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1.1. Structure of Materials
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Introduction  Structure of Materials

1.1. Structure of Materials

Introduction
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Introduction Understanding the Stress-Strain Curve

1.2. Understanding the Stress-Strain Curve

Introduction

The Uniaxial Tensile Test

T Load
«—QObject —»|
Load i Load
Figure from Rajendran 2011
y
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Introduction Understanding the Stress-Strain Curve

1.2. Understanding the Stress-Strain Curve

Introduction

- Ductile Material Stress-Strain Curve
Termlnology low carbon steel

@ Proportionality Limit; true curve

Strain Hardening | Necking

@ Elastic Limit; T
@ Yield Point; Propartional limit Frssit;ltre

© Ultimate Strength;
@ Fracture Point;

Ultimate Strength

Stress

@ Elongation at Failure;

Ductile Fracture

Al

Strain

Figure from Rajendran Figure from Connor 2020

2011
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Introduction Failure Mechanisms

1.3. Failure Mechanisms: Fracture

1. Introduction

“Griffith Theory” of brittle
fracture

@ Theoretical fracture stress
E __E

~ 2 — 35 (steel ~

T050)

@ Fracture occurs when
Estrain - Esu'rfaee

@ Crack propagates when
dEgstrain _ YFsurface

dL dL

Balaji, N. N. (AE, IITM) AS2070 April 28, 2025 5/27



Introduction Failure Mechanisms

1.3. Failure Mechanisms: Fracture

1. Introduction

“Griffith Theory” of brittle Ductile Fracture
fracture

T t T
@ Theoretical fracture stress O
~ 2 = g5 (steel ~ 35) 538 b= o o
@ Fracture occurs when D
Est'rain - Esu'rfaee
(a) (b) () (@)

@ Crack propagates when
dEstrain — Psurface

dL dL

Ductile Fracture Rajendran 2011

Balaji, N. N. (AE, IITM) AS2070 April 28, 2025 5/27



1.3. Failure

1. Introduction

“Griffith Theory” of brittle

@ Theoretical fracture stress

fracture
E _ E
5 30

@ Fracture occurs when
Estrain - Esu'rface

@ Crack propagates when

Introduction

Failure Mechanisms

Mechanisms: Fracture

(steel ~ T}%o)

Ductile Fracture

@ ®) ©

dEstrain — Bsurface Ductile Fracture Rajendran 2011
dL - dL
vy y
Sr. No Brittle Fracture Ductile Fracture
1. | It occurs with no or little plastic deformation. | It oceurs with large plastic deformation.
2. | The rate of propagation of the crack is fast. | The rate of propagation of the crack is slow.
3 It occurs suddenly without any warning. It occurs slowly.
4. | The fractured surface is flat. The fractured surface has rough contour and the
shape is similar to cup and cone arrangement.
5. | The fractured surface appears shiny. The fractured surface is dull when viewed
with naked eye and the surface has dimpled
appearance when viewed with scanning electron
microscope.
6. | It occurs where micro crack is larger. It oceurs in localised region where the
deformation is larger.
Ductile vs Brittle Fracture Rajendran 2011
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Introduction Failure Mechanisms

1.3. Failure Mechanisms: Fatigue

1. Introduction

..over 90% of mechanical failures are caused because of metal fatigue What Is Metal
Fatigue? 2021... J

Stress distribution at 56.9 kPa cabin pressure
and 1.3 g inoria loading

The De Havilland Comet The deHavilland
Comet Disaster 2019 [lecture]
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Introduction Failure Mechanisms

1.3. Failure Mechanisms: Fatigue

1. Introduction

..over 90% of mechanical failures are caused because of metal fatigue What Is Metal
Fatigue? 2021... J

a2

Fan Blade

Stress distribution at 56.9 kPa cabin pressure
and 1.3 g inoria loading
Fan Blade

No. 18

The De Havilland Comet The deHavilland
A more recent example (2021 United Airlines Comet Disaster 2019 [lecture]
Boeing 777) DCA21FA085Aspx. [video]
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Introduction Failure Mechanisms

1.3. Failure Mechanisms: Fatigue

1. Introduction

..over 90% of mechanical failures are caused because of metal fatigue What Is Metal
Fatigue? 2021... J

Fatigue Crack Propagation: Beech
Marks

- ¥

> )
Fan Blade
No. 18

AN

R
£ NS

\

) . ) et The deHavilland
A more recent exan Figure from Fatigue Physics 2024 2019 [lecture]

Boeing 777) DCA )
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Introduction Failure Mechanisms

1.3. Failure Mechanisms: Fatigue

1. Introduction

..over 90% of mechanical failures are caused because of metal fatigue What Is Metal
Fatigue? 2021... J

Stress, o

Time

a,
Fatigue variabler;mMegson 2013

Stress distributon at 56.9 kPa cabin pressure
and 1.3 g inoria loading

The De Hawvilland Comet The deHawvilland
Comet Disaster 2019 [lecture]
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Introduction Failure Mechanisms
1.3. Failure Mechanisms: Fatigue
1. Introduction

..over 90% of mechanical failures are caused because of metal fatigue What Is Metal
Fatigue? 2021... J

Stress, o

Time

a,
Fatigue variabler;mMegson 2013

Stress, o
Mild steel

Endurance Staes datson o 56 kPa cat pressure
/Iimil

Aluminium

alloy The De Havilland Comet The deHavilland

S Comet Disaster 2019 [lecture]
10 102 10° 10* 10° 10° 107 108 —
Number of cycles to failure

The S-n Diagram Megson 2013
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Introduction Failure Mechanisms

1.3. Failure Mechanisms: Fatigue

1. Introduction

..over 90% of mechanical failures are caused because of metal fatigue What Is Metal

iaue?
Fatigue? 2021 S-N Curves for Common Metals ( Jr and Rethwisch

2012)
Stress, o
700
I I I
600 | Ti-5A1-2.55n titanium alloy |
/\ 4340 steel
e 500 [— -
Talt &
g
= =
w400 — —
- i
Fatigue ;E; 1045 steel
Stress, o g 30— ]
M~ § Duictile cast iron
200 — 70CU-3077 brass =
I~~~ 2014-T6 Al alloy
100 |— - .
EQRIATE Mg alloy deHawvilland
L cture]
10 a | | | | |
10° 10° 10° 107 10® 10°
The S-n Cycles 1o failure, N
y
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1.3. Failure Mechanisms: Fatigue

1. Introduction

Introduction

Failure Mechanisms

..over 90% of mechanical failures are caused because of metal fatigue What Is Metal

Fatigue? 2021.

S-N Curves for Common Metals ( ir and Rethwisch
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Introduction Energy Release Rate

1.4. Energy Release Rate: Griffith’s Analysis

Introduction

il e Y s

Simplistic picture of the introduction of a crack
in a stretched specimen(Figure from sec 2.5 in Kumar
2009)

@ Because of the crack, we assume
o =~ 0 in the triangles.

o Corresponding energy loss:

o2 2a% \to?
ER = VA X (@) = T
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Introduction Energy Release Rate

1.4. Energy Release Rate: Griffith’s Analysis

Introduction

L 1 3

Simplistic picture of the introduction of a crack
in a stretched specimen(Figure from sec 2.5 in Kumar
2009)

@ Because of the crack, we assume
o =~ 0 in the triangles.

o Corresponding energy loss:
o? B 2a2\to?

ER:VAX(ﬁ)— E

Balaji, N. N. (AE, IITM) AS2070

e For thin plates, A = 5. So,

ra’to?
E

Ep =

The “creation” of a surface takes
energy. We write this as,

Es = 2(2at)y = 4aty.

Er Es
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1.4. Energy Release Rate: Griffith’s Analysis

Introduction

I

Simplistic pict
in a stretched
2009)

o Becaus

Introduction Energy Release Rate

1 ]

| Ep =

A2a
J za[z @ The “creation” of

e For thin plates, A = 5. So,

ra’to?

E

surface takes

oc~01i

o Corresponding energy loss:

ER:VAX(f)—

Food For Thought

e What would a “safe size” of crack be, for a
given loading condition? Hint: Think

incrementally

his as,

= 4datry.

Er,

o2 B 2a% \to?

2F E

Aac
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Introduction Energy Release Rate

1.4. Energy Release Rate: Griffith’s Analysis

Introduction

| 1 ]

e For thin plates, A = 5. So,

[ ra’to?
| Er =
i .
2 T « ion” , surface takes
Food For Thought his as,
@ What would a “safe size” of crack be, for a = daty.
Simplistic pict given loading condition? Hint: Think

in a stretched -
2009) incrementally

oc~0i framework?

e What type of an experiment would be
o Becaus necessary to confirm this mathematical

Er,

o Corresponding energy loss:

o2 2a% \to?
ER = VA X (ﬁ) = T
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Introduction Linear Elastic Fracture Mechanics

1.5. Linear Elastic Fracture Mechanics

Introduction (Ref: Sec. 8.4.2 in Sadd 2009)

Consider the following two cases.
Question: Where will the point of peak stress occur? And which will have
higher maximum stress?

Case 1 Case 2
T, . e e N,
ERENEEA g -
a = - ;e
s pul .
[ N g
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Introduction Linear Elastic Fracture Mechanics

1.5. Linear Elastic Fracture Mechanics

Introduction (Ref: Sec. 8.4.2 in Sadd 2009)

Consider the following two cases.
Question: Where will the point of peak stress occur? And which will have
higher maximum stress?

Case 1 Case 2
T, . e e N,
,_I,»._T__»-T-"L_j_ I,-»L “*'II “,4"
-~ \‘.‘4’ ‘7'1‘ o l'\.l—n-
-~ i - [
1 - s [
! LT H [
SN ChE 2GRN
— — — f—
- - / ]
\ x — t —
T e -
V. V.

Analytical Solution

2
1

2
or=T(1—1%), 00 =T(1+ %)

— [ou = 7]
v
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Introduction Linear Elastic Fracture Mechanics

1.5. Linear Elastic Fracture Mechanics

Introduction (Ref: Sec. 8.4.2 in Sadd 2009)

Consider the following two cases.
Question: Where will the point of peak stress occur? And which will have
higher maximum stress?

Case 1 Case 2

RERRR
T
I l‘“l‘:l'l

TTTTT7T N
V. V.
Analytical Solution Analytical Solution
or=T(1— %), 00 = T(1+ ) or =T(1 = %) + () cos(26), oo = ...

— [ou = 7] — [ram= 7]
v
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Introduction Linear Elastic Fracture Mechanics

1.5. Linear Elastic Fracture Mechanics

Introduction (Ref: Sec. 8.4.2 in Sadd 2009)

Consider the following two cases.
Question: Where will the point of peak stress occur? And which will have
higher maximum stress?

Case 3
Case 1
: FRERNER) —
,_I,,_I__,_T_,. <—l/ \\—» \“4-_
= e - .
- Ly !
H T | T L,
- < b O e 9 Lo
.y TR —
e A
V.
Analytical Solutic Jh
2 2
ar—T(l——) o9 =T(1+ ) or =T(1—"3)+(-)cos(20), o9 = ...
— =
Balaji, N. N. (AE, IITM) AS2070 Y RNGTER VT



Introduction Modes of Fracture

1.6. Modes of Fracture

Introduction

(opening mode)

P
) “ Crack front
|
P
Mode 11 Mode 111
(sliding mode) (tearing mode)
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Introduction to Fatigue

2. Introduction to Fatigue

Concepts
@ Safe Life: RUL

@ Fail-Safe: Redundancy

Stress
amplitude
(S,)

Confidence limit curves

Tensile Stresses: The Goodman

Diagram

(Figure 15.2 from Megson 2013)
m
a

— 1 _ (2™
SaO

: Su

Mean curve,
—~

N cycles

(Figure 15.1 from Megson 2013)

The S-N Curve

Stress, 7y,

Endurance

AAAAAAAAAAAAAAAAAAAAAAAA [

Aluminium
alloy

10 107 10° 10* 10° 108 107 10°
Number of cycles to failure

(Figure from Megson 2013)
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AS2070
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Introduction to Fatigue The deHavilland Comet

2.1. The deHavilland Comet

Introduction to Fatigue

No aircraft has contributed more to safety in the jet age than the Comet.
The lessons it taught the world of aeronautics live in every jet airliner flying
today. — D.D. Dempster, 1959, in The Tale of the Comet

FIG. 7. VIEW FROM INSIDE OF FAILURE AT THE FORWARD ESCAE HATCH ON THE
PORT SIDE—COMET G-ALYU

(Figures from “De Havilland Comet” 2025)
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Introduction to Fatigue The deHavilland Comet

2.1. The deHavilland Comet

Introduction to Fatigue

No aircraft has contributed more to safety in the jet age than the Comet.
The lessons it taught the world of aeronautics live in every jet airliner flying

(The Tale of the Comet

FG. 12. PHOTOGRAPH OF WRECKAGE AROUND ADF AGRIAL WINDOWS—G-ALYP.

-_

FIG. 7. VIEW FROM INSIDE OF FAILURE AT THE FORWARD ESCAE HATCH ON THE
PORT SIDE_COMET G-ALYU

(Figures from “De Havilland Comet” 2025)
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Introduction to Fatigue The deHavilland Comet

2.1. Thq

Introduction to

. 12 pHOTO}

crack along top center line of fuselage

front fuselage separated at front spar
attachments in downward direction

rear fuselage
and tail unit
scparated at
rear spar

failure probably downwards
symmetrical with starboard
7 wing failure

main failure

between ribs.
12and 13

frame 26

peeling off failure
i‘mme 13a / framle 18

secondary cracking by bending
of center portion over outer portion

direction of propagation
of main cracks

top G of aircraft —————————
N o LT i — - —
2
g secondary
£ failure
ki

reinforcing
plates

port
| e

peeling off failures

skin pulled over rivets on window frame peeling off failures

Comet.
flying

17 2025)
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Introduction to Fatigue Miner’s Rule

2.2. Miner’s Rule

Introduction to Fatigue

@ Suppose at an operation level of o,,, 0., the fatigue life is NV and the
structure undergoes n cycles, Miner’s rule posits that & is the fraction of
life that has been consumed.

@ Suppose a structure undergoes multiple stress levels in its loading history,
the total fraction of fatigue life that has been consumed is written as

e The structure is expected to fail when this sum becomes 1.0..
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Linear Elastic Fracture Mechanics Griffith’s Analysis and Energy Release Rate

3.1. Griffith’s Analysis and Energy Release Rate

Linear Elastic Fracture Mechanics

o The total energy of a loaded elastic body is written as
n= v - W .
— =~

elastic  external

o Griffith’s principle: The energy lost due to the creation of a
cracked surface must be equal to the energy required for the creation
of the cracked surface.

e Surface energy is usually expressed as Fg = Avy.

e This is a general principle agnostic of the exact structure under
consideration.

_ B g
G=—ga=%

(note: 2A is the effective total “new” surface area that has been created)
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Linear Elastic Fracture Mechanics Griffith’s Analysis and Energy Release Rate

3.1. Griffith’s Analysis and Energy Release Rate:
Examples

Linear Elastic Fracture Mechanics

Crack in Stretched Specimen Double Cantilever Beam (DCB)

Tl

|
o , 8

(Figure 4.14 in Gdoutos 2005)

(Figure from sec 2.5 in Kumar 2009) o3

eu=CP=2p =

3ET 3EI'
@ Crack: A =2at, 04 = %8
oU—ﬁ—CPQ— P2 a3

e II=U= QE,(Atot—4/\a ). W_ ]23 B CQ'PZ_ 3E1£2 :’3

dES = u= _23E1a7
o Es—Z.A’y, = 27. H_ficif?f:ﬂa?

— _Ldj _ a2
° G= % da — 2677 - o A=aB, 9a = 50a.
E'y 2E’ dll _ P?2dc _ P3%ad% _ 12P%d>
@ 0er =\ 3G TV ma © G=—01=55% = BIE — BT )
V.
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Linear Elastic Fracture Mechanics Griffith’s Analysis and Energy Release Rate

3.1. Griffith’s Analysis and Energy Release Rate:
Examples

Linear Elastic Fracture Mechanics

Additional Cases to Consider

Crack in Strel P Fer Beam (DCB)
T o [
h
- ' i N
- !
P Gdoutos 2005)
(Figure from sec 3
(Figure 4.23 from Gdoutos (2005) 5 C= 3?1%[
e Crack: A= 2a ‘
2
m . P a3
5 -
_ 77 _ o’t T 3EI "
o lI=U= (. ( h. _ 2P? 3
— 7101 s
5 T Q I {h_ = 31:;)
o Fg = ak, 2
Y dA m X SWEIG’ .
e (G = _% = f a j b ; L 0,
/ (Figure 4.20 from Gdoutos (2005) 2 2 2 2
¢ oo = /52 - o - 2 —
a Jda EIB EBZh® |
g
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Linear Elastic Fracture Mechanics A Primer on 2D Elasticity

3.2. A Primer on 2D Elasticity

Linear Elastic Fracture Mechanics

e In 2D, the governing equations of elasticity (let us assume no body loads
for simplicity) are written as,

Oz + Toyy =0, Toya +0yy =0.

o If we seek to obtain solutions expressed directly in the stresses, 2
equations won’t cut it (we have 3 unique stresses o, Oy, Tgcy). So we
invoke strain compatibility, which is written as ool Thoms ore oo

v that the strains must satisfy in
order for them to have been
generated by a continuously

differentiable displacement field.

‘ Ezyy T Eyax = Vaoyzy

@ This can be expressed in terms of the stresses if we invoke the
stress-strain constitutive relationships.
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Linear Elastic Fracture Mechanics

A Primer on 2D Elasticity

3.2. A Primer on 2D Elasticity

Linear Elastic Fracture Mechanics

Plane Stress

Ex 1 v 0 Oz
1
ey | = ol 0 oy
Yoy 0 0 2(1+4v)| [Tay
Compatibility

ox,yy T oy,ex —v(oz,ze +oy,yy) = 21+ V)Tay,zy-
v

Plane Strain

£z 1ty 1—v —v 0 o

gy | = 1) v  1—=v 0] [oy

Yzy 0 0 2| | Tay
Compatibility

(A =v)(oz,yy toy,za) —v(oz,azx +oy,yy) = QTmy,mv/-J

e Making the substitution o, = ¢ 4y, 0y = ¢ 22, Toy = —@ 2y, it is trivial to
see that the equilibrium equations are satisfied automatically.

o In both the above cases, the compatibility equation comes out to be:

(b,x:caca: + ¢,yyyy + 2¢,xwyy = (89696 + ayy)QQb - v4¢ = 0.

e Since the Laplacian when set to zero (V2¢ = 0) is referred to as the
harmonic equation (recall complex analyticity), V4¢ = 0 is referred to
as the bi-harmonic equation. ¢ is the Airy Stress Function.

Balaji, N. N. (AE, IITM)

AS2070
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Linear Elastic Fracture Mechanics Classical Solutions

3.3. Classical Solutions

Linear Elastic Fracture Mechanics

@ Restricting ourselves to 2D problems, the governing equations may be
written using the Airy’s stress formulation as the biharmonic equation

Vi =0

@ Let us look at this with cylindrical coordinates (xz = rcosf, y = rsind).

Vo=le, e {i9:| , Yu =le, e {u u99+u} {e]

s

b0
VZo=[e, e [ﬁ’” (%)

@ The stresses are expressed (to satisfy equilibrium) as

b, 0

00
” + 2 0go — ¢,rra Tro = _ar(

O-T‘T

Balaji, N. N. (AE, IITM) AS2070 April 28, 2025 17 /27



Linear Elastic Fracture Mechanics Classical Solutions

3.3. Classical Solutions

Linear Elastic Fracture Mechanics

° General form of the Airy’s Stress Function by be
(Michell Solution, see Barber 2022, Ch. 8-9) hation
& =agp + a1 logr + asr? + azrlogr
a4y + as logr + agr” + ayr- logr
1 2 *log )0
° (@117 + aqarlogr + N3 4 a14r® + arsrd + argrd logr) cos @ [ sind).
r
b
(b1 + biarlogr + a3 biar> + b1s570 + bigrflogr) sind T]
r
6
Z(anlrn + Anor® T 4 a3 Apar® ") cos }
n=2 :
o Z(bm?“n 4 bpor? T £ by + bn4r2*”) sin nf.
n=2
T ,00 ,0
Opr = ¢77 + (ZST» 0pp = QS,T”I“) Tro = _ar(¢ )
r r
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Linear Elastic Fracture Mechanics

Classical Solutions

3.3.1. The Michell Solution: Tabled Expressions

Classical Solutions

Stress Components

Displacement Components

o arr g o0 ¢ 2py 2uu
2 B 0 2 r = Dr 0
r2In(r) 2In(r) + 1 0 2In(r) +3 r2In(r) (k= Drin() —r (+ 1o
In(r) 1/r? 0 —i In(r) ~1/r 0
N 0 0 —1/r
0 0 1/ 0 s
z - ricost (x =2y cost) (r+2)r?sin0)
ricosd 2rcosf) 2rsinf 6rcos rOsing (k= 1)05in0 — cos (k= Dcosd - sind
rfsinf 2cosf/r 0 0 “+( + 1) In(r) cos 0} —(k+ 1) In(r) sin 0}
Fin(rycos | cos/r sin6/r cosO/r Finrycosd | LG+ 1)fsind - cosd 1+ Dfcosd - sind
cosd/r —2cos0/r? —2sin0/r? 2cosf/r? +(s = D In(r) cos ) —(x = DIn(r)sin0)
1 2 2

Fsing 2rsing —2rcosf 6rsind coso/r | cost/r |sind/r
rocosd 2sin/r 0 0 rising (k=2 sind) —(r+2)r? cos

i - 8 rcost H(0x = 1) cost + sin 6 H=( = DOsinf - cosd
rIn@)sing | sino/r \ 4«»9/2 sin/r \ — (4 1) In(r) sin 0} ~(s+ DIn(r) cos )
sind/r —2sin0/r’ 2cos0/r’ 2sin0/r° rin@)sing | H{—0s+ Docosd —sing e+ DOsing + cosd
r™eosnd |~ D(=2)r"cosnd | n(n+1)r'sinng (n+1)(n+2)r"cos nf (= D) In(r) sin 6} +(s = D In(r) cos )
ricosnd | —n(n—Dyr"2cosnf n(n—1)r"sinng n(n—1)r">cosnf sinf/r sind/r? —cos0/r?
Psinng —(+1)(n=2)r"sinnf | —n(n+1)r"cosnf (n+1)(n+2)r"sinnd 2 cosnt [ —’:1‘— Dri+ T cosnf) mt:@nr"*l sinng
r'sinnf —n(n—1)r"sinnd —n(n—1)r">cosnf n(n—1)r"sinng 1" cosnd —nr"! cosnf nr"~! sinnf)

2 sinng (k=n = 1" sinng —(k+n+ Drt cosnd
7 sinnd —nr"sinnd —nr cosnd)

(Table 8.1 from Barber 2022)

We set rigid body motion compo-
nents to zero for the displacements

Plane Stress k

(Table 9.1 from Barber 2022)

3—v
14v

Plane Strain x =3 — 4v
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Linear Elastic Fracture Mechanics Classical Solutions

3.3.Plate with a Hole. Plate With a Hole Under Tension

Linear Elastic Fracture Mechanics

@ Let us now try to use the above table for obtaining the stress distribution
around a hole in a tension field.

LT
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Linear Elastic Fracture Mechanics Classical Solutions

3.3.Plate with a Hole. Plate With a Hole Under Tension

Linear Elastic Fracture Mechanics

@ Let us now try to use the above table for obtaining the stress distribution

around a hgle in a tension field.
0
‘ Problem A

P The 2D stress field (cartesian) is

Displacement Field
) )
Up = ?(m - 1r — ?TCOSQQ

g0 .
= —rsin26 _ |0 o0
ug 7 sin T cart = [O 00] .
U @ Transforming to cylindrical coordinates,
_ | cos@ sin@| |0 0 cosf) —sin@
JHHHHH Zeyl = | _gin@ cosf| |0 ool |sind cos 6
iin 2 . “
LTI RRRRRRRRER =09 [ sin” 6 5"‘93%‘9]
sin 6 cos 6 cos” @
A B
+ m = O The components can be written as
- 1 cos 26 o sin 20
[T [THIIIT Trr =90 (5 Y ) » Ire =005
o 1 cos 26
Tgo = 00 (5 + 3 ) .
AS2070 April 28, 2025 19 /27
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Linear Elastic Fracture Mechanics

Classical Solutions

3.3.Plate with a Hole. Plate With a Hole Under Tension

Linear Elastic Fracture Mechanics

@ Let us now try to use t
around a hole in a tens

il Problem B

Displacement Field

2
w, = 20¢ (1 w1 (9HHeo
2r T
an2 a . o
wg = <I€71+(7) )sin20.
r

1

2

cos 26
2

sin 20
2

At r = a we want
s 20 o
) Org = 00

U'rr:UO<

(no hoop component specified)

As r — oo, we want o, 00,009 — 0 to match the
far-field.

Based on inspection (shown in class), we find the
following Airy stress function to be a good starting
point: ¢ = Alogr+B0+Cc0520+DC°f7229.

Solving for A, B,C, D based on the B.C.s we get,

Balaji, N. N. (AE, IITM)

oo [a\? a\? 3/a\?
Opp = —— | — + 200 — 1——(- cos 26,
2 \r T 4\r
2« 4
oo [a 300 [ a
=—( - — = 20
'Y} 2 < ” ) -+ 1 < , ) cos 20,
a\? 3/a\?\ .
org = 0| — 1——=( - sin 260
T 2\r
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Linear Elastic Fracture Mechanics

3.3.Plate with a Hole

Linear Elastic Fracture Mechanics

Classical Solutions

. Plate With a Hole Under Tension

° Stress o, Stress o, Stress o, e
05 5
2 05
B - ~ 0.0 ’ Q
=
8 ol @ W 0 ool (I s
> -0.5
ug = 0 -0.5
-5 T -5 -5 T
-5 0 5 -5 0 -5 0 5
Disp. u, Hole Def. ( x .5
5 5 (x.5)
2
5
° 1
8
3 0 0 0 0 04
> -1
-5 ’
-2
-5 -5 -5 ,
-5 0 5 -5 0 -5 0
X Coord X Coord X Coord
[ \r/ X ANV
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Linear Elastic Fracture Mechanics Classical Solutions

3.3.3. Notch Crack

Classical Solutions

o We seek an analytical solution for this
problem setting very close to the crack.

o While we may intuitively expect stress to be
singular at the crack tip, the strain energy has
to be finite.

e Suppose o ~ O(1), € ~ O(r*) necessarily.

o SoU = [ [ %Erdrdd ~ O(r***1).
e For this to be finite, 2A+1>0 = A > —%.

@ The only Airy stress functions that can show
this are (refer sl. 18).

[ Irr Tro 766
r T2 cos no (.)r™ cos nb (.)r"™ sin n6 (.)r"™ cos nb
" cos nd (.)r" =2 cos no (.)r" =2 sin no (.)r" =2 cos no
T2 5in no (.)r™ sin n6 (..)r™ cos nb (..)r™ sin no
™ sin n6 (.)r" =2 sin no (.)r" =2 cos no (.)r" =2 sin no
o
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Linear Elastic Fracture Mechanics Classical Solutions

3.3.3. Singularity Close to Notch Crack

Classical Solutions

e For the Notch crack problem, we posit the Airy stress function

‘ ¢ =1 1 (A cos((A — 1)0) + Ag cos((A + 1)0) + By sin((A — 1)0) + By sin((A + 1)6)) |-
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Linear Elastic Fracture Mechanics

Classical Solutions

3.3.3. Singularity Close to Notch Crack

Classical Solutions

e For the Notch crack problem, we posit the Airy stress function

’ ¢ =r 1 (Ag cos((A— 1)8) 4+ As cos((A + 1)) + By sin((A — 1)) + By sin((A + 1)0)) |.

(A1)

Antisymmetric

Symmetric

(Figure 11.7 from Barber 2022)
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Linear Elastic Fracture Mechanics Classical Solutions

3.3.3. Singularity Close to Notch Crack

Classical Solutions

e For the Notch crack problem, we posit the Airy stress function

‘ ¢ =1 1 (A cos((A — 1)0) + Ag cos((A + 1)0) + By sin((A — 1)0) + By sin((A + 1)6)) |-

e Applying the boundary conditions (along with o = ), we get a nonlinear
eigenvalue problem that has the following solutions:

A ‘ Eigenfunction
3 | A2=4 Bo=-B
1| Ay=—-A;, Bo=0 (B =0)
3| A2=-% B=-D
o \= % corresponds to the near-field singular stress field, given by

K1 (5 o 1 39) Kig ( 5 6 3 . 39)
Oprr = —CcosS — — —cos — | + ——sin — 4+ — sin —
omr \4 2 4 2 orr \ 4 2 4 2

Ki (3 0 1 39) K ( 3.0 3 . 39)
g9 = ——= | —cos - + —cos — | + ——sin — — — sin —
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Linear Elastic Fracture Mechanics Classical Solutions

3.3.3. Singularity Close to Notch Crack

Classical Solutions

e For the Notch crack problem, we posit the Airy stress function

‘ ¢ =1 1 (A cos((A — 1)0) + Ag cos((A + 1)0) + By sin((A — 1)0) + By sin((A + 1)6)) |-

e Applying the boundary conditions (along with o = ), we get a nonlinear
eigenvalue problem that has the following solutions:

)\ | Eigenfunction
Displacement Field

) o (= Syeos® — Leos Y ko /T (= Lysin & - B in 29
Uy = — (k= =)cos = — —cos — | — — ( (k= =)sin = — = sin —
" ™ oox 2 2 2°%7 T\ 9r g/ Sy Tty
v 1.0 1. 30 I 1 0 3 30
2uug = Kp %<—(m+5)sin§+5sin?>—lﬁ i((m+5)cos5—5cos§>

o A= 5 corresponds to the near-field smgular stress field, given Dy

~

Kr /5 6 1 30 K1 5.6 3 _ 30
Oprr = —CcosS — — —cos — | + ——sin — 4+ — sin —
oar \4 02 T 15 2er \ 4 2 Tyt

Ky (3 6 1. 30\ Ku 3.6 3 30

ogo = — cos — + — cos — ——sin — — — sin —
00 o \4 T T4 oar \ 4 2 17
_ Ki (L0 180N Ky (10 3 30
O = e 451112 45111 5 5o 4(:0::2 4CO§ 5
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Linear Elastic Fracture Mechanics Classical Solutions

3.3.3. Singularity Close to Notch Crack

Classical Solutions

° Mode 1 Loading (unit Ky)
Stress o, Stress o Stress o,
10 10 = 10 “
o ) 5 0.75 5 0.9 5 0.25 T
g
S 0 S 050 ] 06 of ¥ 0.00
>
-5 025 _5 03 -5 _0.25
-10 -10 -10 T
2pu -10-5 0 5 10 -10-5 0 5 10 -10-5 0 5 10
. 10 Disp. u, A 10 Disp. u, 10 Crack Opening
nug — Top
) - 5 3 5 25 51 — Bottom
g
S o 5 0 0.0 0 }
>
-5 1 -5 25 97
-10 0 -10 -10 T T T
-10-5 0 5 10 -10-5 0 5 10 -10 -5 0 5 10
X Coord X Coord X Coord
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Linear Elastic Fracture Mechanics Classical Solutions

3.3.3. Singularity Close to Notch Crack

Classical Solutions

° Mode 2 Loading (unit Kyr)
Stress o, Stress o Stress o,
10 10 = 10 =
1.0
° 54 1 51 51 0.5
5 / \ o
S 09 0 0+ ’ 0.0 0 3
N 0.0
-5 4 -51 05 5
-1.0 -0.5
-10 —T— 10
241 -10-5 0 5 10 -10-5 0 5 10
. 10 Disp. u, 10 Crack Opening
nug —To
5 3 0.0 5 .
° o — Bottom
E 0 o,
S ]
g 5 e 5
- -3 -15 ~
-10 -10 T T T
-10-5 0 5 10 -10-5 0 5 10 -10 -5 0 5 10
X Coord X Coord X Coord
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Linear Elastic Fracture Mechanics Classical Solutions

3.3.3. Energy Release Rate

Classical Solutions

@ Let us think of how much energy will be necessary to “close” a crack.
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Linear Elastic Fracture Mechanics Classical Solutions

3.3.3. Energy Release Rate

Classical Solutions

@ Let us think of how much energy will be necessary to “close” a crack.

e We observe that (all quantities in cylindrical):

Kr 1 o Krr Jo 1 " (k-1 T 0
A e e R R e KD
27T 2m 27

Q
Il

27T
Krr (-2 o r 0 " [k+1
@d=m, o= [ ] 2pu = K —[ ]—K —[ }
= oar LO 0O TWor -+ 1) M or L 0
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Linear Elastic Fracture Mechanics Classical Solutions

3.3.3. Energy Release Rate

Classical Solutions

@ Let us think of how much energy will be necessary to “close” a crack.
e We observe that (all quantities in cylindrical):

Kr 1 o Krr Jo 1 " (k-1 T 0
A e e R R e KD
27T 2m 27

27mr

Krr {72 0] r 0 " [k+1
@6 =, - . 2pu =K 7[ ]—K —[ }
2ar LO 0 o =+ 1) oo o

e For virtual crack closure, the work done can be written as,

Q
|

I8

W(a) = 20/@% (099‘9:0(*%)}9:“ + Ure\f):o(*“r)\s:w) da

¢ Kp a—axr+1  Kjpp @ — @ k1
:/ K + Krr dz
b Ve 2r  2u Noras 2r 2

am

2 2 2
K K
K24+ K2, n+1 ¢ [a= K? + K? 5 KitE, Plane Stress
SRl do = SLEETr g2, ) B, .
2m 24 * 8u2 Ki+Kip 2 i
—L°~IL(1 — v2)a Plane Strain

@ The Griffith Energy Release Rate is the derivative lim,_,q %‘Z—VZ, which

evaluates as X ,
1 % + % Plane Stress

G=21 82 K2
(1 —v?) + —LL(1 - v2) Plane Strain
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Linear Elastic Fracture Mechanics Classical Solutions

3.3.3. Stress Intensity Factor

Classical Solutions

e A crack is said to propagate when G exceeds G,

@ Therefore, under “pure” mode 1 loading, the Critical Stress Intensity
Factor (Kr,cr) is

BG.,.E

T Plane Strain '

. {\/BGCTE Plane Stress
I,er =

@ This shows that for identical conditions, the Plane Stress case (thin
plates) has higher fracture toughness than its plane stress counterpart
(long prismatic structures).

o But how do we relate K;, K;; with far-field applied stresses?
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Linear Elastic Fracture Mechanics Classical Solutions

3.3.3. Stress Intensity Factor

Classical Solutions

e A crack is said to propagate when G exceeds G,

@ Therefore, under “pure” mode 1 loading, the Critical Stress Intensity
Factor (Kr,cr) is

BG.,.E

T Plane Strain '

. {\/BGCTE Plane Stress
I,er =

@ This shows that for identical conditions, the Plane Stress case (thin
plates) has higher fracture toughness than its plane stress counterpart
(long prismatic structures).

o But how do we relate K;, K;; with far-field applied stresses? The
answer is very closely tied in to the exact geometry, etc.
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Linear Elastic Fracture Mechanics Classical Solutions

3.3.3. Griffith-Inglis Crack Revisited

Classical Solutions

e For the flat crack of length 2a (aka the Griffith-Inglis crack), the SIF is
related to tensile stresses by

K[ = Opy Ta.

@ Note that this is why we chose A =
satisfy (plane stress considered here

5 in sl. 7. If we left it in, we’ll have to
):
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Linear Elastic Fracture Mechanics Crack Propagation and the Paris Law

3.4. Crack Propagation and the Paris Law

Linear Elastic Fracture Mechanics

Values for common engineering materials,
from Kumar 2009

e Paris Law: c(le%/ =C(AK)™.

e Usually ay is specified and we are
interested in finding how many Ferrite-Pearlite (S)  6.8x10 2 3.0
cycles until a crack of size a; Martensite (S) 1.33x107  2.25
grows to ay. This is the “life” of Austenite (S)  5.5x107'%  3.25
the material. Cast Iron (S)  5.5x107'?  3.25

Al-Alloy  1.1x10 ' 3.89

Material C m
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