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Introduction

1. Introduction

Structural Stability: What?

o Consider supporting a mass M on the top
of a rod.

A/

Balaji, N. N. (AE, IITM) AS2070 February 8, 2026 3 /41



Introduction

1. Introduction

Structural Stability: What?

o Consider supporting a mass M on the top
of a rod.

A/

Two Extreme Cases:

M

M

A/

Balaji, N. N. (AE, IITM) AS2070 February 8, 202

6

3 /41



Introduction

1. Introduction

Structural Stability: What?

o Consider supporting a mass M on the top
of a rod.

e Collapse is imminent on at least one!

A/

Two Extreme Cases:

M

M

A/

Balaji, N. N. (AE, IITM) AS2070

February 8, 202

6




Introduction

1. Introduction

Structural Stability: What?

o Consider supporting a mass M on the top
of a rod.

e Collapse is imminent on at least one!

How can we mathematically describe this?

A/

Two Extreme Cases:

M

M

A/
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Introduction

1. Introduction

Structural Stability: Perturbation Behavior

Perturbation Behavior

Key insight we will invoke is behavior under perturbation:
How would the system respond if I slightly perturb it?

o Mathematically, by perturbation we mean any change W ,7
to the system’s configuration. \“ ,"':' I’I
‘,l’ III

4

V1

o In this case, this could be different deflection shapes.
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1. Introduction

Structural Stability: Perturbation Behavior

Perturbation Behavior

Key insight we will invoke is behavior under perturbation:
How would the system respond if I slightly perturb it?

o Mathematically, by perturbation we mean any change W /7
to the system’s configuration. ‘\“ ,"':' I’I
/
o In this case, this could be different deflection shapes. }:((" /Il
74\
Question (Slightly more specific) ',: "|IIII
What will the system tend to do if an arbitrarily small ,".l' |II
h
i
Y[
W
\‘ 1

magnitude of perturbation is introduced?
@ Will it tend to return to its original configuration?
e Will it blow up? \

@ Will it do something else entirely?
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Introduction Elastic Stability

1.1. Elastic Stability

Introduction

‘What do these words mean? J

Elastic — Reversible — Conservative

1D Example
Conservative System Consider a system whose configuration is
expressed by the scalar z and the potential is
@ The restoring force of a conservative as shown.
system can be written using a gradient of
a potential function:
F=-VU. U“
— V.
Equilibrium
@ System achieves equilibrium when F = 0,
ie.,
VU = 0.
y >
X
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expressed by the scalar z and the potential is
@ The restoring force of a conservative as shown.

system can be written using a gradient of Remember,

a potential function: _ _dUu
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Introduction Elastic Stability

1.1. Elastic Stability

Introduction

‘What do these words mean?
Elastic — Reversible — Conservative J
1D Example
Conservative System Consider a system whose configuration is
expressed by the scalar z and the potential is
@ The restoring force of a conservative as shown.
system can be written using a gradient of " -
a potential function: Repulsive
F=-VU. U“
— V.
“Attractive”
Equilibrium
@ System achieves equilibrium when F = 0,
ie.,
VU = 0. ) R
X1 Tog X
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1.1. Elastic Stability

Introduction

‘What do these words mean?
Elastic — Reversible — Conservative J

1D Example

Conservative System Consider a system whose configuration is
expressed by the scalar z and the potential is
@ The restoring forc.e of a c.onservatlv'e as shown. Unstable

system can be written using a gradient of

a potential function: “W’

PR U,

) Stable
HAWeW
Equilibrium
@ System achieves equilibrium when F = 0,
ie.,
VU = 0. ) R
X1 Tog X
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Introduction  Bifurcation
1.2. Bifurcation

Introduction

A system is said to have undergone a bifurcation if its state of stability has changed due to the
variation of some parameter. J

Transverse Axial train Energ

z, Coordinate

Ezample: A pinned-pinned beam undergoing azial loading.
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Introduction Modes of Stability Loss

1.3. Modes of Stability Loss

Introduction

The configuration that a system can assume as it undergoes a bifurcation is the mode of the
stability loss.

)

04 . - g T 04 o - 2 =
X 06 o3 ro X, 06 03 ro oo 3 m >

X

Ezample: Thin plate (pinned) under shear loading
Ezample: Thin plate (pinned) under avial loading
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The Principle of Virtual Work

L C . e k F
2. The Principle of Virtual Work 4)€L> }—'\/\/\—o—b
A @izt Mrememers for Meehnmies =0 |_)u”

@ Let us consider a point supported by a linear spring acted upon by a force.

Kinematics Equilibrium Condition Constitutive Modeling
Assume displacement to be Ne't for.ces acting on .t'he' Spring reaction is linearly
restricted to the e, axis: object is zero at equilibrium: proportional to displacement.
U= uges. S Fu=F = Fopring = 0. Fopring = k.

e While the above three already allow us to solve the problem of finding the equilibrium
configuration of the system, we turn our attention to what happens in the vicinity of the
equilibrium now.

o We define Virtual Displacement as an infinitesimal displacement that is consistent
with constraints. (we read kinematic assumptions as constraints here) And we denote
this by du.

e Since this is infinitesimal by definition, the associated work done, i.e., Virtual Work is
written as

SW = (Z Fm> Sug = (F — kug)dug.

o Being a small quantity, regular calculus rules apply to the §(-) if considered as an
infinitesimal operator just as they do for d(-), so the above simplifies as:

§W:§(Fuﬂc — Eui)
2
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restricted to the e, axis: object is zero at equilibrium: proportional to displacement.
U= uges. S Fu=F = Fopring = 0. Fopring = k.

e While the above three already allow us to solve the problem of finding the equilibrium
configuration of the system, we turn our attention to what happens in the vicinity of the
equilibrium now.

o We define Virtual Displacement as an infinitesimal displacement that is consistent

wz’.th constraints. (w SW is the work done in taking the ) And we denote
this by du. system from a kinematic state u,

e Since this is infiniteq to a kinematic state u, + du,. , Virtual Work is
written as

W = (Z Fz) Sug = (F — kug)dug.

o Being a small quantity, regular calculus rules apply to the §(-) if considered as an
infinitesimal operator just as they do for d(-), so the above simplifies as:
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2
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@ Let us consider a point supported by a linear spring acted upon by a force.

Kinematics Equilibrium Condition Constitutive Modeling
Assume displacement to be Ne't for'ces acting on .t'he' Spring reaction is linearly
restricted to the e, axis: object is zero at equilibrium: proportional to displacement.
U= uges. S Fu=F = Fopring = 0. Fopring = k.

e While the above three already allow us to solve the problem of finding the equilibrium
configuration of the system, we turn our attention to what happens in the vicinity of the
equilibrium now.

o We define Virtual Di
with constraints. (we r

We have now defined a new quantity:
Work Potential, with units of en-

t is consistent
Ind we denote

this by du. ergy. This is written as .
e Since this is infinitesima € assgciated wor /irtual Work is
written as

o Being a small quantity, regular calculus rules apply to the §(-) if considered as an
infinitesimal operator just as they do for d(-), s¢ the above simplifies as:

xr

5W:§(Fuw—gu2).
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@ Let us consider a point supported by a linear spring acted upon by a force.

Kinematics Equilibrium Condition Constitutive Modeling
Assume displacement to be Ne't for.ces acting on .t'he' Spring reaction is linearly
restricted to the e, axis: object is zero at equilibrium: proportional to displacement.
U= uges. S Fu=F = Fopring = 0. Fopring = k.

e While the above three already allow us to solve the problem of finding the equilibrium
configuration of the system, we turn our attention to what happens in the vicinity of the
equilibrium now.

o We define Virtual Di
with constraints. (we r

We have now defined a new quantity:
Work Potential, with units of en-

t is consistent
Ind we denote

this by du. ergy. This is written as .
e Since this is infinitesima € assgciated wor /irtual Work is
written as

sz (N Fa:) Sty
Load Contribu- =

e Being a s tion IT = Fux
infinitesimal operator just as

|
|
ol
<
g
S,

Elastic Contribu-
tion U = %kui

i
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The Principle of Virtual Work

2. The Principle of Virtual Work

An Optimization Framework for Mechanics

The Work Potential is quite a helpful quantity for us because
@ the first derivative 0W/0u, represents the overall force ) F, acting on the
system (static equilibrium is the same as stating OW/du, = 0), and
@ the second derivative 62W/6ui at equilibrium represents the surplus force as
we move away from the equilibrium (because this represents (> Fl)/0uy).

An equilibrium can be sought by finding u, for OW/eu, = 0.

For classifying the equilibria that have been found, we use the following principles
(based on arguments about what is happening to the surplus force as we move away):
o If 9?W/0u?2 < 0, the equilibrium is stable.
o If 32W/du2 > 0, the equilibrium is unstable.
o If 3?W/0u?2 = 0, the equilibrium is neutrally stable (up to second order).

The above is mathematically identical to an optimization problem posed as

extremize W,
Ug

and the maxima of this optimization problem are stable equilibria, the minima
are unstable, and the saddles are neutral.
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The Principle of Virtual Work

2. The Principle of Virtual Work

An Optimization Framework for Mechanics

o The Work Potential is quite a helpful quantity for us because
@ the first derivative OW/0u, represents the overall force > F, acting on the
system (static equilibrium is the same as stating OW/du, = 0), and
@ the second derivative 62W/6ui at equilibrium represents the surplus force as
we move away from the equilibrium (because this represents (> Fl)/0uy).

° For the Spring Example,
° 2
k oW oW
W:Fuw—fui, =F — ku,, ——— = —k.
2 Ouy Ou2
@ There exists exactly only equilibrium point for fixed F,k: u) = %, and
@ this equilibrium is unconditionally stable (always stable).
° Lo Lo b

extremize W,
Uy ER

and the maxima of this optimization problem are stable equilibria, the minima
are unstable, and the saddles are neutral.
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The Principle of Virtual Work A Rigid Column Under Axial Load

2.1. A Rigid Column Under Axial Load

The Principle of Virtual Work

o Now let us consider a rigid column supported by a pin as shown.

e It is also supported by a torsional spring which is governed by a linear constitutive law
(Mspring = k@)

o Let’s count the work done by each member (only once per member)

2

T
Elastic Contributions ?¢sin @ v /S Load Contributions
H' A
@ Rotational angle is the [ @ The load at the tip is Tey.
work-conjugate of moment. . 3 ) .
N % @ The displacement of the tip is
AY
Mspringdd = k060 \\ 0 ~ —{sinfe; — £(1 — cosO)ey |
1. 5 N > So we have:
=4 ko AR
. IT = T¥(cos — 1).
A Y
— | U= 592 . p @ We do not count moment
2 @ - contributions separately.
~ Z
k
e So the work potential is written as: IT — U =| W = T¥(cos§ — 1) — =62 |
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The Principle of Virtual Work A Rigid Column Under Axial Load

2.1. A Rigid Column Under Axial Load

The Principle of Virtual Work

‘Work Potential

oW ) o°wW
B0 = —(T¥¢sin0 + k0), 502 = —(TlcosO + k).

k
W = Té(cos0 — 1) — 502,

o Under leading term small angle assumptions (sinf = 6, cosf ~ 1) we have,

92w

Ocqg =0 (always), B02

= —(T¢+k).

Oeq

The equilibrium is stable as long as T > f%.

e Our prediction for T' < 7% is just that there exists a trivial equilibrium (0., = 0)

that is unstable.

3 2
e Under two-term small angle assumptions (sinf ~ 6 — %= cosf ~ 1 — ) we have,

6’ 2

2

4%
= —(T 2(T
502 (Te+k),2(TE + k),

k
Ocqg =0,+ 6(1+ﬁ), with

where we now predict two additional solutions.

o Here we have a more precise prediction for T' < —%: the non-trivial € solutions are stable.
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The Principle of Virtual Work A Rigid Column Under Axial Load

2.1. A Rigid Column Under Axial Load

The Principle of Virtual Work

The “Forced Response Curve” (k= 1N/m,¢ = 1m)

2 - .
W= == Exact Solution k).
— Linear Approximation |
e Under L 1 — Cubic Approximation
] — Quintic Approximation
i
NaJ
S (4 =m==-a=-
The equ -%'70
o
a _1 |
o Under t e have,
_2 1 T T T T T 1
—2 —1 0 1 2
where w Load (N)
o Her _Jons are stable.
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Euler Bernoulli Beam Theory

3. Euler Bernoulli Beam Theory

ru

—e

Kinematic Assumptions
@ Small displacements and rotations

@ Plane sections remain planar and do not
change shape

@ Neutral axis remains perpendicular to the
section

@ Small strain

@ Von Karman strain assumption

o Assumptions 1 and 2 imply that the
deformation field can be written as

uz = u(x) — yb(z)
uy = v(z)

e Assumption 3 implies that 0 = g—; =" so
we have

/
Uy = U — YV

Uy = v

o Assumption 4 implies that the axial
strain can be written as
1 2 2
sx:u;—ﬁ—g (u; +u; )
o With assumption 5 we drop the uéCQ term
(as it will certainly be smaller than u/,,

which is small to begin with as of
assumption 4). So we have

—_

/ 72
sz:uz—i—iuy

Constitutive Assumption

We shall assume that we’re looking at a slender beam so plane stress assumptions are applicable

and o, = Eye, with E, being the Young’s modulus.
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Euler Bernoulli Beam Theory

3. Euler Bernoulli Beam Theory
e

—

v — ' so

1 A
Graphically Summary

1

Q@ Smal e

@ Plan
chan

@ Neut
secti

@ Smal
@ Von

kial

’2
o term

o Assu y(x) an v/,

defor

u(z)

Constitutive Assumption

We shall assume that we’re looking at a slender beam so plane stress assumptions are applicable
and o, = Eye, with E, being the Young’s modulus.
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Euler Bernoulli Beam Theory

3. Euler Bernoulli Beam Theory

ru

1 A o 1 1 o dv __ ./
|: Graphically Summary i v se
e
Cy
@ Smal [
@ Plan
chan \ 0 _ 1)/(.1') lial
© Neut |
secti Treating this in the general con-
Q Smal text might be a little distracting
@ Von . at this stage so let us employ a L
— piece-meal” approach in applying 5
the principle of virtual work here. %" term
o Assul e an u/,,
defoy ¢ *

Constitutive Assumption

We shall assume that we’re looking at a slender beam so plane stress assumptions are applicable
and o, = Eye, with E, being the Young’s modulus.
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Euler Bernoulli Beam Theory The Axial Deformation Problem

3.1. The Axial Deformation Problem

Euler Bernoulli Beam Theory

nEy
z=/ T
E— .
z=0

o Let us first suppose that only axial deformations are present, so u; = u(z) and uy = 0.

So the axial strain is | e, = u

Let us also suppose that the following boundary conditions are provided:

o The left face does not deform axially (ug = 0 for = 0), and
o A load of T is uniformly applied at the right face.

A Note on Virtual Displacements Here

@ Unlike the previous examples where the kinematic deformation was just a single scalar, here
deformation u(z) is a function of the spatial coordinate z, i.e., a field.

@ So the virtual displacement is also a field, du(z). The virtual work 6W is the work done to
take the system from deformation state u(z) to deformation state u(z) + du(x).

Load Virtual Work Elastic Virtual Work

z=£

011 = Téu(x) oU = j [/A (oz(x)des () dA] dx
0
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Euler Bernoulli Beam Theory The Axial Deformation Problem

3.1. The Axial Deformation Problem

Euler Bernoulli Beam Theory

nEy
z=/ T
E— .
z=0

o Let us first suppose that only axial deformations are present, so u; = u(z) and uy = 0.

So the axial strain is | e, = u

Let us also suppose that the following boundary conditions are provided:

o The left face does not deform axially (ug = 0 for = 0), and
o A load of T is uniformly applied at the right face.

A Note on Virtual( mjq 5 the elastic virtual energy

@ Unlike the previous examples where the kin density o,de,. It has to be r, here
deformation u(x) is a function of the spatia| integrated over the complete 3-

@ So the virtual displacement is also a field, dimensional beam to get the energy. |one to
take the system from deformation state u(z) to deformation state[u(z) + ou(x).

Load Virtual Work

Elastic VirtLEI ‘Work
~

z=£

011 = Téu(x) oU = j [/A oz (x)deg(z)) dA:| dx
0
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Euler Bernoulli Beam Theory The Axial Deformation Problem

3.1. The Axial Deformation Problem

Euler Bernoulli Beam Theory

Ey

=0
o Let us first suppose that only axial deformations are present, so u; = u(z) and uy = 0.

So the axial strain is at

@ Let us also suppose that the following boundary conditions are provided:

o The left face does not deform axially (ug = 0 for = 0), and
o A load of T is uniformly applied at the right face.

A Note on Virtual Displacements Here

@ Unlike the previous examples where the kin This is the integral wr, here
deformation u(x) is a function of the spatia| over the cross section.

@ So the virtual displacement is also a field, du(z). The virtual worfk 6W is the work done to
take the system from deformation state u(z) to deformation state|u(z) + du(x).

Load Virtual Work

Elastic Virtl.t.l ‘Work
~

z=£

0
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Euler Bernoulli Beam Theory The Axial Deformation Problem

3.1. The Axial Deformation Problem

Euler Bernoulli Beam Theory

nEy
z=/ T
E— .
z=0

o Let us first suppose that only axial deformations are present, so u; = u(z) and uy = 0.

So the axial strain is | e, = u

Let us also suppose that the following boundary conditions are provided:

o The left face does not deform axially (ug = 0 for = 0), and
o A load of T is uniformly applied at the right face.

A Note on Virtual Displacements Here

@ Unlike the previous examples where the kin And this is the integral r, here
deformation u(x) is a function of the spatia| over the span of the beam.

@ So the virtual displacement is also a field, du(z). The virtual worfk 6W is the work done to
take the system from deformation state u(z) to deformation state|u(z) + du(x).

Load Virtual Work

Elastic VirthLal ‘Work
~

z=£

01T = T'éu(x) oU = j [/A (0z(x)des(x)) dA] dx
0
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Euler Bernoulli Beam Theory The Axial Deformation Problem

3.1. The Axial Deformation Problem

Euler Bernoulli Beam Theory

Load Virtual Work Elastic Virtual Work

s U = /Z [/A (oz(2)des(2)) dA:| dx
— 0

e From kinematics we have and from constitution we have , SO
together we have | o = Eyu’ |

e The “inner” integral of the elastic virtual work leads to:

OII = T'éu(z)

/ Eyu/ (z)du’ (z)dA = EyAu'du/,
A
where A is the area of the cross section. (We can do this because u(z) is only a function

of x).

e The “outer” integral gets simplified (using chain rule) as

=0

£ 14 )
/E;,Au'(x)éu’(:c)da: = —/ [EyAu/(x)]/(Su(a:)dx + [EyAu/ (x)|6u(x)
0 0
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Euler Bernoulli Beam Theory The Axial Deformation Problem

3.1. The Axial Deformation Problem

Euler Bernoulli Beam Theory

Load Virtual Work Elastic Virtual Work

s U = j [/A (oz(2)des(2)) dA:| dx
— 0

e From kinematics we have and from constitution we have , SO
together we have .

e The “inner” integral of the elastic virtual work leads to:

OII = T'éu(z)

/ Eyu/ (z)du’ (z)dA = EyAu'du/,
A

where A is the area of This is an integral over use u(x) is only a function
of x). the domain z € (0,/)

e The “outer” integral gets simplified (using chain rule) as

4 14
/EyAu'(x)(Su/(ac)dJ: = —/[EyAu'(a:)]l(Su(z)dz—l— [By A/ (z)]du(z)
0 0

4

=0
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Euler Bernoulli Beam Theory The Axial Deformation Problem

3.1. The Axial Deformation Problem

Euler Bernoulli Beam Theory

Load Virtual Work Elastic Virtual Work

s U = j [/A (oz(2)des(2)) dA:| dx
— 0

e From kinematics we have and from constitution we have , SO
together we have .

e The “inner” integral of the elastic virtual work leads to:

OII = T'éu(z)

/ Eyu/ (z)du’ (z)dA = EyAu'du/,
A

where A is the area of the cross section. (We car[
of x).

e The “outer” integral gets simplified (using chain rule) as

These are (2) boundary terms F

£ 14 y;
/E;,Au'(x)éu’(:c)da: = —/ [EyAu/(x)]/(Su(a:)dx + [By Ad (z)]0u(z)
0 0

=0
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Euler Bernoulli Beam Theory The Axial Deformation Problem

3.1. The Axial Deformation Problem

Euler Bernoulli Beam Theory

o We defined it as an infinitesimal deformation field that obeys
kinematic constraints exactly.

— @ The kinematic constraint in this case is that u(xz) = 0 for z = 0,

that’s all.
° Fro1 ¢ $o §u can be ANY FUNCTION g(z) with g(z = 0) = 0. S0
tOg( (More rigorously, we require square integrability, but we can gloss over this for now)
o Distinguish this with u(x), which describes the physical
o The deformation of the beam. As they stand, du(z) and u(x) are two
completely different functions.
o After the virtual displacement is applied (if it is), the system’s “total
deformation field” will be u(x) 4 du(z).
whe \We restate The Principle of Virtual Work: unction
of z The virtual work must be zero for ANY CHOICE of virtual dis-
e The placement du(x) if physical displacement u(z) corresponds to
equilibrium.

/ EyAu' (z)6u’ (z)dz = —/ [EyAu/(x)]’(Su(w)dx + [EyAu' (x)]6u(z)
0

0 z=0
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Euler Bernoulli Beam Theory The Axial Deformation Problem

3.1. The Axial Deformation Problem

Euler Bernoulli Beam Theory

o Combining all that we have, we can write

14
OW =9Il — oU = / [EyAu'(z)], Su(z)de + [T — EyAu/ (z)] Su(z)
0

x=0
+ [EyAd (z)] su(z) »

@ JW has to be zero FOR ALL CHOICES OF Jdu(x), as per the principle of virtual

work. So we can write

[ByAY' (z)] =0, x€(0,0),
EyAd/ (z) =0, x € {l},
u(z) =0, x € {0}.

e Since u(z) = 0 AND du(z) = 0, we trivially satisfy E,Au’(z)du(x) =0.

=0
For the z = ¢ boundary condition, du(z) = 0 is too restrictive and not valid - so we set
the coefficient of du(zx) to zero.

e For the integral term we set the integrand to zero at all points in the open domain.

Balaji, N. N. (AE, IITM) AS2070 February 8, 2026 15/ 41



Euler Bernoulli Beam Theory

The Axial Deformation Problem

3.1. The Axial Deformation Problem

Euler Bernoulli Beam Theory

Formal Solution

‘We have ey 7
T z=L 7
[B,Ad' (z)]" =0,  x€(0,0), ——ef | =
1 | \ \ \
EyAu'(z) = 0, xz € {3}, z=0 \ \ \
1 | \ \ \
u(z) =0, z € {0}, | | \ \ \
\ \ \
which can be solved by : ll \ \ r=0
I \ \ \ — T
EyAu(z) =Tz, VYV z€[0,4. [ | | | >
(Notice that we now have closed brackets above) ) z=0

o The stress at all points within the domain
is o = Eyu’ = %.
o The above is a fact we may also have

A Visualization of the Solution

observed through drawing the free-body
diagram, so this is not really world
shattering news to us.

Balaji, N. N. (AE, IITM)
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Euler Bernoulli Beam Theory The Euler Buckling Problem

3.2. The Euler Buckling Problem

Euler Bernoulli Beam Theory

o Let us now consider the prospect of small transverse deformation in addition to an
existing axial field due to compression, u(z) (this was u(xz) = %x previously).
y

e In general, let the axial restoring force be denoted by N(z) = EyAu/(x) (this is just the
axial stress o, integrated over the section), which can be a function of .

o We shall assume that the transverse deformations are small enough so as not to affect
the existing axial field.

@ So the strain and stress fields are now written as:

Strain Field Stress Field
2
v E
£p = u/ _ yv// + 7 on = Eyu/ o Eyyv” + 7?/,U/Q
2 E
, v " Yy 12

_ —agp = — —Eyyv’ + —v

A Yy 3 A v 2

e When we consider variations on the strain field (we need this for §U), we will keep N
fixed - i.e., the axially restoring force. So the variational strain, i.e., virtual strain is:

dex = —yov” + /60,

e The virtual elastic work now gets expressed as

L
6U:/(/ oxésdi) dx.
0 A
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Euler Bernoulli Beam Theory The Euler Buckling Problem

3.2. The Euler Buckling Problem

Euler Bernoulli Beam Theory

Virtual Elastic Work
Stress Virtual Strain

11

N E

0p = — — Eyyv” + 2y Sep = —ydv” 4+ 0’60’ oU = / (/ UfoEmdA) dzx.
A 2 J \Ja

o The section integral simplifies as:
/ op0epdA = Nv'§v' + Eylyv"év” + O(v2),
A

where we have not pursued terms that are quadratic or higher order in v or its
derivatives. (I show this in the appendix for post buckling)

e Using the above, the span integral can be simplified through the application of chain

rule as
£ 14 y 0
oU = /Nv'&/ + EyI,0" 50" dz = /f(Nv')'sz — (ByIv") 6v'dx + Nv'év + EyIyv'' 50’
0 0 z=0 i

£
¢ ¢
= / ((By L") — (Nv')') $vde + EyI,v" 60’ + (N’U/ — (Eylyv”)/) ov
0

x=0

z=0
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Euler Bernoulli Beam Theory The Euler Buckling Problem

3.2. The Euler Buckling Problem

Euler Bernoulli Beam Theory

Virtual Elastic Work
Stress Virtual Strain

11
N E
0p = — — Eyyv” + 2y Sep = —ydv” 4+ 0’60’ oU = / (/ o'xdfmdA> dzx.
A 2 J \Ja

o The section integral simplifies as:
/ op0epdA = Nv'§v' + Eylyv"&}” + O(v2),
A

where we have not pursued terms that are quadratic or higher order in v or its
derivatives. (I show this in the appendix for post buckling)

o | This term leads to be simplified through the application of chain
1
(EyI,v")" — (NV') =0, z€(0,0),

4 4

oU = the general differential equa- ) 6v — (BEyIyv") 6v'dx 4+ Nv'dv

+ EyIyv'' 50’
tion governing Euler Buckling. 0

r= x

4 e

+ <Nv' — (Eylyv”)/) ov

x=0

4
/ (By L") — (NV')') Svde + E, I,v" 50/
x=0
0
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Euler Bernoulli Beam Theory

3.2. The Euler Buckling Problem

Euler Bernoulli Beam Theory

The Euler Buck

Stress Virtual Strain

N 2
op = — — Eyyv

Py Oeq

= 7y6v” + ' 50"

12 Ey/
+2v

ling Problem

Virtual Elastic Work

£
5U:/(/ o’x(SsmdA> dz.
e A

o The section integral simplifies as:

/ 020e.dA = Nv'6v' 4+ By Lv" 80" + O(v?),

This term leads to
where we have ng . ,
derivatives. (I shd Eylyv” =0 (or)v" = spec.,

e Using the above, i.e., either have a moment-free

x € {0, £,

higher order in v or its
g)
ugh the application of chain

rule as boundary (like a pinned hinge
0 or a free edge), or restrict the ‘ P
SU — /Nv’&/ + By ] rotation (like a clamped edge). 50/ do + Nv'sv + B I 8
2 .é x=0 T
y ¢ ¢
= / ((By L") — (Nv')') Svda + By Iyn" 50’ + (N’U/ — (Eylyv”)/) ov
o =0 =0
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Euler Bernoulli Beam Theory The Euler Buckling Problem

3.2. The Euler Buckling Problem

Euler Bernoulli Beam Theory

Virtual Elastic Work

Stress Virtual Strain

A

£
N E
0p = — — Eyyv” + 791;’2 Sy = —ydv” + v’ 60’ U = / (/ desmdA> dz.
A
0

o The section integral simplifies as:

/ op0epdA = Nv'§v' + Eylyv"&}” + O(v2),
A

where we have not pursued teri This term leads to

derivatives. (I show this in the (Eylyv")'—]\/v' — 0(or)v = spec., « € {0,4},

e Using the above, the span integ chain
rule as i.e., either have the shear force
¢ equal to Nv’ or restrict the trans-
Je s Ve verse deformation at the ends. Ve s ¢
oU = /Nv ov' + Eylyv"6v" dx = ARSI KA =y [yv" v

0 0 x=0 T

¢ 0 ¢
= / ((ByIy0")" — (NV')) dvdz + EyIv" 50’ + (Nv' - (Eylyfu")/) v
=0 =0
0
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Euler Bernoulli Beam Theory The Euler Buckling Problem

3.2. The Euler Buckling Problem

Euler Bernoulli Beam Theory

Virtual Elastic Work
Stress Virtual Strain

’2

N E
Op = Z — Eyyv” + Yy

0y = —yév” + ' 50"

o 6£mdA) dz.

e The sc e Applying the principle of virtual work we finally have
(B, L") — (Nv’)’ 0, ze(0,0)
Eylyv 0(or)v’ = spec., =€ {0,¢}
where
deriva (EyIv") — =0 (or)v =spec., z € {0,¢}.
o Using 4 OQur study of buckling will be all about solutions for this with chain
rule as different combinations of boundary conditions.
F ’ ¢
oU = /NUI(;U/ + EyI,0" 50" dz = /f(Nv')'sz — (ByIv") 6v'dx + Nv'év + EyIyv'' 50’
0 0 z=0 T
£ Y £
= / ((By L") — (Nv')') $vde + EyI,v" 60’ + (N'u' - (Eyly’u”)/) v
o x=0 x=0
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Euler Bernoulli Beam Theory Equilibrium Equations Through Force Balance

3.3. Equilibrium Equations Through Force Balance

Euler Bernoulli Beam Theory

e We may pursue just a simple force bal-
w4 ance and derive the equations also.

Equilibrium Equations

N —(VB) =0
V' + N +N'8=0
M +V=0

Assumption: Vg <K N

N' =0
V' 4+ NB =0
M’ —Ng' =0

Balaji, N. N. (AE, IITM) AS2070 February 8, 2026 19 /41



Euler Bernoulli Beam Theory The Euler Buckling Problem

3.4. The Euler Buckling Problem

Euler Bernoulli Beam Theory

o For the Euler buckling problem, we consider a member under uniaxial compression so
that N(z) = —P Vz € [0,/]. Let us also assume constant properties (E,I, and EyA do

not vary with ).

e The governing equations in the (0,¢) domain reduce to

P
EyIyv"" + Py =0, with u(z) = — z  (provided u| _, =0).
EyA r=
General Solution to the Transverse
Problem
Axial Problem @ Substituting N = —P we have,
@ Boundary conditions representing axial " 5 5 P
compression: v+ kT =0, k7= 1
, yly
uw(x =0) =0, E,Au' (z=4{)=—P
@ The general solution to this
@ Solution: Homogeneous ODE are
P v(z) = Ag + A1@ + Ag cos kx + Ag sin ke
u(z) = — T
E A
J @ Boundary conditions on the transverse
displacement function v(x) are necessary
to fix Ao, A1, Az, As.
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Euler Bernoulli Beam Theory

3.4.1. The Pinned-Pinned Column

The Euler Buckling Problem

e For a Pinned-pinned beam we have v =0
on the ends and zero reaction moments at
the supports:

v =0,

"
v =0,

z = {0,¢}
z = {0,¢}

@ So the general solution reduces to
v(z) = Az sinkz,

with the boundary condition

Azsinkl = 0.

Balaji, N. N. (AE, IITM)

AS2070

The Euler Buckling Problem

o Apart from the trivial solution (A3 = 0)
we have

hyt =nm = kn=n7

or in terms of the compressive load P,

2
n? T Byl
02

Pcr,n =

o Interpretation: If P # P, ,, A3 =0 to
satisfy boundary conditions. But for
P = Pern, A3 CAN BE ANYTHING!

February 8, 2026 21 /41



Euler Bernoulli Beam Theory

3.4.1. The Pinned-Pinned Column

The Euler Buckling Problem

The Euler Buckling Problem

e For a Pinned
on the ends a
the supports:

|

1
v

@ So the general

with the bou

Load-D

=

jcd

Y

Stable
Ag =0 ?‘

A

isplacement Plot
g Bt P
. 'ﬂ+ on (Az =0)
As ég§%7
™
=n—
¢
ve load P,
Unstable
\ As =0 1,
cr,1 P
n, A3 =0 to
5 But for
p T Ed NYTHING!
crn — /3
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Euler Bernoulli Beam Theory The Euler Buckling Problem

3.4.1. The Pinned-Pinned Column: The Imperfect Case I

The Euler Buckling Problem

@ Suppose there are initial imperfections in the beam’s neutral axis such that the neutral
axis can be written as vo(z). The deformation field and the resulting strain in this case
can be written as

,_L v/2
up =u—(y—vo)v', uy=v, = ex:u/—?jv"ﬁ-vév'—&-?.
o Replacing v/ = -, the stress becomes =N _ B, g+ Ev + E u? The
p gu' =g 7 o = 3 YU YU vl

associated virtual work is written (excluding quadratic and higher order terms) as

4
oW =— /Nvé&/ + Nv'§v' + Ey Lo v dz
0
¢ ¢
=— E, L") — (N + ")) svdz — (EyI,0") 80
yly 0 yly
0 =0

14
+ ((Eylyv")/ — N + vé)) v
=0

Note that we have dropped all terms with O(v?), O(vvo), O(v3) and above for this.
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Euler Bernoulli Beam Theory The Euler Buckling Problem

3.4.1. The Pinned-Pinned Column: The Imperfect Case II

The Euler Buckling Problem

@ The governing equations for equilibrium (requiring work stationarity, §W = 0) can be

expressed as

(EnyU")H - (N(’UE) + U,))/ = 07 T e (Orz)
Eylyv” =0 (or) v =spec., x€{0,¢}
xz € {0,¢}

(Bylyv") = N +v)) =0 (or) v =spec.,

o For the constant parameters compressive case, the differential equation can be expressed

as
" 1 1
EyL,0"" + P +v{)=0
or, in more convenient notation,
oM 4 k20" — _k2v(/)/// A
AS2070 February 8, 2026 23 /41
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Euler Bernoulli Beam Theory The Euler Buckling Problem

3.4.1. The Pinned-Pinned Column: The Imperfect Case 111

The Euler Buckling Problem

@ Describing the imperfect neutral axis using an infinite series,
™ T\ 2 T
vy = E C'y, sin (n—) — vy = — E (n7> C'p, sin <n—> s
0 n 1 ( 0 ) n Y
n n
the governing equations become
1117 2, 1 2 ™ €z
V" k0T = k <n7) C, sin (n—) .

e This is solved by,

Cn sin <n%)

’fL

Z n? 2Ey1y
n

— P

P
Pcr,n - P

Chp, sin (n%) = C,, sin (n%)

Balaji, N. N. (AE, IITM) AS2070 February 8, 2026
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Euler Bernoulli Beam Theory The Euler Buckling Problem

3.4.1. The Pinned-Pinned Column: The Imperfect Case

The Euler Buckling Problem

o Look carefully at the solution

v(z) = ; TP—P Chn sin(n%).

o Clearly P — P, are singularities. Even for very small Cy, the “blow-up” is huge.

Asf

Y
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Euler Bernoulli Beam Theory The Euler Buckling Problem

3.4.2. The Southwell Plot

The Euler Buckling Problem

@ The deformation amplitude at the mid-point is given as (for P < P, 1),

Ax 5 flpcl _ Pmcll_l
J P
—— A:PCTlé—CH
P

The Southwell Plot

@ Plotting A vs % allows Non-Destructive
Evaluation of the critical load

@ P, 1 is estimated without having to buckle the
column

>
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Euler Bernoulli Beam Theory The Euler Buckling Problem

3.4.3. The Clamped-Clamped Column

The Euler Buckling Problem

o The boundary conditions may be
P expressed as

10 1 0 A 0
FEI ¢ 0 1 0 k } A?}H
1 e cos(ke) sin(k£€) Ag| T |Of "
Qr =0 @z — ¢ 0 1  —ksin(kf) kcos(kl)| |As 0
u=20 EAY = -P M
v=0v =0 v=0v'=0
o There can be non-trivial solutions only
o The axial solution is the same as before: when M is singular, i.e., for choices
u(zx) = —ﬁaa of k such that A(M) = 0.

@ The transverse general solution also has
the same form but boundary conditions The Eigenvalue Problem

are different. . . o
This problem setting of finding k such that

Ag A(M (k)) = 0 is known as an eigenvalue
ﬁ;} problem.

{u(m)} _ B 71 cos(kx) sin(kx) ] i

v/ () —ksin(kz)  kcos(kx)
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Euler Bernoulli Beam Theory The Euler Buckling Problem

3.4.3. The Clamped-Clamped Column

The Euler Buckling Problem

o The boundary conditions may be
P expressed as

Aside: Eigenvalue Problems (M € R4x9) 0
= o
@ — 0 Linear Eigenvalue Problem (d eigenvalues) A
T =
b= 20 M (k) = My + My
1
o The axial Quadratic Eigenvalue Problem (2d eigenvalues) I;Si:‘;sy
ule) =1 M (k) = My + KMy + KMy
e The tran|
the same]
are differ|
that
ue
{;]/((Z))} o 1 —ksin(kx) kcos(ka)] {AQJ PTODTETIT.
A3
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Euler Bernoulli Beam Theory The Euler Buckling Problem

3.4.3. The Clamped-Clamped Column

The Euler Buckling Problem

o The boundary conditions may be
P expressed as

Aside: Eigenvalue Problems (M € R4x%) 0
- _lo
@ — 0 Linear Eigenvalue Problem (d eigenvalues) A
T =
v=t 20 M (k) = My + kM
1
o The axial Quadratic Eigenvalue Problem (2d eigenvalues) I;Si:‘;sy
v =1 M (k) = Mo + kM, + k2 My
e The tran|
the same) Our matrix M (k) has k-dependency in terms of k, sin(kf),
are differ] cos(kf), making this a Nonlinear Eigenvalue Problem. that
" @ — oo eigenvalues here (not always though!) ue
{v’@)} “Jo 1 —ksin(kz) kcos(ka)] {AQJ propretrt.
Az
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Euler Bernoulli Beam Theory The Euler Buckling Problem

3.4.3. The Clamped-Clamped Column I

The Euler Buckling Problem

o We proceed to solve this as,

1 0 1 0
0 1 0 k .

A 1 cos(kf) sin(ke) = —k (klsin(kl) + 2 cos(kl) — 2)
0 1

—ksin(kl) kcos(kl)

o We set it to zero through the following factorizations:

A(M (K))

—k (Qkfsin (’d) cos (%) — 4sin? (%))
2 2 2
—2k sin (%) (kﬂcos (%) — 2sin (%)> =0
2 2 2
. ke ket ke
:}sm(—):O, (or) tan( ):—.
2 2 2

e Two “classes” of solutions emerge:

. : knt
Q sin(&f) =0 = %z

2
EI
=nT = Pysyl) :4n2ﬂ- >

@ tan(kf) = & — "l 50,449,772, = P ~8.987 8L
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Euler Bernoulli Beam Theory The Euler Buckling Problem

3.4.3. The Clamped-Clamped Column II

The Euler Buckling Problem

2 2
o The smallest critical load is P,Sl) = 47"?2]5[ = ?T};CQI
2
Concept of “Effective Length”

@ Question: If the beam were simply supported, what would be the length such that it also has
the same first critical load?

Here it comes out to be £opy = %.

The column clamped on both ends can take the same buckling load as a column that is pinned
on both ends with half the length.

Balaji, N. N. (AE, IITM) AS2070 February 8, 2026 29 /41



Euler Bernoulli Beam Theory The Euler Buckling Problem

3.4.3. The Clamped-Clamped Column III

The Euler Buckling Problem

Boundary Critical Deflection Effective
conditions load P, mode shape length K1

Simplesupport= - TEL__Nsoe o NL
simple support L? N
2EI N
Clamped-clamped 4 "L = - g—&g -— L

Clamped-simple m2El
aupoort 2045 —=) «~— 0.70L
1 m2El - -—
Clamped-free 3 ”L2 % /T 2L

Effective lengths of beams with different boundary conditions (Figure from Brush and Almroth 1975)

Self-Study

@ Derive the effective length for the clamped-simply supported and clamped-free columns. J
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Euler Bernoulli Beam Theory The Euler Buckling Problem

3.4.3. The Clamped-Clamped Column: The Mode-shape

The Euler Buckling Problem

o Let us substitute k1 = 27" into the matrix M (k1) so that the boundary conditions now
read as
1 0 1 0 Ao 0
0 1 0 25| A _ |0
1 ¢ 1 0 As| T |0
0 1 0 2] [A; 0

o This implies the following:
A1 =0, Az3=0, Ag=—Ap.
e So, if k = k1, the solution has to be the following to satisfy the boundary conditions:

2
v=Ag (1 — cos(%)) = Ap sin%%)
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Euler Bernoulli Beam Theory The Euler Buckling Problem

3.4.3. The Clamped-Clamped Column: The Mode-shape

The Euler Buckling Problem

o Let us substitute k1 = 27“ into the matrix % (k1) so that the boundary conditions now

read as

[L 0 1 0][A] [o]

Buckling mode-shape

o This impli

e So, if k= Qr =0 @3,3 =1 conditions:
u=0 FAuW = —-P
v=0v =0 v=1v"=0
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Snap-Through Buckling

4. Snap-Through Buckling

o Let’s try out the principle of virtual work
. . L
on a slightly more complicated example

now. k k
o We will consider the SDoF model to the /% A
€T

Vo

right (from Wiebe et al. 2011).

o The strain energy on the springs (two) is

k 2
U(U):2§A3; :k‘(\/L2—’U(2)—\/L2—U2> .

o The work done by the applied load is
given by,

dw _
7, — 0 we get

L2 — v
F=—-2kv|1-— Tz .2 |

I(v) = F. Setting
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Snap-Through Buckling

4. Snap-Through Buckling

o Instead of an analytical treatment, we will use Graphical Inspection to understand
this function.

Load F A

Y
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Snap-Through Buckling

4. Snap-Through Buckling

o Instead of an analytical treatment, we will use Graphical Inspection to understand
this function.

Monotonic
Regimes

Load F A

Y
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Snap-Through Buckling

4. Snap-Through Buckling

o Instead of an analytical treatment, we will use Graphical Inspection to understand

this function.

Monotonic
Regimes

Load F A

Balaji, N. N. (AE, IITM)

Load Reversal

Points

Y

AS2070

—
Deflection v
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Snap-Through Buckling

4. Snap-Through Buckling

o Instead of an analytical treatment, we will use Graphical Inspection to understand
this function.

Load F A

Vo
— —-
~o _)‘4 Deflection v
Loading direction

Y
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Snap-Through Buckling

4. Snap-Through Buckling

o Instead of an analytical treatment, we will use Graphical Inspection to understand
this function.

Load F A

Vo
O >
______ <L _:_‘_,._”/ Deflection v

(“Snap-Through” Event !) Loading direction

Y
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Snap-Through Buckling

4. Snap-Through Buckling

o Instead of an analytical treatment, we will use Graphical Inspection to understand
this function.

Load F A

A single load level can equilibrate in
three different configurations!

Balaji, N. N.
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Snap-Through Buckling

4: Equilibrium Visualization

Snap-Through Buckling

1.00+ 1.0

0.75
= 0.5
|
20,50 -
© g 00
€ o
o025} -
& -0.5

0.00

| | | . | —1.0 L.« I I I i
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
Displacement = Displacement =
Linear System: U — II = %1.2 — Fx
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Snap-Through Buckling

4: Equilibrium Visualization

Snap-Through Buckling

0.02
—F,=0
4t 0
—F, > F,
—F,>F,
| 0.01
S Ry
s S VAN ]
e S
w
g o [N ]
o 0.00
o
—Fy=0 \/
—F, > F
-20 | —F, > F
: : : : : -0.01 : : : : :
-0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4
Displacement = Displacement z
Snap-Through Problem: U — Tl = k(,/L2 — v2 — /L2 — v2)2 — Fx
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Plate Buckling Governing Equations

5.1. Plate Buckling

Governing Equations

o Kichhoff-Love Plate Theory.

o Kinematic Assumptions: Lines along section-thickness deform as lines and stay
perpendicular to the neutral axis.

o Governing equations written in the form
Et?

12(1 — v2) (W zzee + W yyyy + 2W zayy) = (NaaW,ew + Nyyw,yy + 2Nayw,zy) =0

DV*w — (NezW,zz + Nyyw,yy + 2Nayw,zy) = 0

o This is all that is needed to conduct buckling analysis - the procedure is identical as
above!

o Before this, however, let us develop intuition on the different reaction force components
and their kinematic relationships.
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Plate Buckling Reaction-Kinematics Relationships

5.2. Reaction-Kinematics Relationships

Plate Buckling

Normal Reactions

1€- Nyy Ny
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Plate Buckling Reaction-Kinematics Relationships

5.2. Reaction-Kinematics Relationships

Plate Buckling

Normal Reactions l
AVA AV

Moment Reactions

12 M,
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Plate Buckling Reaction-Kinematics Relationships

5.2. Reaction-Kinematics Relationships

Plate Buckling

Normal Reactions l
AVA AV

Moment Reactions

Stress-Moment Relationships

tc.

Balaji, N. N. (AE, IITM) AS2070 February 8, 2026 36 /41



Plate Buckling Reaction-Kinematics Relationships

5.2. Reaction-Kinematics Relationships

Plate Buckling

Normal Reactions l
AVA AV

Moment Reactions

TQ r\Mal

Stress-Moment Relationships ]

Equilibrium Equations (Shear Force-Moment Relationships)

Ozx,x + Txy,y + Txz,z = 0 Qac = wa + M;cyyy
Tey,x T Oyyy +Tyzz =00 = §Qy =—Myy+ Maya
Tezx + Tyz,z +0zz,2 = 0 0 = QI@ + any'

Note:

o Although the shear strains v;. & 7. are assumed zero by the Kirchhoff
kinematic assumptions, and thereby, the stresses 7> & 7. are also zero,
the shear forces can not be zero for equilibrium!!

t t
o They are defined as Q = [ 2, Tzzdz, Qy = [?, Ty=dz.

k3
2 2
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Plate Buckling Reaction-Kinematics Relationships

5.2. Reaction-Kinematics Relationships

Plate Buckling

o With this background, we are ready to write the following:

Nyx U,z
Nyy v

1 v 0 Y

E t 0

Ny _ sl @ v 1 0 Uy + Uz
M:E 1—v2 0 12 0 0 1—v W,zx
—My 2 W,yy
My 2W oy

e A moment-free boundary condition (simply supported edge) would imply simply setting
the second derivatives (w zaz, W, yy, W, zy) to zero at the edge.
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Plate Buckling Thin Plates Under Uniaxial Compression

5.3. Thin Plates Under Uniaxial Compression

Plate Buckling

Origin O 1e. P,
Governing Equations
a
P, DV*w 4 Pw 4p =0
b = Pernm = D <i+n2a—/l)>2
Plate under uniazial compression b2 a/b m

(n=1 always for minimum critical load)

72D [ m a/b\?
= Pcr,m = 5 + —

Ansatz (Simply Supported Case) w (ot o
P 2D . m N a/b\?
o) = 37 Wossin (m 2 ) sin (n ) = e e
a
m,n ——

Boundary Conditions:
w=0, My, My =0 on T
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Plate Buckling Thin Plates Under Uniaxial Compression

5.3. Thin Plates Under Uniaxial Compression

Plate Buckling

Buckling Constant

. m 2
ker(r) = min (4 0)

Buckling Constant
«

——Minimum

2 4 6 8
Aspect Ratio a/b (Unloaded Edge/Loaded Edge)
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Plate Buckling Thin Plates Under Uniaxial Compression

5.3. Thin Plates Under Uniaxial Compression

Plate Buckling

Buckling Constant

. m r\2
o= g (33)

Buckling onstant

=1
=2
3

-m=4
——Minimum

2 4 6 8
Aspect Ratio a/b (Unloaid Edge/Loaded Edge)

m=2
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Plate Buckling

5.3. Other Boundary Conditions

Thin Plates Under Uniaxial Compression

Thin Plates Under Uniaxial Compression

o It is possible to conduct the same analysis l}
for other (combinations) of boundary M |
conditions. || [—‘xx [_ z
\ 55 ¢ free L
@ The analysis is slightly more tedious (due to 12 "
the Ansatz not being as simple any more), \‘ -
but possible along the same lines. o [ free
@ The critical plot comes out as shown in your ‘\\‘ \\ — — — — Loaded edges clamped
textbook. ‘\\ N o Louded edgessimply
\ ~=, supported

S ————— ]

(Figure 3.9 from Brush and Almroth 1975)
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Plate Buckling Thin Plates Under Uniaxial Compression

5.3. Other Boundary Conditions

Thin Plates Under Uniaxial Compression

@ It is possible to conduct the same analysis
for other (combinations) of boundary £
conditions.

@ The analysis is slightly more tedious (due to
the Ansatz not being as simple any more),
but possible along the same lines.

@ The critical plot comes out as shown in your N

_Clamped edges
textbook.

The same works for shear buckling too!
¥y

N, 7
/xy0 \
e e p— Simply supported edges

| o |
vl b ;
J_____le

a
b
(Fig. 8.10 from Brush and Almroth 1975)
(Figure 3.11 from Brush and Almroth 1975)
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Food For Thought

6. Food For Thought

e We're not yet ready to handle this (wait one more semester for AS3020), but some types
of beam undergo twisting instability!

o In the right we have simply supported beams under axial compression - the beams twist
before they bend under the instability.

e

CODE aster CODE aster

Simply Supported Beam Under Azial Compression Cantilevered Beam under Awzial Compression (2nd mode)

Heads Up: You are designed to see this in your structures lab experiment!
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Food For Thought
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Tutorials Column Buckling

8.1. Column Buckling

Tutorials

1. Straight Column

A straight column 500 mm long has a rectangular cross section that is 25 mm wide and 10 mm thick.
If the column ends are simply supported and E, = 200 GPa. Determine the buckling load.

y
2. Crooked Column

Consider the same column as above but with crookedness quantified by C; = 1 mm, 0.1 mm,
0.0l mm (and C,,, = 0 for m > 1).

@ Plot the axial load versus maximum transverse deflection curves for each of the cases above.

@ Determine the magnitude of the maximum compressive stress on the cross section for each of

the three cases for an applied load of 2000 N.
v
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Tutorials Column Buckling

8.1. Column Buckling: 1. Straight Column

Tutorials

@ The section properties are computed as

A =250mm?, T, =2083.33mm?*, I, = 13020.83 mm*.

Clearly buckling in the ey direction will be sooner than buckling in the e, direction, so

we will only consider this.
e The buckling critical load is written as:
72 By Iy, 52 x 10° - 2083.33

Per = 2 = 5002 = 16449.31N.

Please be careful of units
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Tutorials Column Buckling

8.1. Column Buckling: 2. Crooked Column

Tutorials

C1

e Our formula for the mid-point deflection of a crooked column is A = 5~ 1 and is
e
plotted in the figure below.
e The formula for axial stress is oz = % — Byyv” = —% — Eyv'y.
e For P =2000N, A =0.1384C4
A e Since v = Asin (T£), v’ = —A;—j sin (Z£) whose
.5 maximum value is ”ZQ—QA = 5.4644C' .
glk C1 =1mm o The maximum value of ¥ is Yymax = 5 mm. So the
Ea C1 =0.1mm stress equation becomes
- o 2000
C1 =0.01mm = 1+ 5.4644C1 x5 x 200 GP
/ l Tmax =50 x 106 T Lo 4
} = 8+ 5464.4C1 (in MPa).
Peak azial stress for different C'1
/ (@ Omax
— Per _(mm) | (MPa)
Axial Load P 1 | 13.46
) 0.1 | 8.55
Deflection Plot
0.01 | 8.05
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Post-Buckling Behavior of Beams (Out of Syllabus)

9. Post-Buckling Behavior of Beams (Out of Syllabus)

o Let us use the variational approach to study the post-buckling behavior of a beam.

o We’ve developed some intuition that buckling blows up the displacement levels. Let us
revise our kinematic description to capture this.
o The (simplified) approach we will follow is as follows:
@ Write out nonlinear kinematics, identify normal force N = fA o,dA and moment
M = [, —yo.dA.
@ Assume transverse deformation field v = V sin (%)
© Assume axial tip deflection ur and derive axial deformation field.
@ Express work done in terms of scalars V and ur. — Extremize.
@ Plot force deflection curves, analyze stability.

© Post-Buckling Behavior of Beams (Out of Syllabus)
o Geometrically Nonlinear Kinematics
o Equilibrium
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Post-Buckling Behavior of Beams (Out of Syllabus) Geometrically Nonlinear Kinematics

9.1. Geometrically Nonlinear Kinematics

Post-Buckling Behavior of Beams (Out of Syllabus)

Geometrically Nonlinear Kinematics

@ The deformation field is written as u, = u — yv’, u,y = v. Consider the deformation of a line
from (z,y) to (z + Az, y):

(2,y) = (@ +u—yv' y +0),
(x + Az,y) = (v + Az +u — y'u/ + (u/ - yv”)Az, y+v+ U/Aw),
AS = Az, As® =AMz (1+u —yo')? + v'g).
® We write the axial strain as
1As®> — AS*

_ ’ " 1 ’ 11\2 ’2
61—2T_(u —yv )+§<(u —yv' )"+ )

’ " v'?
ex = (u —yv )+7 K

@ The final assumption is sometimes referred to as Von Karman strain assumptions.
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Post-Buckling Behavior of Beams (Out of Syllabus)

9.2. Equilibrium

Post-Buckling Behavior of Beams (Out of Syllabus)

Equilibrium

o Nearly nothing changes in the equilibrium equations. We first write out the area-normal

stresses and moments:

72

N:/ ByendA = ByA(u + —),
A

v
2

o The axial force balance reads:

d ,U/2
N =B, A [« + 2 ) =0,
Y dm<u+ 2)

Balaji, N. N. (AE, IITM) AS2070

M :/ —yEyeadA = EyIv"”.
A

“(z)lz:O =0, ulz:l =ur.
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Post-Buckling Behavior of Beams (Out of Syllabus) Equilibrium

9.2. Equilibrium: Axial Problem

Post-Buckling Behavior of Beams (Out of Syllabus)

We next impose the transverse deformation field v(z) = V sin (Z£) on the axial
problem. Solving this, we get

u(z) =

V2 2
_7r8£ sin (%x) + Ciz + Co.

o Boundary conditioned are imposed by setting C1 = "TT and C2 = 0.

o The parameterized axial deformation field, therefore, is

V2 2
w(z; Vyur) = U7Tx — ﬂgz sin (%) .

o Note that we have not said anything about V' or up so far.
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Post-Buckling Behavior of Beams (Out of Syllabus) Equilibrium

9.2. Equilibrium: Strain Energy Density

Post-Buckling Behavior of Beams (Out of Syllabus)

o The strain energy density (per unit length) is written as,

E,e2 E 12
V=/ 2V A = —/ (u —yo” + 1}—)Qdm
A 2 2 /4 2

2
EyA / v'? Eyly 2 _ Eyly 2 EyA”/4
) <u Tyt v R Ty

e Note that we have assumed up — 0, i.e., providing negligible influence on the overall
potential energy.

o Substituting the assumed deformation field v = V'sin(77 ) and integrating over (0,¢) we
have,

V4

£
T Byl, o 3I*E, A
Viot =/V(w)dm: 103 Ve + 6103
0

2P, 32 AP.,
= V2 V4,
44 * 641/
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Post-Buckling Behavior of Beams (Out of Syllabus) Equilibrium

9.2. Equilibrium: Work Stationarity

Post-Buckling Behavior of Beams (Out of Syllabus)

o The work done by an axial compressive load P is given by

£ £
P P 2
1= // —epdAdx = // —(u — gy + v—)dAda:
A A A A 2
0 0

£ £
P
P/u/d:c-l— E/v/Qda:
0 0

2P
=P — V2|
ur + m

e So the total work scalar (W =1II — Vit ) is given as (we ignore up here)

Balaji, N. N. (AE, IITM) AS2070 February 8, 2026
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Post-Buckling Behavior of Beams (Out of Syllabus) Equilibrium

9.2. Equilibrium: Work Stationarity

Post-Buckling Behavior of Beams (Out of Syllabus)

e Stationarizing the work we get,

2p, P A 1/ P
aw = C”v(( —1)—3—V2)éV:0,:ﬁ: 8—( —1).
av 20 Per 81 34 \ P.r

Note that the non-trivial solution is only active for P >= P,.

o We can next estimate up easily by applying the boundary conditions.
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Post-Buckling Behavior of Beams (Out of Syllabus) Equilibrium

9.2. Equilibrium: Work Stationarity

Post-Buckling Behavior of Beams (Out of Syllabus)

Post-Buckling Solution

Transverse Axial train Energ
e
o Stafl N _ :[; v =
e
Not P/P, P/P, v
o We

x, Coordinate

Balaji, N. N. (AE, IITM) AS2070

February 8, 2026

11 /11



	Introduction
	Elastic Stability
	Bifurcation
	Modes of Stability Loss

	The Principle of Virtual Work
	A Rigid Column Under Axial Load

	Euler Bernoulli Beam Theory
	The Axial Deformation Problem
	The Euler Buckling Problem
	Equilibrium Equations Through Force Balance
	The Euler Buckling Problem

	Snap-Through Buckling
	Plate Buckling
	Governing Equations
	Reaction-Kinematics Relationships
	Thin Plates Under Uniaxial Compression

	Food For Thought
	References
	Appendix
	Tutorials
	Column Buckling

	Post-Buckling Behavior of Beams (Out of Syllabus)
	Geometrically Nonlinear Kinematics
	Equilibrium



