
Balaji, N. N. (AE, IITM) AS2070
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Classical Laminate Theory

6. Classical Laminate Theory

o In the Kirchhoff-Love Plate Theory we had,

-l ol

1 v 0 1 v 0
bt Et?
A= 5 |V 1 0|, D= > |V 1 0|, B=0
= 1=y g 1 = 12(1-v?) 0 0 L =

@ This can also be written in terms of thickness moments of the constitutive
1 v 0

matrix C = % v 1 0 | as

0 0
é:/gdz, B = [ 2Cdz, Q:/ZQde.
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Classical Laminate Theory

6. Classical Laminate Theory

e Suppose we had different laminate plies along the thickness, such that the

constitutive matrix is C'; for z € (24, 2z;41) and f% =5 < <zy= %

@ Then the A — B — D matrices are written as the sums,

ZZ(%H—%)Q, QZZ@Q“ :Z@Qi_

[BS
IS

e Unlike isotropic plates, composite laminates can have non-zero B matrix
(moment-planar coupling), bending-twisting coupling, etc.

o This } matrix is known as the Laminate Stiffness Matrix.

D

sv]|E
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Classical Laminate Theory The Laminate Orientation Code

6.1. The Laminate Orientation Code

Classical Laminate Theory

[0/90/45] [(0/F30),]
e Ply angles separated by slashes, S — S——
E—TE— T
ordered from top to bottom g FER
. T I
@ Subscript “s” for symmetric I [ ]
laminates _
[+45/0,/90], [(0/90),/45),

@ Numerical subscripts for
repetitions

o Center ply with an overbar for
odd laminates

(See sec. 7.1 in Gibson 2012)

Types

@ Symmetric, Antisymmetric,
Asymmetric

@ Angle-Ply, Cross-Ply, Balanced, 7/4
laminates

(Figure 7.1 from Gibson 2012)
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Classical Laminate Theory The Laminate Orientation Code

6.1. The Laminate Orientation Ciade
Glassieal Laminate Theory | SUMmary of Laminate Stiffnesses

Table 3.4. The [A], [B], [D] matrices for laminates. When the laminate is
symmetrical, the [B] matrix is zero. Cross-ply laminates are orthotropic.

[4] 18] 0 1(0/%30),]
: S E—
e Ply angles sepai e
ordered from to| a4, 4. 4 [0 0 o "Dy D Dis —T
. Ap An Ay 000 Dy Dn Dy (307 1
o Subscript “s” fo |4 4 ae] [0 00 | D Dy Dis I —
laminates Balanced
. (A0 A: 0] [By B: Bu [Dy D: Du
@ Numerical subs Ar Am 0 B: Ba Ba D: Dz D
iy 0 0 A B Bx B 6 Dw D
repetitions L ul, LB B Buf LD DO
Orthotropic
° Center ply Wlth [Ay Az 0] [B, B, o0 Dy Dn ©
. y A 0 » Bn 0 » Dy 0
odd laminates el IR IBE

( See Isotropic

[An An 0 [By Ba 0 Dy Dy 0
T Ay Ay 0 By By 0 Dy Dy 0
yB 0 o At 0 o0 fum

@ Symmetric, Antid — Quasiisouopic

: [An Ac 0 [Bi B. By [Dy D D
Asymmetric X e .0 ] e B_‘] B B DBF]

0 0 A B By By 6 Dx D

@ Angle-Ply, Cross{ . Al Lot i el
laminates (Table 3.4 from Kolldr and Springer 2003)

Gibson 2012)
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6.2. Laminated Beams

Classical Laminate Theory

o Consider a beam with a symmetric section on the x — y plane. Invoking
Kirchhoff kinematic assumptions we have: e, = v’ — yv”.

@ The stress distribution will depend on the section-coordinate. In general
we will have: 0, = E,(y)e, = E.(y) (v — yo”).

o We get the effective normal reaction N, by integrating the stress over the

o N, = /A 0. = [ /A Ew<y>} o' + /A —y@(y)}

e Similarly we get the bending moment M, as the first moment of the

stress,
M, = /A —yo, = { /A yEx(y)] u' + [ /A yQEz(y)} v

o In summary we have the beam-analog of the laminate stiffness matrix,

Important note: We /
have assumed that no Ng| _ A Bjlu
torsion/twist is present. - 17
See Kollar and Springer M, B Dj |v
2003 for the general form.
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6.2. Laminated Beams

Classical Laminate Theory

e For a laminated composite with a rectangular section with width b, the
integrals may be simplified as,

N N 2 .2
A= /A E.(y) = ;Ex,ib(yiﬂ -vi), B= / —yE.(y) = — ;E“b%
D= / y E ZEx ,by’HS yz )

e For plies of uniform thickness we can write
h h
R 1) —
Yi D) + (i )N’
which leads to:

by h?
=1

N
Z (12i% — 12Ni + 12N? + 3N? + 6N + 4)

12N
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6.3. Numerical Example

Classical Laminate Theory

Determine the ABD matrix for the following composite beams where the ply
thickness is 1 mm and beam width is 10 mm:

e [0/90]5, and
o [0/90/0/90].

Assume the following properties for each lamina: 7 = 140 GPa, F; = 10 GPa,
G12 = 7GP&, Vig = 03, V93 = 0.2.
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