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1.1. My Journey So Far
Academia as a Career: Reflections

Brief Bio

BTech Aerospace (2017), IIST

MS (2019) & PhD (2021) Mechanical, Rice University, Houston (adv: Dr. Matthew Brake)
+ Postdoc (2021-22)

Humboldt Postdoctoral Researcher at University of Stuttgart, Stuttgart, DE (2022-24)
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1.3. Opportunities
Academia as a Career: Reflections

Opportunities are plenty!

There are excellent postdoctoral fellowships (Humboldt, Marie-Curie, JSPS, George
Foster, Fullbright, etc.). Please network and find out!

Key is to ork on skills right now. PhDs in engineering is not (yet) saturated.

Most IIT’s are mandated to grow. New IIT’s coming up. Engineering
faculty positions are not beyond your reach!

Research-wise, Indian academia is quite comfortable.
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Nonlinear Dynamics of Jointed Structures Physics-Based Modeling of Bolted Joints

3. Nonlinear Dynamics of Jointed Structures
3.1. Physics-Based Modeling of Bolted Joints

The Gaul Resonator (Süß, Janeba, and Willner 2018)

The Brake-Reuß Beam (Brake and Reuß 2018)
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The Gaul Resonator (Süß, Janeba, and Willner 2018)

The Brake-Reuß Beam (Brake and Reuß 2018)

0

0.5

1

1.5

2

160 165 170 175 180

T
F

 A
m

p
lit

u
d

e
 (

g
/N

)

Forcing Frequency (Hz)

Fex= 0.1 N

Fex= 0.2 N

Fex= 0.5 N

Fex= 1.0 N

Fex= 4.0 N

Linearized Mode-Shape 

(173 Hz)

Amplitude

Balaji, N. N. (IITM) RVNL February 6, 2025 7 / 24



Nonlinear Dynamics of Jointed Structures Physics-Based Modeling of Bolted Joints

3. Nonlinear Dynamics of Jointed Structures
3.1. Physics-Based Modeling of Bolted Joints
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3. Nonlinear Dynamics of Jointed Structures
3.1. Physics-Based Modeling of Bolted Joints: Nonlinear Modal Analysis

Rayleigh Quotient-based NMA

The NMA is posed as an
eigenvector-dependent non-linear Eigenvalue
Problem (NEPv)

K u + fnl(u, . . . ) − fs − λM(u − us) = 0

(u − us)
T
M(u − us) − q

2
= 0.

See (Balaji and Brake 2020) for details

Example: Frictional Beam
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3. Nonlinear Dynamics of Jointed Structures
3.1. Physics-Based Modeling of Bolted Joints

The TriboMechaDynamics Approach
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3. Nonlinear Dynamics of Jointed Structures
3.1. Physics-Based Modeling of Bolted Joints

The statistical treatment of rough contact has been popular in the contact mechanics
community from (Greenwood and Williamson 1966)

The idea is to describe the reaction force as a statistical expectation of asperity-reaction
forces randomly distributed over a given surface

Exponentially Distributed Surface

The asperity heights are fitted to a two parameter exponential distribution,
following (Polycarpou and Etsion 1999; Medina, Nowell, and Dini 2013)
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3. Nonlinear Dynamics of Jointed Structures
3.1. Physics-Based Modeling of Bolted Joints: Contact Parameter Estimation
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3. Nonlinear Dynamics of Jointed Structures
3.1. Physics-Based Modeling of Bolted Joints: Modeling Methodology

Linear finite element model with only contact non-linearities

Factors for Uncertainty Propagation

S.No. Description Symbol Distribution Quadrature
1. Coefficient of Friction µ Exponential (mean≈ 0.1183) Gauss-Laguerre
2. Gap Function g Normal (fit parameters) Gauss-Hermite
3. Asperity height exp. λ Normal (fit parameters) Gauss-Hermite
4. Mean Radius R Normal (fit parameters) Gauss-Hermite
5. Stage Rotation X θX Normal (0 mean, 15◦ s.d.) Gauss-Hermite
6. Stage Rotation Y θY Normal (0 mean, 15◦ s.d.) Gauss-Hermite
7. Bolt Prestress Force P Normal (exp. mean, s.d.) Gauss-Hermite
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3. Nonlinear Dynamics of Jointed Structures
3.1. Physics-Based Modeling of Bolted Joints: Mean Model Results

Static Tractions Prediction of Linearized Natural Frequency

S.No. Exp. (Hz) Mean Model (Hz) Error (%)
1 179.56 179.41 0.0845
2 594.71 594.72 0.0016
3 1199.8 1197.1 0.2209

The interfaces after several hours of testing

Mode 1 Dynamics
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3. Nonlinear Dynamics of Jointed Structures
3.1. Physics-Based Modeling of Bolted Joints: PCE Results
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Nonlinear Dynamics of Jointed Structures Self-Excited Oscillations

3. Nonlinear Dynamics of Jointed Structures
3.2. Self-Excited Oscillations

Multiple sources of excitation in
jet-engines

The aerodynamic interactions can
sometimes be modeled as a
self-excitation for a traveling wave
mode

η̈ + cη̇ + ω2
0η = 2ω0ζη̇

=⇒ η̈ + (c−2ω0ζ)η̇ + ω2
0η = 0

These structures are often supported by
frictional contacts and the “modal”
equations become

η̈ + (c−2ω0ζ)η̇ + ω2
0η + fnl(η, . . . ) = 0.

Blade stage vibration data from MTU aero test
engines (Corral, Gallardo, and Ivaturi 2013)
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3. Nonlinear Dynamics of Jointed Structures
3.2. Self-Excited Oscillations: A Self-Excited SDOF Benchmark

A representative problem is analyzed

mẍ− cẋ+ kx+ fnl(x, . . . ) =
F

2
ejΩt + c.c.

using a Harmonic Balance approach, with the Fourier ansatz:

x(t) =
∑
k∈H

Uke
jkΩt + c.c.

Quasi-Periodic HB Ansatz (τi = Ωit):

x(t) =
∑
k∈H

Uk exp(i(k1τ1 + k2τ2))

Balaji, N. N. (IITM) RVNL February 6, 2025 17 / 24



Nonlinear Dynamics of Jointed Structures Self-Excited Oscillations

3. Nonlinear Dynamics of Jointed Structures
3.2. Self-Excited Oscillations: A Self-Excited SDOF Benchmark

A representative problem is analyzed
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3. Nonlinear Dynamics of Jointed Structures
3.2. Self-Excited Oscillations: A Self-Excited SDOF Benchmark

Quasiperiodic

Ω < ωres

Periodic, Lock-in!

Ω ∼ ωres

Quasiperiodic

Ω > ωres

}Periodic, Locked-in

QP Branch-Switching Results
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3. Nonlinear Dynamics of Jointed Structures
3.3. Research Plan Overview

Wave-Based Analysis of Aerospace Structures
NSF GOALI Proposal

(submitted, ’22) with

MAC & NESC, USA

Exploded view of Orion 

Component 1: Joint Modeling Framework of Single Joints (Analy�cal & Data-Driven)

Component 2: System Level Modeling with Many Joints

Idealiza�on:

Dissipa�on

Component 3: Experimental Valida�on

Goal:

Component Model Wave-Based Frame Model Component ModelComponent

Frame

Component

Incident wave Transmission wave(s)

Reflec�on wave(s)

( )

R fl � ( )

Interface

Phase-based Resonance Control
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3. Nonlinear Dynamics of Jointed Structures
3.4. Focus on Free and Open Source Software

Big proponent of Free and Open Source Computing!
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Thank You!
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Stochastic Modeling

7. Stochastic Modeling through Polynomial Chaos Expansion

The Polynomial Chaos Expansion (PCE) approach is adopted for the stochastic
modeling purpose (Wiener 1938; Sudret 2008)

The idea here is to represent the characteristics of the nonlinear model as weighted sums
of pre-defined polynomials

y ← f(x) x ∈ D ∼ w(.) (pdf: w(x))

The family of polynomials ψn(x) that are orthogonal with respect to the inner product
weighted by w(x) are chosen as the bases for the PCE

⟨ψn, ψm⟩ =
∫
D
ψn(x)ψm(x)w(x)dx = E[ψnψm] = δmn.

The Polynomial Chaos Expansion of y is written as

ŷ = f0 +
N∑
i=1

fiψi(x)→ ŷ = f0 +

N1∑
i=1

N2∑
j=1

fijψ
(1)
i (x1)ψ

(2)
j (x2).

Variance Decomposition
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ŷ = f0 +
N∑
i=1

fiψi(x)→ ŷ = f0 +
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9. A Self-Excited SDOF Benchmark

A representative problem is analyzed

mẍ− cẋ+ kx+ fnl(x, . . . ) =
F

2
ejΩt + c.c.

using a Harmonic Balance approach, with the Fourier ansatz:

x(t) =
∑
k∈H

Uke
jkΩt + c.c.

Quasi-Periodic HB Ansatz (τi = Ωit):

x(t) =
∑
k∈H

Uk exp(i(k1τ1 + k2τ2))

Evaluation of Frictional Forces

fi =


f(sp)︷ ︸︸ ︷

kt(xi − xi−1) + fi−1 stick

µNsign(f(sp)) slip

QPHB Hyper-Time Marching (see Balaji, Groß, and Krack 2023, Under
Preparation)

x(t) =
∑
k∈H

Uk exp(i(k1τ1 + k2τ2))
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