Research Practice, Vibrations, Nonlinearities, Life :) Seminar to Structures Group, IIST Thiruvananthapuram

Nidish Narayanaa Balaji

Indian Institute of Technology Madras, Chennai 600036, IN

February 6, 2025

Balaji, N. N. (IITM)

Table of Contents

Academia as a Career: Reflections

- My Journey So Far
- Reflections on Life in Academia
- Opportunities
- 2 Highlights from my Research
- Source and Structures
 Source and Structures
 - Physics-Based Modeling of Bolted Joints
 - Self-Excited Oscillations
 - Research Plan Overview
 - Focus on Free and Open Source Software

1.1. My Journey So Far

Academia as a Career: Reflections

Brief Bio

- BTech Aerospace (2017), IIST
- MS (2019) & PhD (2021) Mechanical, **Rice University**, Houston (adv: Dr. Matthew Brake) + Postdoc (2021-22)
- Humboldt Postdoctoral Researcher at University of Stuttgart, Stuttgart, DE (2022-24)

3/24

Academia as a Career: Reflections

• Life as a PhD student, as a Postdoc, as a faculty member

Academia as a Career: Reflections

- Life as a PhD student, as a Postdoc, as a faculty member
- Time is Fragmented

Academia as a Career: Reflections

- Life as a PhD student, as a Postdoc, as a faculty member
- Time is Fragmented
- Academia in general

Academia as a Career: Reflections

- Life as a PhD student, as a Postdoc, as a faculty member
- Time is Fragmented
- Academia in general
- Academia in India, US, Europe

4/24

1.3. Opportunities

Academia as a Career: Reflections

• Opportunities are plenty!

1.3. Opportunities

Academia as a Career: Reflections

- Opportunities are plenty!
- There are excellent postdoctoral fellowships (Humboldt, Marie-Curie, JSPS, George Foster, Fullbright, etc.). Please network and find out!

- Opportunities are plenty!
- There are excellent postdoctoral fellowships (Humboldt, Marie-Curie, JSPS, George Foster, Fullbright, etc.). Please network and find out!
- Key is to ork on skills right now. PhDs in engineering is not (yet) saturated.

- Opportunities are plenty!
- There are excellent postdoctoral fellowships (Humboldt, Marie-Curie, JSPS, George Foster, Fullbright, etc.). Please network and find out!
- Key is to ork on skills right now. PhDs in engineering is not (yet) saturated.
- Most IIT's are mandated to grow. New IIT's coming up. Engineering faculty positions are not beyond your reach!

1.3. Opportunities Academia as a Career: Reflections

- Opportunities are plenty!
- There are excellent postdoctoral fellowships (Humboldt, Marie-Curie, JSPS, George Foster, Fullbright, etc.). Please network and find out!
- Key is to ork on skills right now. PhDs in engineering is not (yet) saturated.
- Most IIT's are mandated to grow. New IIT's coming up. Engineering faculty positions are not beyond your reach!
- **Research-wise**, Indian academia is quite comfortable.

3.1. Physics-Based Modeling of Bolted Joints

3.1. Physics-Based Modeling of Bolted Joints

3.1. Physics-Based Modeling of Bolted Joints

3.1. Physics-Based Modeling of Bolted Joints

The Brake-Reuß Beam (Brake and Reuß 2018)

3.1. Physics-Based Modeling of Bolted Joints

The Brake-Reuß Beam (Brake and Reuß 2018)

3.1. Physics-Based Modeling of Bolted Joints: Nonlinear Modal Analysis

3.1. Physics-Based Modeling of Bolted Joints

 $The \ TriboMechaDynamics \ Approach$

3.1. Physics-Based Modeling of Bolted Joints

------ "Nominal" Surface ----- Initial Surface ----- Deformed Surface

- The statistical treatment of rough contact has been popular in the contact mechanics community from (Greenwood and Williamson 1966)
- The idea is to describe the reaction force as a statistical expectation of asperity-reaction forces randomly distributed over a given surface

Exponentially Distributed Surface

• The asperity heights are fitted to a two parameter exponential distribution, following (Polycarpou and Etsion 1999; Medina, Nowell, and Dini 2013)

3.1. Physics-Based Modeling of Bolted Joints: Contact Parameter Estimation

3.1. Physics-Based Modeling of Bolted Joints: Modeling Methodology

Linear finite element model with only contact non-linearities

Factors for Uncertainty Propagation

S.No.	Description	Symbol	Distribution	Quadrature
1.	Coefficient of Friction	μ	Exponential (mean ≈ 0.1183)	Gauss-Laguerre
2.	Gap Function	g	Normal (fit parameters)	Gauss-Hermite
3.	Asperity height exp.	λ	Normal (fit parameters)	Gauss-Hermite
4.	Mean Radius	R	Normal (fit parameters)	Gauss-Hermite
5.	Stage Rotation X	θ_X	Normal (0 mean, 15° s.d.)	Gauss-Hermite
6.	Stage Rotation Y	θ_Y	Normal (0 mean, 15° s.d.)	Gauss-Hermite
7.	Bolt Prestress Force	P	Normal (exp. mean, s.d.)	Gauss-Hermite

			• • • •
Balaji, N. N. (IITM)	RVNL	February 6, 2025	12 / 24

3.1. Physics-Based Modeling of Bolted Joints: Mean Model Results

Prediction of Linearized Natural Frequency

S.No.	Exp. (Hz)	Mean Model (Hz)	Error (%)
1	179.56	179.41	0.0845
2	594.71	594.72	0.0016
3	1199.8	1197.1	0.2209

The interfaces after several hours of testing

3.1. Physics-Based Modeling of Bolted Joints: Mean Model Results

3.1. Physics-Based Modeling of Bolted Joints: PCE Results

3.2. Self-Excited Oscillations

• Multiple sources of excitation in jet-engines

Blade stage vibration data from MTU aero test engines (Corral, Gallardo, and Ivaturi 2013)

3.2. Self-Excited Oscillations

- Multiple sources of excitation in jet-engines
- The aerodynamic interactions can sometimes be modeled as a **self-excitation** for a traveling wave mode

$$\begin{split} \ddot{\eta} + c\dot{\eta} + \omega_0^2 \eta &= 2\omega_0\zeta\dot{\eta} \\ \Longrightarrow \ddot{\eta} + (c - 2\omega_0\zeta)\dot{\eta} + \omega_0^2\eta &= 0 \end{split}$$

Shaft speed

Blade stage vibration data from MTU aero test engines (Corral, Gallardo, and Ivaturi 2013)

3.2. Self-Excited Oscillations

- Multiple sources of excitation in jet-engines
- The aerodynamic interactions can sometimes be modeled as a **self-excitation** for a traveling wave mode

$$\ddot{\eta} + c\dot{\eta} + \omega_0^2 \eta = 2\omega_0 \zeta \dot{\eta}$$
$$\implies \ddot{\eta} + (c - 2\omega_0 \zeta) \dot{\eta} + \omega_0^2 \eta = 0$$

• These structures are often supported by frictional contacts and the "modal" equations become

$$\ddot{\eta} + (c - 2\omega_0 \zeta)\dot{\eta} + \omega_0^2 \eta + f_{nl}(\eta, \dots) = 0.$$

Blade stage vibration data from MTU aero test engines (Corral, Gallardo, and Ivaturi 2013)
3.2. Self-Excited Oscillations: A Self-Excited SDOF Benchmark

• A representative problem is analyzed

$$m\ddot{x} - c\dot{x} + kx + f_{nl}(x,\dots) = \frac{F}{2}e^{j\Omega t} + c.c.$$

using a Harmonic Balance approach, with the Fourier ansatz:

$$x(t) = \sum_{k \in \mathcal{H}} U_k e^{jk\Omega t} + c.c.$$

• Quasi-Periodic HB Ansatz ($\tau_i = \Omega_i t$):

$$x(t) = \sum_{\underline{k} \in \mathcal{H}} U_{\underline{k}} \exp(i(k_1\tau_1 + k_2\tau_2))$$

3.2. Self-Excited Oscillations: A Self-Excited SDOF Benchmark

• A representative problem is analyzed

$$m\ddot{x} - c\dot{x} + kx + f_{nl}(x,\dots) = \frac{F}{2}e^{j\Omega t} + c.c.$$

using a Harmonic Balance approach, with the Fourier ansatz:

$$x(t) = \sum_{k \in \mathcal{H}} U_k e^{jk\Omega t} + c.c.$$

• Quasi-Periodic HB Ansatz ($\tau_i = \Omega_i t$):

$$x(t) = \sum_{\underline{k} \in \mathcal{H}} U_{\underline{k}} \exp(i(k_1\tau_1 + k_2\tau_2))$$

3.2. Self-Excited Oscillations: A Self-Excited SDOF Benchmark

 $\Omega < \omega_{res}$

3.2. Self-Excited Oscillations: A Self-Excited SDOF Benchmark

Balaji, N. N. (IITM)

RVNL

February 6, 2025 18 / 24

3.2. Self-Excited Oscillations: A Self-Excited SDOF Benchmark

3.2. Self-Excited Oscillations: A Self-Excited SDOF Benchmark

Balaji, N. N. (IITM)

February 6, 2025 18 / 24

3.2. Self-Excited Oscillations: A Self-Excited SDOF Benchmark

3.3. Research Plan Overview

3.4. Focus on Free and Open Source Software

• Big proponent of Free and Open Source Computing!

References I

D. Süß, A. Janeba, and K. Willner. "The Gaul Resonator: Experiments for the Isolated Investigation of a Bolted Lap Joint". In: The Mechanics of Jointed Structures: Recent Research and Open Challenges for Developing Predictive Models for Structural Dynamics. Ed. by M. R. Brake. Cham: Springer International Publishing, 2018, pp. 59–72. ISBN: 978-3-319-56818-8. DOI: 10.1007/978-3-319-56818-8_6. URL: https://doi.org/10.1007/978-3-319-56818-8_6 (cit. on pp. 20-24).

M. R. W. Brake and P. Reuß. "The Brake-Reuß Beams: A System Designed for the Measurements and Modeling of Variability and Repeatability of Jointed Structures with Frictional Interfaces". In: *The Mechanics of Jointed Structures: Recent Research and Open Challenges for Developing Predictive Models for Structural Dynamics*. Ed. by M. R. Brake. Cham: Springer International Publishing, 2018, pp. 99–107. ISBN: 978-3-319-56818-8. DOI: 10.1007/978-3-319-56818-8_9. URL: https://doi.org/10.1007/978-3-319-56818-8_9 (cit. on pp. 20-24).

N. N. Balaji and M. R. Brake. "A Quasi-Static Non-Linear Modal Analysis Procedure Extending Rayleigh Quotient Stationarity for Non-Conservative Dynamical Systems". Computers & Structures, 230, (Apr. 2020), pp. 106184. ISSN: 00457949. DOI: 10.1016/j.compstruc.2019.106184. URL: https://linkinghub.elsevier.com/retrieve/pii/S0045794919315160 (cit. on p. 25).

J. A. Greenwood and J. P. Williamson. "Contact of Nominally Flat Surfaces". In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. Vol. 295. The Royal Society, 1966, pp. 300–319 (cit. on p. 27).

References II

A. A. Polycarpou and I. Etsion. "Analytical Approximations in Modeling Contacting Rough Surfaces". Journal of Tribology, 121,2 (Apr. 1999), pp. 234–239. ISSN: 0742-4787, 1528-8897. DOI: 10.1115/1.2833926. URL:

https://asmedigitalcollection.asme.org/tribology/article/121/2/234/437892/Analytical-Approximations-in-Modeling-Contacting (cit. on p. 27).

S. Medina, D. Nowell, and D. Dini. "Analytical and Numerical Models for Tangential Stiffness of Rough Elastic Contacts". Tribology Letters, **49**,1 (Jan. 2013), pp. 103–115. ISSN: 1023-8883, 1573-2711. DOI: **10.1007/s11249-012-0049-y**. URL: http://link.springer.com/10.1007/s11249-012-0049-y (cit. on p. **27**).

R. Corral, J. M. Gallardo, and R. Ivaturi. "Conceptual Analysis of the Non-Linear Forced Response of Aerodynamically Unstable Bladed-Discs". In: *Volume 7A: Structures and Dynamics*. San Antonio, Texas, USA: American Society of Mechanical Engineers, June 2013, pp. V07AT32A001. ISBN: 978-0-7918-5526-3. DOI: 10.1115/GT2013-94851. URL: https://asmedigitalcollection.asme.org/GT/proceedings/GT2013/55263/San%20Antonio, %20Texas,%20USA/244495 (cit. on pp. 34-36).

M. Jin et al. "Identification of Instantaneous Frequency and Damping From Transient Decay Data". Journal of Vibration and Acoustics, 142,5 (June 2020). ISSN: 1048-9002. DOI: 10.1115/1.4047416. URL: https://doi.org/10.1115/1.4047416 (cit. on pp. 55-59).

N. Wiener. "The Homogeneous Chaos". American Journal of Mathematics, 60,4 (1938), pp. 897–936. ISSN: 0002-9327. DOI: 10.2307/2371268. JSTOR: 2371268. URL: https://www.jstor.org/stable/2371268 (cit. on pp. 71–74).

References III

B. Sudret. "Global Sensitivity Analysis Using Polynomial Chaos Expansions". Reliability Engineering & System Safety, Bayesian Networks in Dependability 93,7 (July 2008), pp. 964-979. ISSN: 0951-8320. DOI: 10.1016/j.ress.2007.04.002. URL: https://www.sciencedirect.com/science/article/pii/S0951832007001329 (cit. on pp. 71-74).

N. N. Balaji, J. Groß, and M. Krack. "Computational Approaches for Quasi-Periodic Hysteretic Dynamics". (2023, Under Preparation) (cit. on pp. 77–85).

Hammer Impact Testing Setup

Hammer Impact Testing Setup

Bal	aji,	Ν.	N.	(IITM)
				· · · · · · · · · · · · · · · · · · ·

Interface Scanning and Processing

The Keyence VR-5100 White Light Interferometer

Interface Scanning and Processing

Interface Scanning and Processing

Interface Scanning and Processing

Meso-scale Topography

Micro-scale Asperity Distribution

Balaji, N. N. (IITM)	RVNL	February 6, 2025	2 / 9

Interface Scanning and Processing

Sobel Gradients

Watershed Regions

	Bal	aji,	N.	N.	(III)	CM)
--	-----	------	----	----	-------	-----

Contact Parameter Estimation

Balaji, N. N. (IITM)

RVNL

February 6, 2025

Contact Parameter Estimation

7. Stochastic Modeling through Polynomial Chaos Expansion

• The Polynomial Chaos Expansion (PCE) approach is adopted for the stochastic modeling purpose (Wiener 1938; Sudret 2008)

Stochastic Modeling

7. Stochastic Modeling through Polynomial Chaos Expansion

- The Polynomial Chaos Expansion (PCE) approach is adopted for the stochastic modeling purpose (Wiener 1938; Sudret 2008)
- The idea here is to represent the characteristics of the nonlinear model as weighted sums of pre-defined polynomials

$$y \leftarrow f(x)$$
 $x \in \mathcal{D} \sim w(.)$ (pdf: $w(x)$)
Stochastic Modeling

7. Stochastic Modeling through Polynomial Chaos Expansion

- The Polynomial Chaos Expansion (PCE) approach is adopted for the stochastic modeling purpose (Wiener 1938; Sudret 2008)
- The idea here is to represent the characteristics of the nonlinear model as weighted sums of pre-defined polynomials

$$y \leftarrow f(x)$$
 $x \in \mathcal{D} \sim w(.)$ (pdf: $w(x)$)

• The family of polynomials $\psi_n(x)$ that are orthogonal with respect to the inner product weighted by w(x) are chosen as the bases for the PCE

$$\langle \psi_n, \psi_m \rangle = \int_{\mathcal{D}} \psi_n(x) \psi_m(x) w(x) dx = \mathbb{E}[\psi_n \psi_m] = \delta_{mn}.$$

Stochastic Modeling

7. Stochastic Modeling through Polynomial Chaos Expansion

- The Polynomial Chaos Expansion (PCE) approach is adopted for the stochastic modeling purpose (Wiener 1938; Sudret 2008)
- The idea here is to represent the characteristics of the nonlinear model as weighted sums of pre-defined polynomials

$$y \leftarrow f(x)$$
 $x \in \mathcal{D} \sim w(.)$ (pdf: $w(x)$)

• The family of polynomials $\psi_n(x)$ that are orthogonal with respect to the inner product weighted by w(x) are chosen as the bases for the PCE

$$\langle \psi_n, \psi_m \rangle = \int_{\mathcal{D}} \psi_n(x) \psi_m(x) w(x) dx = \mathbb{E}[\psi_n \psi_m] = \delta_{mn}.$$

• The Polynomial Chaos Expansion of y is written as

$$\hat{y} = f_0 + \sum_{i=1}^{N} f_i \psi_i(x) \to \hat{y} = f_0 + \sum_{i=1}^{N_1} \sum_{j=1}^{N_2} f_{ij} \psi_i^{(1)}(x_1) \psi_j^{(2)}(x_2).$$

Variance Decomposition

Balaji, N. N.	(IITM)
---------------	--------

PCE Results

8. PCE Results

PCE Results

8. PCE Results

• A representative problem is analyzed

$$m\ddot{x} - c\dot{x} + kx + f_{nl}(x, \dots) = \frac{F}{2}e^{j\Omega t} + c.c.$$

using a Harmonic Balance approach, with the Fourier ansatz:

$$x(t) = \sum_{k \in \mathcal{H}} U_k e^{jk\Omega t} + c.c.$$

• A representative problem is analyzed

$$m\ddot{x} - c\dot{x} + kx + f_{nl}(x,\dots) = \frac{F}{2}e^{j\Omega t} + c.c.$$

using a Harmonic Balance approach, with the Fourier ansatz:

$$x(t) = \sum_{k \in \mathcal{H}} U_k e^{jk\Omega t} + c.c.$$

• Quasi-Periodic HB Ansatz ($\tau_i = \Omega_i t$):

$$x(t) = \sum_{\underline{k} \in \mathcal{H}} U_{\underline{k}} \exp(i(k_1\tau_1 + k_2\tau_2))$$

• A representative problem is analyzed

$$m\ddot{x} - c\dot{x} + kx + f_{nl}(x,\dots) = \frac{F}{2}e^{j\Omega t} + c.c.$$

using a Harmonic Balance approach, with the Fourier ansatz:

$$x(t) = \sum_{k \in \mathcal{H}} U_k e^{jk\Omega t} + c.c.$$

• Quasi-Periodic HB Ansatz ($\tau_i = \Omega_i t$):

$$x(t) = \sum_{\underline{k} \in \mathcal{H}} U_{\underline{k}} \exp(i(k_1\tau_1 + k_2\tau_2))$$

Evaluation of Frictional Forces

$$f_{i} = \begin{cases} f_{i}^{(sp)} \\ \hline k_{t}(x_{i} - x_{i-1}) + f_{i-1} \\ \mu N sign(f^{(sp)}) \\ slip \end{cases} stick$$

Balaji, N. N. (IITM)

February 6, 2025

References I

D. Stüß, A. Janeba, and K. Willner. "The Gaul Resonator: Experiments for the Isolated Investigation of a Bolted Lap Joint". In: The Mechanics of Jointed Structures: Recent Research and Open Challenges for Developing Predictive Models for Structural Dynamics. Ed. by M. R. Brake. Cham: Springer International Publishing, 2018, pp. 59-72. ISBN: 978-3-319-56818-8. DOI: 10.1007/978-3-319-56818-8_6. URL: https://doi.org/10.1007/978-3-319-56818-8_6 (cit. on pp. 20-24).

M. R. W. Brake and P. Reuß. "The Brake-Reuß Beams: A System Designed for the Measurements and Modeling of Variability and Repeatability of Jointed Structures with Frictional Interfaces". In: The Mechanics of Jointed Structures: Recent Research and Open Challenges for Developing Predictive Models for Structural Dynamics. Ed. by M. R. Brake. Cham: Springer International Publishing, 2018, pp. 99-107. ISBN: 978-3-319-56818-8. DOI: 10.1007/978-3-319-56818-8.9. URL: https://doi.org/10.1007/978-3-319-56818-8.9 (cit. on pp. 20-24).

N. N. Balaji and M. R. Brake. "A Quasi-Static Non-Linear Modal Analysis Procedure Extending Rayleigh Quotient Stationarity for Non-Conservative Dynamical Systems". Computers & Structures, 230, (Apr. 2020), pp. 106184. ISSN: 00457949. DOI: 10.1016/j.compstruc.2019.106184. URL: https://linkinghub.elsevier.com/retrieve/pii/S0045794919315160 (cit. on p. 25).

J. A. Greenwood and J. P. Williamson. "Contact of Nominally Flat Surfaces". In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. Vol. 295. The Royal Society, 1966, pp. 300-319 (cit. on p. 27).

A. A. Polycarpou and I. Etsion. "Analytical Approximations in Modeling Contacting Rough Surfaces". Journal of Tribology, 121,2 (Apr. 1999), pp. 234-239. ISSN: 0742-4787, 1528-8897. DOI: 10.1116/1.2833926. URL: https://asmedigitalcollection.asme.org/tribology/article/121/2/234/437892/Analytical-Approximations-in-Modeling-Contacting (cit. on p. 27).

S. Medina, D. Nowell, and D. Dini. "Analytical and Numerical Models for Tangential Stiffness of Rough Elastic Contacts". Tribology Letters, 49,1 (Jan. 2013), pp. 103-115. ISSN: 1023-8883, 1573-2711. DOI: 10.1007/s11249-012-0049-y. URL: http://link.springer.com/10.1007/s11249-012-0049-y (cit. on p. 27).

R. Corral, J. M. Gallardo, and R. Ivaturi. "Conceptual Analysis of the Non-Linear Forced Response of Aerodynamically Unstable Bladed-Discs". In: Volume 7A: Structures and Dynamics. San Antonio, Texas, USA: American Society of Mechanical Engineers, June 2013, pp. V07AT32A001. ISBN: 978-0-7918-5526-3. DOI: 10.1115/GT2013-94851. URL:

https://asmedigitalcollection.asme.org/GT/proceedings/GT2013/55263/San%20Antonio,%20Texas,%20USA/244495 (cit. on pp. 34-36).

References II

M. Jin et al. "Identification of Instantaneous Frequency and Damping From Transient Decay Data". Journal of Vibration and Acoustics, 142,5 (June 2020). ISSN: 1048-9002. DOI: 10.1115/1.4047416. URL: https://doi.org/10.1115/1.4047416 (cit. on pp. 55-59).

N. Wiener. "The Homogeneous Chaos". American Journal of Mathematics, 60,4 (1938), pp. 897-936. ISSN: 0002-9327. DOI: 10.2307/2371268. JSTOR: 2371268. URL: https://www.jstor.org/stable/2371268 (cit. on pp. 71-74).

B. Sudret. "Global Sensitivity Analysis Using Polynomial Chaos Expansions". Reliability Engineering & System Safety, Bayesian Networks in Dependability 93,7 (July 2008), pp. 964-979. ISSN: 0951-8320. not: 10.1016/j.ress.2007.04.002. URL: https://www.sciencedirect.com/science/article/pii/S0951832007001329 (cit. on pp. 71-74).

N. N. Balaji, J. Groß, and M. Krack. "Computational Approaches for Quasi-Periodic Hysteretic Dynamics". (2023, Under Preparation) (cit. on pp. 77-85).