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Introduction

1. Introduction

Structural Stability: What?

o Consider supporting a mass M on the top
of a rod.

A/
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Introduction

1. Introduction

Structural Stability: What?

o Consider supporting a mass M on the top
of a rod.

e Collapse is imminent on at least one!

How can we mathematically describe this?

A/

Two Extreme Cases:

M

M

A/
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Introduction

1. Introduction

Structural Stability: Perturbation Behavior

Perturbation Behavior

Key insight we will invoke is behavior under perturbation:
How would the system respond if I slightly perturb it?

o Mathematically, by perturbation we mean any change W ,7
to the system’s configuration. \“ ,"':' I’I
‘,l’ III

4

V1

o In this case, this could be different deflection shapes.
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Introduction

1. Introduction

Structural Stability: Perturbation Behavior

Perturbation Behavior

Key insight we will invoke is behavior under perturbation:
How would the system respond if I slightly perturb it?

o Mathematically, by perturbation we mean any change W /7
to the system’s configuration. ‘\“ ,"':' I’I
/
o In this case, this could be different deflection shapes. }:((" /Il
74\
Question (Slightly more specific) ',: "|IIII
What will the system tend to do if an arbitrarily small ,".l' |II
h
i
Y[
W
\‘ 1

magnitude of perturbation is introduced?
@ Will it tend to return to its original configuration?
e Will it blow up? \

@ Will it do something else entirely?
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Introduction Elastic Stability

1.1. Elastic Stability

Introduction

‘What do these words mean? J

Elastic — Reversible — Conservative

1D Example
Conservative System Consider a system whose configuration is
expressed by the scalar z and the potential is
@ The restoring force of a conservative as shown.
system can be written using a gradient of
a potential function:
F=-VU. U“
— V.
Equilibrium
@ System achieves equilibrium when F = 0,
ie.,
VU = 0.
y >
X
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expressed by the scalar z and the potential is
@ The restoring force of a conservative as shown.

system can be written using a gradient of Remember,
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1.1. Elastic Stability

Introduction

‘What do these words mean?
Elastic — Reversible — Conservative J
1D Example
Conservative System Consider a system whose configuration is
expressed by the scalar z and the potential is
@ The restoring force of a conservative as shown.
system can be written using a gradient of " -
a potential function: Repulsive
F=-VU. U“
— V.
“Attractive”
Equilibrium
@ System achieves equilibrium when F = 0,
ie.,
VU = 0. ) R
X1 Tog X
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Introduction

‘What do these words mean?
Elastic — Reversible — Conservative J

1D Example

Conservative System Consider a system whose configuration is
expressed by the scalar z and the potential is
@ The restoring forc.e of a c.onservatlv'e as shown. Unstable

system can be written using a gradient of

a potential function: “W’

PR U,

) Stable
HAWeW
Equilibrium
@ System achieves equilibrium when F = 0,
ie.,
VU = 0. ) R
X1 Tog X
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Introduction  Bifurcation
1.2. Bifurcation

Introduction

A system is said to have undergone a bifurcation if its state of stability has changed due to the
variation of some parameter. J

Transverse Axial train Energ

z, Coordinate

Ezample: A pinned-pinned beam undergoing azial loading.
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Introduction Modes of Stability Loss

1.3. Modes of Stability Loss

Introduction

The configuration that a system can assume as it undergoes a bifurcation is the mode of the
stability loss.

)

04 . - g T 04 o - 2 =
X 06 o3 ro X, 06 03 ro oo 3 m >

X

Ezample: Thin plate (pinned) under shear loading
Ezample: Thin plate (pinned) under avial loading
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Euler Buckling of Columns Equilibrium Equations

2.1. Equilibrium Equations

Euler Buckling of Columns

Ey

Equilibri/um Equ/ations
N —(VB) =

V' + Ng' +N'B=0
M +V =0

Assumption: /V/j < N
N =0

V4 NB =0
M" —NBg' =0

Balaji, N. N. (AE, IITM) AS2070 January 19, 2026 8/33



Euler Buckling of Columns

2.2. Kinematic Description

Euler Buckling of Columns

Ey

Displacement, Strain Field
Uy = u(z) — yv (z)

Uy = v(x)

Exz = u'(m) — yv”(a:)

Assumptions (E.B.T.)
Plane sections remain planar
u,v = u(x),v(x)

Neutral Axis remains L to sections

B=6=1(z)

Small displacements, rotations
(9(1}27 u?, v/2) — 0

Balaji, N. N. (AE, IITM)
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Euler Buckling of Columns Kinematic Description

2.2. Kinematic Description

Euler Buckling of Columns

Ey

\ 0

Displacement, St Constitutive Modeling
uw:u(w)i? E E/ E//
uy = v(x) Oxx = L€z = LU — yLv
Cow = v/ () — N = / 0w = EA/

JA

M = / —yo.e = ETV"”
A

Assumptions ( Note: y measured in Centroidal coordinates s.t.
Plane sections remain pl f y=0
u,v— A i

_

Neutral Axis remains L to sections

B=6=1(z)

Small displacements, rotations
O(vz,u2,v/2)—>0 >
u(z)
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Euler Buckling of Columns

2.3. The Linear Buckling Problem

Euler Buckling of Columns

e Substituting, we are left with,

The Linear Buckling Problem

N’:, M"—NB/Z El" — Nv' =0

Axial Problem

@ Boundary conditions representing axial

EAu (x =¢) = —P

compression:
u(z = 0) =0,
@ Solution:
P
u(x) = ~5A°

Balaji, N. N. (AE, IITM)

Transverse Problem

@ Substituting N = —P we have,

’U”” + k2’U” — 0’ k‘2 E———

@ The general solution to this
Homogeneous ODE are

v(z) = Ag + Ajz + Ag coskx + Agsin ke

@ Boundary conditions on the transverse

o displacement function v(x) are necessary
to fix Ag, A1, Aa, As.
y
a
AS2070 January 19, 2026 10 /33



Euler Buckling of Columns The Linear Buckling Problem

2.3.1. The Pinned-Pinned Column

The Linear Buckling Problem

e For a Pinned-pinned beam we have v =0 o Apart from the trivial solution (A3 = 0)
on the ends and zero reaction moments at we have
the supports: -

k(n)f =nnm — kp = nz

v=0, z={0,/¢}

=0, x=/{0,¢} or in terms of the compressive load P,
@ So the general solution reduces to o T2ET
Pcr,n =n 72

v(z) = Az sinkz,

o Interpretation: If P # P, ,, A3 =0 to
satisfy boundary conditions. But for

— P = P..,, A; CAN BE
Azsinkl = 0. ANYTHING!.

with the boundary condition

Balaji, N. N. (AE, IITM) AS2070 January 19, 2026 11 /33



Euler Buckling of Columns

The Linear Buckling Problem

2.3.1. The Pinned-Pinned Column

The Linear Buckling P

roblem

e For a Pinned
on the ends a
the supports:

|

1
v

@ So the general

with the bou

Load-D

isplacement Plot

El ¢

P

Balaji, N. N.

o ”———T-—_~~‘ ﬂ+ on (A3 =0)
4 Az ///@77 .
=n—
l
As/
ve load P,
Stable Unstable
Az =024 A3 =0 ]
. 3 = B
cr,1 f
- xR A3z =0 to
? 7 5 But for
T El
Pcr,n =n 73
\
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Euler Buckling of Columns The Linear Buckling Problem

2.3.1. The Pinned-Pinned Column: The Imperfect Case I

The Linear Buckling Problem

e Suppose there are initial imperfections in the beam’s neutral axis such that the neutral
axis can be written as vo(x).

e Noting that strains are accumulated only on the relative displacement v(x) — vo(z), we
write
EI(v—wv0)"" + Pv"” =0.

Note that the axial load P acts on the net rotation of the deflected beam, so we do not
need to use (v —vg)” here.

o The governing equations become
EI'U”N JFPUN — EI’U(I)IH,

or, in more convenient notation,

7
'U”N + k'2'U ! — v(/)/// A

Balaji, N. N. (AE, IITM) AS2070 January 19, 2026 12 /33



Euler Buckling of Columns The Linear Buckling Problem

2.3.1. The Pinned-Pinned Column: The Imperfect Case 11

The Linear Buckling Problem

@ Describing the imperfect neutral axis using an infinite series,

T T\ 4 T
vy = Cy, sin(n— = vy = <n7> Cpsin(n—) |,
o= CusnnT) (= ot = 3 (o) Cusintn )
the governing equations become

" 4 k2 = Z (n%)4 Cn sin(n%).

n

e This is solved by,

_ (n%)* T
v(z) = Z N2 2 Chp sin(n 7 )

: z z T P, T

0 . cr,n .
= E —————Chsin(n—) = E —————Cy sin(n—
7'”27[‘;;EI — P " ( l ) o Pcr,n - P " ( J4 )

Balaji, N. N. (AE, IITM) AS2070 January 19, 2026
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Euler Buckling of Columns The Linear Buckling Problem

2.3.1. The Pinned-Pinned Column: The Imperfect Case

The Linear Buckling Problem

e Look carefully at the solution

Pern ., TX
=3 S Csin(n™Y).
v(z) . B 'n sin(n 7 )

o Clearly P — P are singularities. Even for very small Cy, the “blow-up” is huge.

Ash 500

Y

Balaji, N. N. (AE, IITM) AS2070 January 19, 2026 14 /33



Euler Buckling of Columns The Linear Buckling Problem

2.3.2. The Southwell Plot

The Linear Buckling Problem

e The relative deformation amplitude at the mid-point is given as (for P < Py 1),

P, C
~LC1*C1=P71
Pery — P %:1_1
4
- (s:Pcr,lF_Cl

The Southwell Plot

@ Plotting § vs % allows Non-Destructive
Evaluation of the critical load

@ P, 1 is estimated without having to buckle the
column

e

Balaji, N. N. (AE, IITM) AS2070 January 19, 2026 15 /33



Euler Buckling of Columns The Linear Buckling Problem

2.3.3. The Clamped-Clamped Column

The Linear Buckling Problem

o The boundary conditions may be
P expressed as

1 0 1 0 A 0
EI ¢ o 1 : } A‘;}_H
1 ¢ cos(kb) sin(ke) | [Ax]| = |of -
Qz =0 Qo — ¢ 0 1 —ksin(ke) kcos(kf)| A3 0
u=20 EAW = -P M
v=0v =0 v=0 =0

o There can be non-trivial solutions only

@ The axial solution is the same as before: when M is singular, i.e., for choices

u(z) = — 5. of k such that A(M ) = 0.
o The transverse general solution also has
the same form but boundary conditions The Eigenvalue Problem

are different.

This problem setting of finding k such that
z:o A(M (k)) = 0 is known as an eigenvalue
e
A3

{v(fn)} _ Ll) 2 cos(kx) sin(kx) ] problem.

ol ()] T 1 —ksin(kz)  kcos(kx)
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Euler Buckling of Columns The Linear Buckling Problem

2.3.3. The Clamped-Clamped Column

The Linear Buckling Problem

o The boundary conditions may be
P expressed as

Aside: Eigenvalue Problems (M € R?x9) 0
Linear Eigenvalue Problem (d eigenvalues) - o
Qzr =20
o= 20 M (k) = My + kMy
. . . ns only
o The axial Quadratic Eigenvalue Problem (2d eigenvalues) oices
ulx) = M (k) = Mo + kM + k* My
@ The tran
the same]
are differ|
that
(=) ue
{u’(ﬁé)} T T0 1 —ksin(kax) kcos(ka)] LAzJ PropTETIT
A3
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Euler Buckling of Columns The Linear Buckling Problem

2.3.3. The Clamped-Clamped Column

The Linear Buckling Problem

o The boundary conditions may be
P expressed as

Aside: Eigenvalue Problems (M € R?x9) 0
Linear Eigenvalue Problem (d eigenvalues) N o
Qzr =0
b 20 M (k) = Mo + kM,
1
o The axial Quadratic Eigenvalue Problem (2d eigenvalues) r(l)si:ensy
ulx) = M (k) = Mo + kM + k* My
e The tran|
the same Our matrix M (k) has k-dependency in terms of k, sin(k£),
are differ cos(kf), making this a Nonlinear Eigenvalue Problem. that
(@) @ —> oo eigenvalues here (not always though!) ue
{u’(m)} T 0 1 —ksin(kz) kcos(kax)] LAZJ PTODIEIL
A3
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Euler Buckling of Columns The Linear Buckling Problem

2.3.3. The Clamped-Clamped Column I

The Linear Buckling Problem

o We proceed to solve this as,

1 0 1 0
0 1 0 k .

A 1 ¢ cos(k0) sin(ke) = —k (klsin(kl) + 2 cos(kl) — 2)
0 1 —ksin(kl) kcos(kl)

o We set it to zero through the following factorizations:

A(M (k) = —k (Qkfsin(%z)cos(%) - 4sin2(kj))

72ksin(g) (kécos(%z) - 2Sil’l(%)) =0

Kt Kt k¢
—|sin(—) =0, or tan(—) = — |
(5)=0} (0 |wn(5)="
e Two “classes” of solutions emerge:
2
T EI
Q sin(&) =0 = %:nﬂ' = Py(ll):4n2 5
@ tan(kf) = A — Fnf 50,449,772, .. = P ~8.987 8L
Balaji, N. N. (AE, IITM) AS2070 January 19, 2026
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Euler Buckling of Columns The Linear Buckling Problem

2.3.3. The Clamped-Clamped Column II

The Linear Buckling Problem

2 2
o The smallest critical load is P\") = 4™ 21 = ’(fg—g
2
Concept of “Effective Length”

@ Question: If the beam were simply supported, what would be the length such that it also has
the same first critical load?

Here it comes out to be £opy = %.

The column clamped on both ends can take the same buckling load as a column that is pinned
on both ends with half the length.

Balaji, N. N. (AE, IITM) AS2070 January 19, 2026 18 /33



Euler Buckling of Columns The Linear Buckling Problem

2.3.3. The Clamped-Clamped Column III

The Linear Buckling Problem

Boundary Critical Deflection Effective
conditions load P, mode shape length K1

Simplesupport= - TEL__Nsoe o NL
simple support L? N
2EI N
Clamped-clamped 4 "L = - g—&g -— L

Clamped-simple m2El
aupoort 2045 —=) «~— 0.70L
1 m2El - -—
Clamped-free 3 ”L2 % /T 2L

Effective lengths of beams with different boundary conditions (Figure from Brush and Almroth 1975)

Self-Study

@ Derive the effective length for the clamped-simply supported and clamped-free columns. J

Balaji, N. N. (AE, IITM) AS2070 January 19, 2026 19 /33



Euler Buckling of Columns The Linear Buckling Problem

2.3.3. The Clamped-Clamped Column: The Mode-shape

The Linear Buckling Problem

o Let us substitute k1 = 27" into the matrix M (k1) so that the boundary conditions now
read as
1 0 1 0 Ao 0
0 1 0 25| A _ |0
1 ¢ 1 0 As| T |0
0 1 0 2] [A; 0

o This implies the following:
A1 =0, Az3=0, Ag=—Ap.
e So, if k = k1, the solution has to be the following to satisfy the boundary conditions:

2
v=Ag (1 — cos(%)) = Ap sin%%)

Balaji, N. N. (AE, IITM) AS2070 January 19, 2026 20/ 33



Euler Buckling of Columns The Linear Buckling Problem

2.3.3. The Clamped-Clamped Column: The Mode-shape

The Linear Buckling Problem

o Let us substitute k1 = 27“ into the matrix % (k1) so that the boundary conditions now

read as

[L 0 1 0][A] [o]

Buckling mode-shape

o This impli

e So, if k= Qr =0 @3,3 =1 conditions:
u=0 FAuW = —-P
v=0v =0 v=1v"=0

Balaji, N. N. (AE, IITM) AS2070 January 19, 2026 20/ 33



Energy Perspectives

3. Energy Perspectives

@ Concept of conservative force field.
e Work done by a force field:

W)= I - Vi(z)
S~~~ S~~~
External Work Internal Work/Potential Energy

Example
e Force balance reads: F = kx

o Work done expression: W(z) = Fx — gazz

NN
NNNANY

k F
E
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Energy Perspectives

3. Energy Perspectives

e Expanding W about some z, we have,

W(z, +6z) = W(z,) + VW[, bz + O(sz?).

, where  is the

e Stationarity of work: | W = VW (z,)dz =0, V ze€Q

configuration-space.

Example
e For the SDoF system above, we have W = Fz — §m2 and
dW

F
VW(xQ:E:F—ka:O E xs=z4

o Work-stationarity hereby gives a convenient definition for equilibrium.

o What about higher order effects?

Balaji, N. N. (AE, IITM) AS2070 January 19, 2026
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Energy Perspectives

3. Energy Perspectives

o Continuing the Taylor expansion (SDoF case) for W (z) we have,

1d*°W
W(x) = W(xs) + (1:5)6:(;-1— 5 2 (135)(550 +O(623).
e At equilibrium, % is zero. The sign of % governs the local tendency of the work
around equilibrium.
Example
e For the SDoF example, ddzxvzv = —k, implying W is maximized. J

oIt LW
scalar: Stable Equilibrium.

e The opposite case is Unstable Equilibrium.
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Energy Perspectives

3. Energy Perspectives

o Continuing the Taylor expansion (SDoF case) for W (z) we have,

aw , . . 1d*w, .,

So e L 3
n Hypothetical Example (7).
R d “Repulsive”
® At equilibrium, & idency of the work

—Wa

around equilibriu

“Attractive”

Example

o For the SDoF exar

s to reduce the work

o If LW <0, then
scalar: Stable E

@ The opposite casc X 1 :UQ X

\4

Balaji, N. N. (AE, IITM) AS2070 January 19, 2026 23 /33



Energy Perspectives Snap-Through Buckling

3.1. Snap-Through Buckling

Energy Perspectives

o We will consider the SDoF model to the k Yo k
right (from Wiebe et al. 2011).

e The strain energy on the springs (two) is j—%A
€T
2

Uv) = 2x§A§ = k(,/L? —v3 — VL2~ v2)

o The work done by the load (to take the
mid-point from v to v) is given by,

II(v) = F(v — vg). aw
Setting <7~ = 0 we get

L2 — v}
F=—-2kv|1-— T2 2 |

Balaji, N. N. (AE, IITM) AS2070 January 19, 2026 24 /33



Energy Perspectives Snap-Through Buckling

3.1. Snap-Through Buckling

Energy Perspectives

o Instead of an analytical treatment, we will use Graphical Inspection to understand
this function.

Load F A

Y
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Energy Perspectives Snap-Through Buckling

3.1. Snap-Through Buckling

Energy Perspectives

o Instead of an analytical treatment, we will use Graphical Inspection to understand
this function.

Monotonic
Regimes

Load F A

Y
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Energy Perspectives Snap-Through Buckling

3.1. Snap-Through Buckling

Energy Perspectives

o Instead of an analytical treatment, we will use Graphical Inspection to understand
this function.

Monotonic
Regimes

Load F A

Load Reversal
Points

Y
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Energy Perspectives Snap-Through Buckling

3.1. Snap-Through Buckling

Energy Perspectives

o Instead of an analytical treatment, we will use Graphical Inspection to understand
this function.

Load F A

Vo
= —
~o _)‘4// Deflection v
Loading direction

Y
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Energy Perspectives

3.1. Snap-Through Buckling

Energy Perspectives

Snap-Through Buckling

o Instead of an analytical treatment, we will use Graphical Inspection to understand
this function.

Lo

ad F A

Balaji, N. N.

(“Snap-Through” Event!)

(AE, IITM)

Y

AS2070

Yo
O >
<L __\_N_,_”/ Deflection v

Loading direction

January 19, 2026
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Energy Perspectives Snap-Through Buckling

3.1. Snap-Through Buckling

Energy Perspectives

o Instead of an analytical treatment, we will use Graphical Inspection to understand
this function.

Load F A

A single load level can equilibrate in
three different configurations!

Y
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Energy Perspectives Snap-Through Buckling

3.1. Snap-Through Buckling: Equilibrium Visualization

Energy Perspectives

1.00

e
N
a

0.50

Force F

Potential U — 1T
o©
N
w

0.00

| | | A | —1.0 L
-1.0 -0.5 0.0 0.5 1.0 -1.0
Displacement =

-0.5 0.0 0.5 1.0
Displacement =

Linear System: U — II = %1.2 — Fx
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Energy Perspectives Snap-Through Buckling

3.1. Snap-Through Buckling: Equilibrium Visualization

Energy Perspectives

0.02
—F,=0
4t 0
—F, > F,
—F,>F,
| 0.01
S &y
s S VAN
e S
< e
g or f \
o 0.00
o
—F,=0 \/
—F, > F
-20 | —F, > F
I | | | | ~0.01 | | | | |
-0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4
Displacement = Displacement z
2
Snap-Through Problem: U — T = k(/L2 — vg — /L2 —»2)" — Fa
Balaji, N. N. (AE, IITM) AS2070

January 19, 2026

26 /33



Plate Buckling Governing Equations

4.1. Plate Buckling

Governing Equations

o Kichhoff-Love Plate Theory.

o Kinematic Assumptions: Lines along section-thickness deform as lines and stay
perpendicular to the neutral axis.

o Governing equations written in the form
Et?

12(1 — v2) (W zzee + W yyyy + 2W zayy) = (NaaW,ew + Nyyw,yy + 2Nayw,zy) =0

DV*w — (NezW,zz + Nyyw,yy + 2Nayw,zy) = 0

o This is all that is needed to conduct buckling analysis - the procedure is identical as
above!

o Before this, however, let us develop intuition on the different reaction force components
and their kinematic relationships.
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4.2. Reaction-Kinematics Relationships

Plate Buckling

Normal Reactions

1€- Nyy Ny
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4.2. Reaction-Kinematics Relationships

Plate Buckling

Normal Reactions l
AVA AV

Moment Reactions

12 M,
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Plate Buckling Reaction-Kinematics Relationships

4.2. Reaction-Kinematics Relationships

Plate Buckling

Normal Reactions l
AVA AV

Moment Reactions

Stress-Moment Relationships

tc.
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Plate Buckling Reaction-Kinematics Relationships

4.2. Reaction-Kinematics Relationships

Plate Buckling

Normal Reactions l
AVA AV

Moment Reactions

TQ r\Mal

Stress-Moment Relationships ]

Equilibrium Equations (Shear Force-Moment Relationships)

Ozx,x + Txy,y + Txz,z = 0 Qac = wa + M;cyyy
Tey,x T Oyyy +Tyzz =00 = §Qy =—Myy+ Maya
Tezx + Tyz,z +0zz,2 = 0 0 = QI@ + any'

Note:

o Although the shear strains v;. & 7. are assumed zero by the Kirchhoff
kinematic assumptions, and thereby, the stresses 7> & 7. are also zero,
the shear forces can not be zero for equilibrium!!

t t
o They are defined as Q = [ 2, Tzzdz, Qy = [?, Ty=dz.

k3
2 2
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4.2. Reaction-Kinematics Relationships

Plate Buckling

o With this background, we are ready to write the following:

Nyx U,z
Nyy v

1 v 0 Y

E t 0

Ny _ sl @ v 1 0 Uy + Uz
M:E 1—v2 0 12 0 0 1—v W,zx
—My 2 W,yy
My 2W oy

e A moment-free boundary condition (simply supported edge) would imply simply setting
the second derivatives (w zaz, W, yy, W, zy) to zero at the edge.
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4.3. Thin Plates Under Uniaxial Compression

Plate Buckling

Origin O 1e. P,
Governing Equations
a
P, DV*w 4 Pw 4p =0
b = Pernm = D <i+n2a—/l)>2
Plate under uniazial compression b2 a/b m

(n=1 always for minimum critical load)

72D [ m a/b\?
= Pcr,m = 5 + —

Ansatz (Simply Supported Case) w (ot o
P 2D . m N a/b\?
o) = 37 Wossin (m 2 ) sin (n ) = e e
a
m,n ——

Boundary Conditions:
w=0, My, My =0 on T
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4.3. Thin Plates Under Uniaxial Compression

Plate Buckling

Buckling Constant

. m 2
ker(r) = min (4 0)

Buckling Constant
«

——Minimum

2 4 6 8
Aspect Ratio a/b (Unloaded Edge/Loaded Edge)
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4.3. Thin Plates Under Uniaxial Compression

Plate Buckling

Buckling Constant

. m r\2
o= g (33)

Buckling onstant

=1
=2
3

-m=4
——Minimum

2 4 6 8
Aspect Ratio a/b (Unloaid Edge/Loaded Edge)

m=2
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Plate Buckling Thin Plates Under Uniaxial Compression

4.3. Other Boundary Conditions

Thin Plates Under Uniaxial Compression

o It is possible to conduct the same analysis l}
for other (combinations) of boundary M |
conditions. || [—‘xx [_ z
\ 55 ¢ free L
@ The analysis is slightly more tedious (due to 12 "
the Ansatz not being as simple any more), \‘ -
but possible along the same lines. o [ free
@ The critical plot comes out as shown in your ‘\\‘ \\ — — — — Loaded edges clamped
textbook. ‘\\ N o Louded edgessimply
\ ~=, supported

S ————— ]

(Figure 3.9 from Brush and Almroth 1975)
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4.3. Other Boundary Conditions

Thin Plates Under Uniaxial Compression

@ It is possible to conduct the same analysis
for other (combinations) of boundary £
conditions.

@ The analysis is slightly more tedious (due to
the Ansatz not being as simple any more),
but possible along the same lines.

@ The critical plot comes out as shown in your N

_Clamped edges
textbook.

The same works for shear buckling too!
¥y

N, 7
/xy0 \
e e p— Simply supported edges

| o |
vl b ;
J_____le

a
b
(Fig. 8.10 from Brush and Almroth 1975)
(Figure 3.11 from Brush and Almroth 1975)
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Food For Thought

5. Food For Thought

e We're not yet ready to handle this (wait one more semester for AS3020), but some types
of beam undergo twisting instability!

o In the right we have simply supported beams under axial compression - the beams twist
before they bend under the instability.

e

CODE aster CODE aster

Simply Supported Beam Under Azial Compression Cantilevered Beam under Awzial Compression (2nd mode)

Heads Up: You are designed to see this in your structures lab experiment!
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Class Discussions (Outside of Slides)

7. Class Discussions (Outside of Slides)

e Ball on a hill. 2D, 3D cases.

e Assumptions behind compression of a bar.
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7.1. Post-Buckling Behavior (Out of Syllabus)

Class Discussions (Outside of Slides)

@ Let us use the energy approach to study the post-buckling behavior of a beam.

e We’ve developed some intuition that buckling blows up the displacement levels. Let us
revise our kinematic description to capture this.
e The (simplified) approach we will follow is as follows:
@ Write out nonlinear kinematics, identify normal force N = JA 0qzdA and moment
M = fA —YyoardA.
© Assume transverse deformation field v = V sin (%)
© Assume axial tip deflection ur and derive axial deformation field.

@ Express work done in terms of scalars V and ur. — Extremize.
@ Plot force deflection curves, analyze stability.
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7.1. Post-Buckling Behavior (Out of Syllabus)

Class Discussions (Outside of Slides)

Geometrically Nonlinear Kinematics

@ The deformation field is written as u, = u — yv’, u,y = v. Consider the deformation of a line
from (z,y) to (z + Az, y):
(@,y) = (¢ +u—yv',y+v),
(z+ Az, y) = (z+ Az +u —yv' + (v —yo"")Az,y + v + v Az),
AS = Az, As® =AMz (1+u —yo')? + v'g).
® We write the axial strain as
1As" —AS?

e = -2 T 22 (u’ . yv”) +

2 As? (@ =) +07)

N | =

’2
v
€ar ~ (W —y") + o |

@ The final assumption is sometimes referred to as Von Karman strain assumptions.
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7.1. Post-Buckling Behavior (Out of Syllabus)

Class Discussions (Outside of Slides)

o Nearly nothing changes in the equilibrium equations. We first write out the area-normal

stresses and moments:

72

N:/ EeqrndA = EA(W + ), M:/ —yFeqrdA = EIv".
A A

v
2

o The axial force balance reads:

d 72
N’ = EA@ <ul + 1)2> =0, wx)|z=0=0, u|y—¢=ur.
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7.1. Post-Buckling Behavior (Out of Syllabus): Axial Problem

Class Discussions (Outside of Slides)

We next impose the transverse deformation field v(z) = V sin (Z£) on the axial
problem. Solving this, we get

u(z) =

V2 2
_7r8£ sin (%x) + Ciz + Co.

o Boundary conditioned are imposed by setting C1 = "TT and C2 = 0.

o The parameterized axial deformation field, therefore, is

V2 2
w(z; Vyur) = U7Tx — ﬂgz sin (%) .

o Note that we have not said anything about V' or up so far.

Balaji, N. N. (AE, IITM) AS2070 January 19, 2026



Class Discussions (Outside of Slides) Post-Buckling Behavior (Out of Syllabus)

7.1. Post-Buckling Behavior (Out of Syllabus): Strain Energy Density

Class Discussions (Outside of Slides)

o The strain energy density (per unit length) is written as,

Ev2 E 12
V:/ @dA:—/(u/—yv"—o—v—)Qdm
A 2 2 /4 2
BA [, 2+ BL o B o EAv*
= - e = =
2 \" T 2 2 7 2 4

e Note that we have assumed up — 0, i.e., providing negligible influence on the overall
potential energy.

o Substituting the assumed deformation field v = V'sin(77 ) and integrating over (0,¢) we
have,

14
Tt EI 3[*EA
Viot = | V(z)dz = |V Rl VA
fot / (@)de = =3Vt s
0

2P, 32 AP.,
= V2 V4,
44 + 641/
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7.1. Post-Buckling Behavior (Out of Syllabus): Work Stationarity

Class Discussions (Outside of Slides)

o The work done by an axial compressive load P is given by

14 £
P P v'?
H://A Zeadida:://A Z(u'—yv”—l-?)dAdz
0

4

= / —/U'de

2

0

2
Il = Pup + —Pv2 A
40

H:1

e So the total work scalar (W =1II — Vit ) is given as (we ignore up here)
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7.1. Post-Buckling Behavior (Out of Syllabus): Work Stationarity

Class Discussions (Outside of Slides)

e Stationarizing the work we get,

2p, P A 1/ P
aw = “v(( —1)—3—V2)éV:0,:ﬁ: 8—( —1).
av 20 Per 81 34 \ P.r

Note that the non-trivial solution is only active for P >= P,.

o We can next estimate up easily by applying the boundary conditions.
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7.1. Post-Buckling Behavior (Out of Syllabus): Work Stationarity

Class Discussions (Outside of Slides)

Post-Buckling Solution

Transverse Axial train Energ
e
o Stafl N _ :[; v =
v
Not P/P, P/P, v
o We

x, Coordinate
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