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1 Objectives

1. To observe and analyze the snap-through buckling phenomenon in a single
degree-of-freedom (SDOF) link-arch model

2. To determine the relationship between the applied force and vertical dis-
placement during snap-through buckling

3. To verify the theoretical predictions of equilibrium positions and critical
loads

2 Apparatus

The experimental setup consists of the following components:

• Base Platform: Wooden block, 88 cm × 63 cm.

• Aluminum Rods: Two aluminium rods, working as a rails for the slider.(60 cm
each).

• Beams: Two rigid beams, each approximately 22.5 cm in length.

• Sliders: Three rollers for the movement along the aluminium rods.

• Springs: Two steel springs (spring constant K = 260N/m).

• Force Gauge: Spring gauge for accurate force measurements.
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Figure 1: Experimental Apparatus

3 Theory

Snap-through buckling is a nonlinear instability phenomenon characterized by a
sudden transition between equilibrium states when a critical load threshold is
crossed. In the link arch model, this occurs through a limit point bifurcation
where the system’s tangent stiffness vanishes, enabling rapid configuration changes.
The SDOF formulation provides fundamental insights into the essential mechanics
while maintaining analytical tractability.
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Figure 2: Schematic of Link Model Arch

3.1 Potential Energy Landscape

The system’s behavior is governed by the potential energy function:

V (y) = k

(

√

L2 − y2 −
√

L2 − y20

)2

+ Py (1)

where the first term represents the strain energy stored in the lateral springs
(incorporating nonlinear geometric stiffness), and the second term represents the
work done by the vertical load P .

Equilibrium configurations satisfy dV
dy

= 0, yielding:

Pequil = 2k

(

1−
√

L2 − y20
√

L2 − y2

)

y (2)

This produces the characteristic S-shaped load-displacement curve shown in Fig-
ure 3, with three equilibrium branches for certain parameter ranges.
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3.2 Stability Criteria

Stability is determined by the second derivative of the potential energy:

d2V

dy2
= 2k

[

L2 − y20
(L2 − y2)3/2

− y2

L2 − y2

]

− 2ky
√

L2 − y2
(3)

• Positive values: Stable equilibria (energy minima)

• Negative values: Unstable equilibria (energy maxima)

The limit points (snap-through thresholds) occur where d2V
dy2

= 0, marking the
transition between stable and unstable branches.

Figure 3: Applied Load vs Vertical Displacement Curve

3.3 Key Control Parameters

1. Initial arch rise (y0): Higher y0 increases the energy barrier between stable
states but reduces the critical snap-through load. The dimensionless ratio
y0/L typically remains below 0.2 for shallow arches.

2. Spring stiffness (k): Stiffer springs raise both the peak load capacity and
post-snap stiffness. Optimal designs balance snap-through sensitivity with
load-bearing requirements.

3. Loading rate: Quasi-static loading produces deterministic snap-through at
limit points, while dynamic loading can induce chaotic transitions between
states through parametric excitation.
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3.4 Design Implications

The link model captures essential features observed in real-world applications:

• MEMS switches: Snap-through provides digital switching action.

• Aerospace panels: Thermal buckling creates bistable configurations.

This formulation provides a foundation for analyzing more complex architec-
tures while maintaining computational efficiency through its SDOF reduction.

4 Experimental Procedure

1. Fixed the 88 cm × 63 cm wooden base on a level surface

2. Mount parallel aluminum rods (60 cm each) 40 cm apart

3. Assemble the mechanism:

• Connect two 22.5 cm beams with central hinge

• Attach spring ends to beam tips (k = 260 N/m)

• Install three sliders on aluminum rods

4. Attach spring gauge to central roller

5. Apply vertical force through central roller

6. Record force (spring gauge) vs position data

7. Continue loading until snap-through occurs

8. Reverse process by applying the force in opposite direction.

5 Calculations and Results

Given,

• Length of each rigid beam: L = 25 cm

• Initial height of the arch: y0 = 21.5 cm

• The gravtational acceleration, g = 9.8 m/s−2
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5.1 Equations Used

The main equations used for analysis are:

• Spring constant for helical compression spring:

k =
Gd4

8D3n
(4)

• Number of coils (assuming close-coiled spring):

n =
L

p
(5)

• Equilibrium force equation:

Pequil = 2k

(

1−
√

L2 − y20
√

L2 − y2

)

y (6)

• Critical load determination: The critical load corresponds to the maxi-
mum value of P on the force-displacement curve and can be found by solving:

dP

dy
= 0 (7)

5.2 Spring Constant Calculation

To determine the spring constant of a steel helical spring:

• Outer Diameter: Douter = 14 mm

• Wire Diameter: d = 1.2 mm

• Pitch: p = 4 mm

• Length: L = 150 mm

• Shear Modulus for steel: G = 79× 109 Pa

Mean Coil Diameter:

D = Douter − d = 14− 1.2 = 12.8 mm = 0.0128 m

Number of Active Coils:

n =
150

4
= 37.5
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Calculating spring constant:

k =
79× 109 × (0.0012)4

8× (0.0128)3 × 37.5

k =
0.1638

6.29× 10−4
≈ 260 N/m

Final Result: The spring constant is approximately:

k ≈ 260 N/m

5.3 Sample Calculation

Given:

• Length of each rigid beam: L = 22.5 cm = 0.225m

• Initial height of the arch: y0 = 21.5 cm = 0.215m

• Spring constant: k = 260N/m

• Gravitational acceleration: g = 9.8m/s2

The potential energy of the system is given by:

V (y) = 260
(

√

0.051− y2 − 0.066
)2

+ Py (8)

The force-displaccement equation is:

P = 2k

(

1−
√

L2 − y20
√

L2 − y2

)

y

P = 520

(

1− 0.066
√

0.051− y2

)

y
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Sample calculation for y = 16.5 cm = 0.165m:

L2 − y20 = 0.2252 − 0.2152 = 0.050625− 0.046225 = 0.0044

L2 − y2 = 0.2252 − 0.1652 = 0.050625− 0.027225 = 0.0234
√

L2 − y20 =
√
0.0044 = 0.0663

√

L2 − y2 =
√
0.0234 = 0.1529

1−
√

L2 − y20
√

L2 − y2
= 1− 0.0663

0.1529
= 1− 0.4336 = 0.5664

Pequil = 2× 260× 0.5664× 0.165

= 520× 0.5664× 0.165

= 48.6N

Since the force is applied in the negative direction for positive displacement,
we take:

Pequil = −48.6N

Percent Difference Calculation for y = 16.5 cm:
Given experimental applied force from Table 1 is −98N.

Percent Difference =
|(−48.6)− (−98)|

| − 98| × 100%

=
49.4

98
× 100%

= 50.4%

5.4 Experimental and Theoretical Force-Displacement Data

Table 1: Experimental and Theoretical Force-Displacement Data

Disp. y (cm) Applied Force (N) Theoretical Force (N) Difference (%)
16.5 -98 -48.6 50.4
10.0 -156.8 -34.9 77.7
7.5 -176.4 -26.8 84.8
-8 181.3 28.5 84.3
-9.5 156.8 33.3 78.7
-16 88.2 48.3 45.2
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Figure 4: Theoretical and Experimental Curve

6 Source of error

• Measurement Accuracy: The spring gauge has limited precision, which
could affect the accuracy of force measurements, especially at critical points
like near the equilibrium points.

• Friction Effects: Despite using slider, there was friction in the system, due
to absence of ball-bearings in sliders, affecting the horizontal movement of
the beam ends and altering the force-displacement relationship.

• Slider Mass Effects: While assumed to be massless in the theoretical
model, the actual slider used has some mass that may influence the dynamic
behavior, especially during the snap-through transition.

• Alignment Issues: Misalignment of components, particularly the central
hinge and end rollers, introduced the additional constraints for the model.

• Data Acquisition Timing: During snap-through, the displacement changes
rapidly, making it challenging to capture the exact behavior with manual
measurements.

7 Observation

1. The theoretical force values are calculated using the equilibrium force equa-
tion and applying the appropriate sign convention:

• For positive displacements (y > 0), the force is negative.

• For negative displacements (y < 0), the force is positive.
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2. The large percent difference for some data points may indicate experimental
errors or that the theoretical model does not perfectly capture real-world
behavior near the initial position.

3. The percent differences suggest that while the model captures the general
behavior of the system, there are significant quantitative discrepancies that
could be due to friction, non-linear spring behavior, measurement errors, or
simplifications in the theoretical model.

8 Conclusion

1. The experimental setup demonstrated bistability with two distinct equilib-
rium configurations (positive and negative displacements).

2. Significant discrepancies between experimental and theoretical forces were
observed:

• Largest difference: 84.8% at y = 7.5 cm (176.4 N vs 26.8 N)

• Smallest difference: 45.2% at y = −16 cm (88.2 N vs 48.3 N)

suggesting potential systematic errors in friction measurement or spring con-
stant calibration.

3. Asymmetric behavior was observed in experimental forces, indicating possi-
ble misalignment in the experimental setup.

4. The force-displacement relationship followed theoretical trends qualitatively
but not quantitatively:

• Both experimental and theoretical forces increased with displacement
magnitude

• Experimental forces grew 3.6× faster (from 88.2 N at 16 cm to 181.3 N
at 8 cm vs theoretical 48.3 N to 28.5 N)

5. The negative stiffness region (transition between stable states) showed un-
expected hysteresis:

• Required 98 N push force at y = 16.5 cm vs 88.2 N pull force at y =
−16 cm

• Theoretical model predicted symmetric 48 N transition forces

6. Three key limitations were identified:
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• Friction in pivot joints (unaccounted in theory)

• Assumption of massless beams and sliders vs actual mass of beams and
sliders.

• Idealized pin supports vs real constrained rotations

7. Future improvements should:

• Reducing the friction effects in the model

• Use digital force sensors instead of manual weight stacking

• Use of proper hinges at the joints.
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