

AS2070 Project : Plate Buckling

Instructor: Nidish Narayanaa Balaji

Group A :

AE23B023	Omkar Raichurkar
AE23B035	Nikhil Ragala
AE23B059	Abhiram Sulige
AE23B061	Varun Bhat
AE23B115	P.G.Bharadwaj

Dept. of Aerospace Engg., IIT Madras, Chennai

2 May 2025

Summary

- 1 Aim
- 2 Procedure
- 3 Theory
- 4 Procedure
- 5 Results
- 6 Conclusion
- 7 References

Aim

To experimentally observe mode 1 buckling—the most fundamental mode—in a simply supported aluminum plate under uniaxial compression, and compare the results with theoretical predictions.

Apparatus and Materials

The following materials and tools were used in the experiment:

- Specimen plate: Aluminum 6061 sheet, cut to 25 cm × 25 cm with 0.3 mm thickness
- Support frame: Mild steel bars (5 mm × 5 mm, resized to 25 cm) with V-grooves milled into them for simply supported boundary conditions
- Universal Testing Machine (UTM): To apply axial compressive load
- Welding and Milling Tools: Used to fabricate the plate support frame

Apparatus and materials

Figure 1: Milling machine used to cut grooves

Apparatus and materials

Group A

AS2070 Project : Plate Buckling

2 May 2025

6 / 21

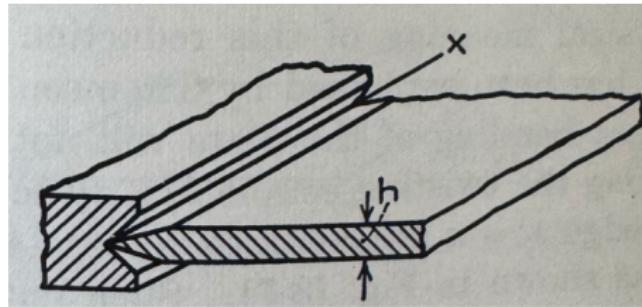


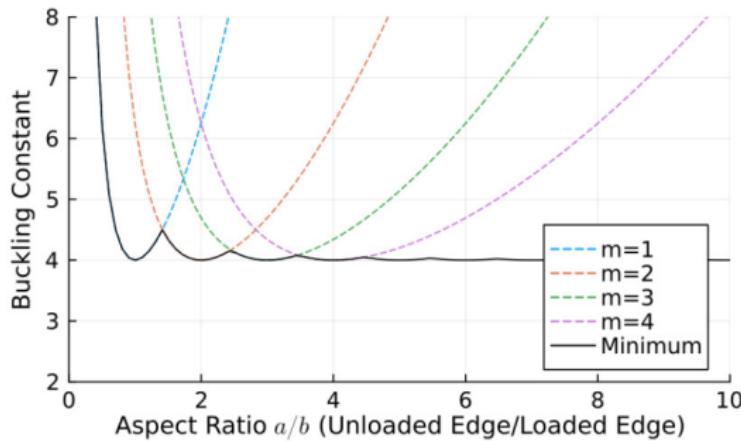
Figure 2: A Simply Supported Edge

Theory

The governing equation for a plate subjected to uniaxial loading is given by:

$$D\nabla^4 w + Pw_{xx} = 0$$

Boundary conditions : $w = 0$ and $M_x = M_y = 0$ along the supports.


$$P_{cr,m} = \frac{\pi^2 D}{b^2} \left(\frac{m}{a/b} + \frac{a/b}{m} \right)^2$$

$$P_{cr} = \frac{\pi^2 D}{b^2} \min_{m \in \mathbb{Z}^+} \left(\frac{m}{a/b} + \frac{a/b}{m} \right)^2$$

Theory

Buckling Constant (k_{cr})

$$k_{cr} = \min_{m \in \mathbb{Z}^+} \left(\frac{m}{a/b} + \frac{a/b}{m} \right)^2$$

Theory

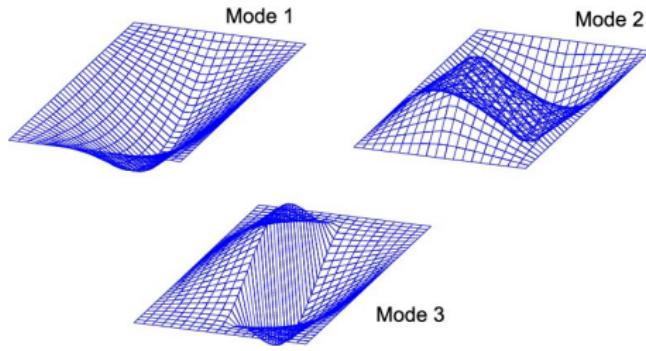


Figure 3: Buckling modes

Procedure

- Initially all the resized mild steel bars were milled to make V-grooves on one side of each bar
- Then 3 of the bars were welded in U-shape along with one more bar to support this U-shape. (refer image 16)
- Two mild steel pieces were welded to the U-shape frame to enable us to mount this setup to the UTM.
- Then the aluminum plate was inserted into the V-grooves of U-shape frame.
- Now, the U-shape frame (along with plate) was fixed to one holder of UTM, and the bar was fixed to another holder of UTM.
- Then, axial compressive load was applied gradually with the help of UTM.

Results

- We observed that the specimen buckled at approximately $60N$. Upon application of a higher load, the plate dislodged from the supports and exhibited localized yielding.
- On our second test, we observed that its load bearing capacity does not cross the $50N$ threshold.

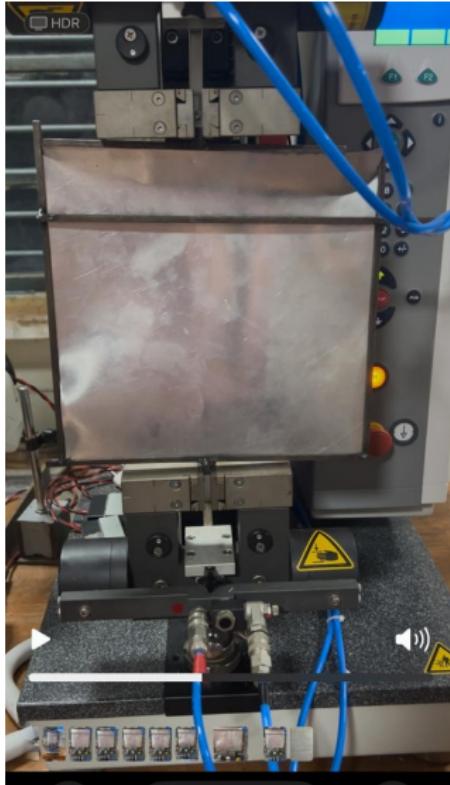


Figure 4: Dislodging of Plate

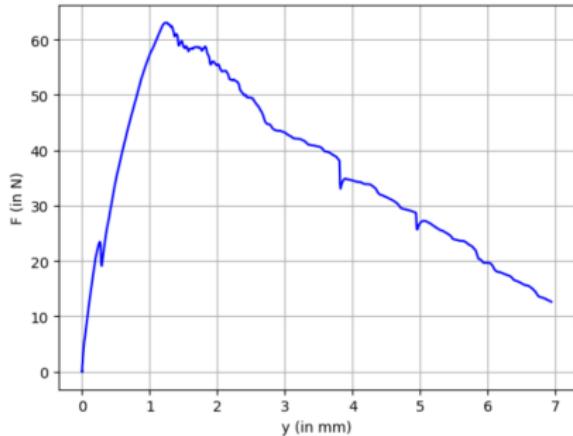


Figure 5: Force v/s displacement
(trial 1)

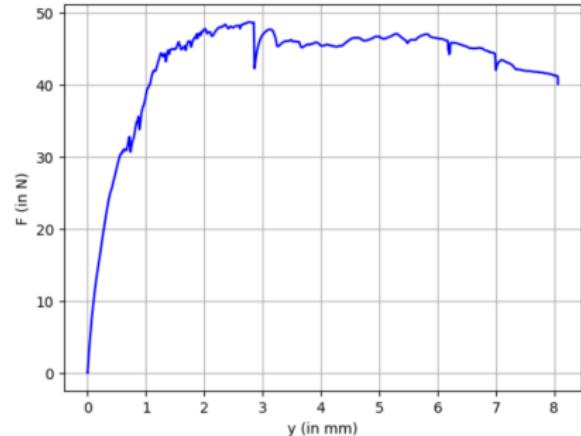
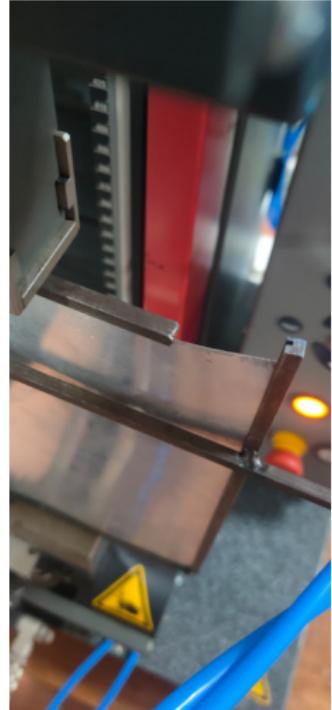



Figure 6: Force v/s displacement
(trial 2)

Sources of Error and Problems Faced

- Grooves were not entirely straight, resulting in tilted aluminium sheet.
- Plate did not rest entirely in the grooves (loss of boundary conditions)
- The holder's created to clamp the setup in UTM were not straight (resulted in twisted load in the sheet)
- The MS rods (for supports) were not placed at the right lengths, resulting in errors.
- Aluminium Sheet wasn't cut to the right shape, again resulting in errors.
- Welds at some joints interfere with the plates, resulting in loss of simple supports.

Sources of Error and Problems Faced

Sources of Error and Problems Faced

Figure 7: Imperfections in Plate

Initial Plan

- Initial plan to demonstrate 3 modes of buckling using 3 plates of different aspect ratios.
- Could not do this because of fabrication / machining limitations.
- Another constraint was to make sure that Force needed lies in UTM range.

Conclusion

Although we couldn't demonstrate mode 1 buckling completely due to the errors mentioned, we did successfully observe how a plate buckles under load and then it's further yielding.

One interesting inference we observed is the Force is linear for the initial parts of curve then changes after dislodging.

Acknowledgment

We're really grateful to **Mr. Ashok** (Lab Incharge), **Mr. Dayalan** (Workshop Assistant), **Anil Anna** and **Aakash Anna** for taking the time to help us carry out this experiment. Their support and guidance made things much smoother for us in the lab and workshop. A special thanks to our TA, **Senthil**, who was incredibly active and always showed up whenever we needed help, his presence made a big difference. We'd also like to thank the institute workshop team for their behind-the-scenes efforts.

Most importantly, we sincerely thank our professor **Nidish** for guiding us throughout the project and for creating an environment where we could learn hands-on and think independently.

References

- ① Lecture Notes, Prof. Nidish, AS2070, IIT Madras.
- ② Timoshenko, S. P., & Gere, J. M. *Theory of Elastic Stability*, McGraw-Hill.