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Academia as a Career: Reflections

o Life as a PhD student, as a Postdoc, as a faculty member

e Time is Fragmented

Academia in general
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Balaji, N. N. (IITM) RVNL February 6, 2025 4/24



___ Accdminooo Coveew Befkstion [@pmimiien
1.3. Opportunities

Academia as a Career: Reflections

e Opportunities are plenty!

C Balaj, NN, @mMy — s a0ss syer



Academia as a Career: Reflections Opportunities

1.3. Opportunities

Academia as a Career: Reflections

e Opportunities are plenty!

o There are excellent postdoctoral fellowships (Humboldt, Marie-Curie, JSPS, George
Foster, Fullbright, etc.). Please network and find out!

Balaji, N. N. (IITM) RVNL February 6, 2025 5/24



Academia as a Career: Reflections Opportunities

1.3. Opportunities

Academia as a Career: Reflections

e Opportunities are plenty!

o There are excellent postdoctoral fellowships (Humboldt, Marie-Curie, JSPS, George
Foster, Fullbright, etc.). Please network and find out!

e Key is to ork on skills right now. PhDs in engineering is not (yet) saturated.

Balaji, N. N. (IITM) RVNL February 6, 2025

5/24



Academia as a Career: Reflections Opportunities

1.3. Opportunities

Academia as a Career: Reflections

Opportunities are plenty!

o There are excellent postdoctoral fellowships (Humboldt, Marie-Curie, JSPS, George
Foster, Fullbright, etc.). Please network and find out!

e Key is to ork on skills right now. PhDs in engineering is not (yet) saturated.

e Most IIT’s are mandated to grow. New IIT’s coming up. Engineering
faculty positions are not beyond your reach!

Balaji, N. N. (IITM) RVNL February 6, 2025 5/24



Academia as a Career: Reflections Opportunities

1.3. Opportunities

Academia as a Career: Reflections

Opportunities are plenty!

o There are excellent postdoctoral fellowships (Humboldt, Marie-Curie, JSPS, George
Foster, Fullbright, etc.). Please network and find out!

e Key is to ork on skills right now. PhDs in engineering is not (yet) saturated.

e Most IIT’s are mandated to grow. New IIT’s coming up. Engineering
faculty positions are not beyond your reach!

o Research-wise, Indian academia is quite comfortable.
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3. Nonlinear Dynamics of Jointed Structures

3.1. Physics-Based Modeling of Bolted Joints: Nonlinear Modal Analysis

Rayleigh Quotient-based NMA Exam]l)le: Frictional Beam

——F = 0.00 N
@ The NMA is posed as an :

eigenvector-dependent non-linear Eigenvalue
Problem (NEPv)

=)
IS

Ku+ for(u,...) = fa— AM(u—us) =0

(u—us)"M(u — u.) — ¢° = 0.

Response Amplitude (m)
3
&

@ See (Balaji and Brake 2020) for details ) e T T T
Forcing Frequency (Hz)

Modal Amplitude: g = 10-6-0
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3. Nonlinear Dynamics of Jointed Structures

3.1. Physics-Based Modeling of Bolted Joints

Derive Contact
Parameters from
Interface Scans

v

Nonlinear Modal

Analysis
Deterministic Studies Stochastic Studies
Compare with Statistical Variance
Experimental Nonlinear Decomposition &
Modal Characteristics Sensitivity Analysis

The TriboMechaDynamics Approach
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3. Nonlinear Dynamics of Jointed Structures

3.1. Physics-Based Modeling of Bolted Joints

Rigid Surface

-

i Rigid Surface i i
/nﬂv\/f\ A AL A

Deformable Body Deformable Body

el

\

-------- “Nominal” Surface -----Initial Surface

Deformed Surface

o The statistical treatment of rough contact has been popular in the contact mechanics
community from (Greenwood and Williamson 1966)

o The idea is to describe the reaction force as a statistical expectation of asperity-reaction
forces randomly distributed over a given surface
Exponentially Distributed Surface

@ The asperity heights are fitted to a two parameter exponential distribution,
following (Polycarpou and Etsion 1999; Medina, Nowell, and Dini 2013)

Balaji, N. N. (IITM) RVNL February 6, 2025 10 /24



Nonlinear Dynamics of Jointed Structures Physics-Based Modeling of Bolted Joints

3. Nonlinear Dynamics of Jointed Structures

Physics-Based Modeling of Bolted Joints: Contact Parameter Estimation
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2
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2 iz
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S 325
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N N
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R Ve Exponential Fit
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3. Nonlinear Dynamics of Jointed Structures

3.1. Physics-Based Modeling of Bolted Joints: Modeling Methodology

Linear finite element model with only contact non-linearities

Factors for Uncertainty Propagation

S.No.  Description Symbol  Distribution Quadrature
1. Coefficient of Friction m Exponential (mean~ 0.1183)  Gauss-Laguerre
2. Gap Function g Normal (fit parameters) Gauss-Hermite
3. Asperity height exp. A Normal (fit parameters) Gauss-Hermite
4. Mean Radius R Normal (fit parameters) Gauss-Hermite
5. Stage Rotation X Ox Normal (0 mean, 15° s.d.) Gauss-Hermite
6. Stage Rotation Y Oy Normal (0 mean, 15° s.d.) Gauss-Hermite
7. Bolt Prestress Force P Normal (exp. mean, s.d.) Gauss-Hermite
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3. Nonlinear Dynamics of Jointed Structures

3.1. Physics-Based Modeling of Bolted Joints: Mean Model Results

Static Tractions Prediction of Linearized Natural Frequency

H S.No. Exp. (Hz) Mean Model (Hz)  Error (%)

HHEEH 1 179.56 179.41 0.0845
ST 2 594.71 594.72 0.0016
s 0 5 10 3 1199.8 1197.1 0.2209

The interfaces after several hours of testing

= =
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3. Nonlinear Dynamics of Jointed Structures

3.1. Physics-Based Modeling of Bolted Joints: Mean Model Results

Static Tractions Prediction of Linearized Natural Frequency

S.No. Exp. (Hz) Mean Model (Hz)  Error (%)

1 179.56 179.41 0.0845
2 594.71 594.72 0.0016
3 1199.8 1197.1 0.2209

Mode 1 Dynamics

3

Experimental Measurements|
Model Predictions
25
2
15
1
05
— 0
10°
Response Amplitude (m) Response Amplitude (m)
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3. Nonlinear Dynamics of Jointed Structures

3.1. Physics-Based Modeling of Bolted Joints: PCE Results

[ 15" — 95" Percentiles = Sr.. = S,
{ 5t — 75! Percentiles )
[ 45" — 55" Percentiles

Experimental Data

Natural Frequenc;
Damping Factor (%)
w

10 10° 10°® 10°
Response Amplitude (m) Response Amplitude (m)

Balaji, N. N. (IITM) RVNL February 6, 2025 14 /24



Nonlinear Dynamics of Jointed Structures

Self-Excited Oscillations

3. Nonlinear Dynamics of Jointed Structures

s

Computational

Joint Dynamics,
Multi-Scale FE Contact
Modeling

Reduced-Order
Modeling

[4] Balaji (2021) PhD Thesis, Rice University

51 Balaji, MSSP(2071) 149, 107249

Nonlinear Modal
Wave-Based Jointed Analysis
Structure Modeling

(6] Balaji, Brake, CompSiruc (2020) 230, 106184
(8] Balaji, Brake, Leamy, NLDyn (2022a) 1-16
(9] Balaji, Brake, Leamy, NLDyn 20225) 1-27

System Identification

Computational

Nonlinear Dynamics
[10] Balaji, et al, Vibration 3 (3), 22 (2020)

[11] Balaji, et al., (Under Prep.)

[12] Woiwode, Balaji, et al, MSSP (2020) 136, 106503
[13] Porter, Balaji, et al., MSSP (2022) 163, 108163

(7] Balaji, Krishna, Padmanabhan JSV (2018) 422, 526-541]

Experimental

Modal Testing

[14] Balaji, et al. IMAC (2020)

Video-Based
Vibration Testing

Long-Term Wear
Evolution Studies

. Smith, Brake IMAC (2023) [16] Balaji, Jermaine, Brake ISMA (2022)
[16] Balaji,, Smith, Brake IMAC (Under Prep.) [17] Balaji, Jermaine, Brake ISMA (U.R)

Quasi-Periodic
Nonlinear Dynamics

37O, Krack (Under Prep.)
GroR, Krack (Under Prep.)

Nonlinear Resonance

19] Bal.
Control ]

Stochastic Dynamics

Balaji, N. N.

(IITM)

RVNL

February 6, 2025

15 /24



Nonlinear Dynamics of Jointed Structures Self-Excited Oscillations

3. Nonlinear Dynamics of Jointed Structures

3.2. Self-Excited Oscillations

o Multiple sources of excitation in
jet-engines

Frequency

riz

Shaft speed

Blade stage vibration data from MTU aero test
engines (Corral, Gallardo, and Ivaturi 2013)
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3. Nonlinear Dynamics of Jointed Structures

3.2. Self-Excited Oscillations

o Multiple sources of excitation in
jet-engines A
@ The aerodynamic interactions can :

sometimes be modeled as a
self-excitation for a traveling wave

mode
i + en + win = 2woln
= i+ (c—2wol)n +win =0

Frequency

Shaft speed

Blade stage vibration data from MTU aero test
engines (Corral, Gallardo, and Ivaturi 2013)
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3. Nonlinear Dynamics of Jointed Structures

3.2. Self-Excited Oscillations

o Multiple sources of excitation in
jet-engines

@ The aerodynamic interactions can
sometimes be modeled as a
self-excitation for a traveling wave
mode

i + en + win = 2woln
= i+ (c—2wo{)i + win =0

Frequency

@ These structures are often supported by
frictional contacts and the “modal”
equations become

Shaft speed

. = . 2 _ Blade stage vibration data from MTU aero test
i+ (e=2woC)n) + won + (.. ) = 0. engines (Corral, Gallardo, and Ivaturi 2013)
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3.2. Self-Excited Oscillations: A Self-Excited SDOF Benchmark

o A representative problem is analyzed

m:ﬁ—cﬁv—i—k:p—l—fnl(;ﬂ,...):gejm—i-c.c. CIT( )

. . . . AAAMAk f(t)
using a Harmonic Balance approach, with the Fourier ansatz: ""‘g
_ Rt v b,
x(t) = Z Uge + c.c. WA
keH | ]
! h 4 kt? ,LLNI
o Quasi-Periodic HB Ansatz (7; = Q;t): 272,
z(t) = Z UEeXp(i(kln + kaT2))
ken
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3.2. Self-Excited Oscillations: A Self-Excited SDOF Benchmark

C
o A representative problem is analyzed —i— m =>

F .
mi —ct + kx + fp(z,...) = EeJm + c.c.

using a Harmonic Balance approach, with the Fourier ansatz: //'f;/f%//fﬁf’/f" o

A2 o
z(t) = Z Uy 4 cc. 27
keH
e Quasi-Periodic HB Ansatz (7; = Q;t):
z(t) = Z Uy, exp(i(k171 + ka72))
ken
0 W1
o
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3.2. Self-Excited Oscillations: A Self-Excited SDOF Benchmark
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3.2. Self-Excited Oscillations:

Quasiperiodic

A Self-Excited SDOF Benchmark
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3.2. Self-Excited Oscillations: A Self-Excited SDOF Benchmark
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3.3. Research Plan Overview
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3.3. Research Plan Overview
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3.3. Research Plan Overview
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3.4. Focus on Free and Open Source Software

e Big proponent of Free and Open Source Computing!

julia

code _aster
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Interface Scanning and Processing

The Keyence VR-5100 White Light Interferometer
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Segment 6 Segment 5 Segment 4 Segment 3 Segment 2 Segment 1
Segment 7 Segment 8 Segment 9 Segment 10 Segment 11 Segment 12
A = T
Segment 6 Segment 5 Segment 4 Segment 3 Segment 2 Segment 1
T EEEREL: o)
] EEESEES
JECocsE
EHES
e
=
1o Segment, 12, .,

Balaji, N. N. (IITM) RVNL

February 6, 2025 2/9



Experimental Details

5. Experimental Details

Interface Scanning and Processing

Segment 6 Segment 5 Segment 4 Segment 3 Segment 2 Segment 1

Segment 7 Segment 12

Segment 6 Segment 1

..., Segment.12 ..

Balaji, N. N. (IITM) RVNL February 6, 2025 2/9



Experimental Details

5. Experimental Details

Interface Scanning and Processing
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Contact Parameter Estimation
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Contact Parameter Estimation
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7. Stochastic Modeling through Polynomial Chaos Expansion

o The Polynomial Chaos Expansion (PCE) approach is adopted for the stochastic
modeling purpose (Wiener 1938; Sudret 2008)
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o The idea here is to represent the characteristics of the nonlinear model as weighted sums
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modeling purpose (Wiener 1938; Sudret 2008)

o The idea here is to represent the characteristics of the nonlinear model as weighted sums
of pre-defined polynomials

y<flz) xeD~w()  (pdf: w(z))

o The family of polynomials ¢, (x) that are orthogonal with respect to the inner product
weighted by w(x) are chosen as the bases for the PCE

@ The Polynomial Chaos Expansion of y is written as

N N1 Na
g="fo+ Y fipi@) = d=Ffo+>_ > fijibgl)(zl)wf)(zz).
i=1 i=1j=1

Variance Decomposition
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A Self-Excited SDOF Benchmark

9. A Self-Excited SDOF Benchmark

o A representative problem is analyzed

.
mi — ct + kx + fn(x,...) = Ee]m + c.c.

using a Harmonic Balance approach, with the Fourier ansatz:

z(t) = Z Upe?® 4 cc.
keH
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o A representative problem is analyzed MWy f (t)
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mi — ci + kx + fni(z,...) = Eejm + c.c : MWW
|
‘ . . . 1Lk, N
using a Harmonic Balance approach, with the Fourier ansatz: i)
//'9/997/%5’/9'
o(t) = 3 Upe* 1 cec. A2 &
kEH 21
o Quasi-Periodic HB Ansatz (7; = Q;t):
= Z UEexp(i(k‘lTl + ka12))
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9. A Self-Excited SDOF Benchmark

k
AMAMA
o A representative problem is analyzed VWY f(t>
- —i1—.m =
mi — ci + kx + fni(z,...) = Eejm + c.c : MWW
|
‘ . . . 1Lk, N
using a Harmonic Balance approach, with the Fourier ansatz: i)
//'f‘/fW/fW/V
_ kOt G [
x(t) = Z Uge + c.c. A2 o
kEH 21
o Quasi-Periodic HB Ansatz (7; = Q;t):
=> U exp(i(k171 + k272))
ken
Evaluation of Frictional Forces
f(SP) O Il
—_— »>
fi= ki(z; —xi—1) + fi—1  stick 27

uNsign(f©?) slip
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@ A renresentative nroblem is analvzed
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A e . ﬁ—»\AMMﬁ-I—lf(ﬂ

QPHB Hyper-Time Marching (see Balaji, Grof3, and Krack 2023, Under
Preparation)
a(t) = > Upexp(i(kim + k272))
ken

Harmonic Truncation
H={(kr,k2)| [[ka] + [k2| < Ni)
N [k +ky > 0]
N [(ky+ka =00k >0)]}

WIS (s
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