

### AS3020: Aerospace Structures Module 7: Elastic Stability

#### Instructor: Nidish Narayanaa Balaji

Dept. of Aerospace Engg., IIT-Madras, Chennai

October 26, 2024

Balaji, N. N. (AE, IITM)

AS3020\*

October 26, 2024

## Table of Contents

### 1 Introduction

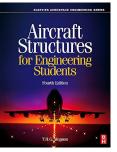
Column Buckling

#### Plates

- Principle of Virtual Work
- Classical Solutions
- Buckling of Plates • Shear Buckling

Stephen P. Timoshenko and James M. Gere Theory of Elastic Stability SECOND EDITION

Chapter 9 in Timoshenko and Gere [1]. Good reference in general.



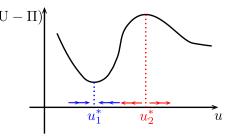
Chapters 7-9 in Megson [2]

October 26, 2024

2/19

## 1. Introduction

- The key intuition for elastic stability comes from analyzing the quantity  $U \Pi$  around its extrema.
  - Maxima in U Π correspond to **unstable solutions**;
  - Minima in  $U \Pi$  correspond to stable solutions.
- Investigating the second derivative  $(U \Pi)'$ ("Hessian") of the quantity allows for efficient classification;
- In 1D  $(u \in \mathbb{R})$ , the sign of  $\frac{\partial (U-\Pi)}{\partial u^2}$  is sufficient for this;
- In higher dimensions, we obtain an eigenvalue problem.



3/19

## 1.1. Column Buckling

Introduction

• We already derived the governing equations for a beam under uniform axial stress  $\frac{P}{A}$ . When this is compressive, the governing equation can be written as

$$EIv'''' + Pv'' = 0$$

• We showed in class that this can be used to recover Euler's Critical Loads,

$$P_n = n^2 \frac{\pi^2 EI}{\ell^2}, \quad v(X_1) = V \sin\left(n\frac{\pi X_1}{\ell}\right).$$

• We solved a **Sturm-Liouville Problem** to obtain these.

Plates

### 2. Plates

• We will now derive the governing equations of thin plates with the **Kirchhoff-Love Plate Theory**, which is the simplest generalization of **Euler-Bernoulli Beam Theory**.

#### Euler-Bernoulli Beams

- Sections *move* rigidly;
- Plane sections remain perpendicular to the centroidal axis.

#### KL Plates

- Line elements along thickness *move* rigidly;
- Line elements remain perpendicular to the mid-plane.
- The above assumptions lead to the zeroing out of certain strains in the formulation that leads to a simplified kinematic description. For plates this is,  $A^{\ell_3}$

$$u_1 = -X_3 w_{,1}$$
  
 $u_2 = -X_3 w_{,2}$   
 $u_3 = w,$ 

where w is a function of  $X_1, X_2$ .

Balaji, N. N. (AE, IITM)

 $e_2$ 

5/19

#### 2. Plates

Variational Approach for Derivation

• Using the kinematic description we write out the strains (linear and nonlinear) as

$$\begin{split} E_{11} &= u_{1,1} + \frac{1}{2} (u_{1,1}^2 + u_{2,1}^2 + u_{3,1}^2) \\ &= -X_3 w_{,11} + \frac{1}{2} \left( X_3^2 w_{,11}^2 + X_3^2 w_{,12}^2 + w_{,1}^2 \right) \\ E_{22} &= u_{2,2} + \frac{1}{2} (u_{1,2}^2 + u_{2,2}^2 + u_{3,2}^2) \\ &= -X_3 w_{,22} + \frac{1}{2} \left( X_3^2 w_{,12}^2 + X_3^2 w_{,22}^2 + w_{,2}^2 \right) \\ \gamma_{12} &= u_{1,2} + u_{2,1} + (u_{1,1} u_{1,2} + u_{2,1} u_{2,2} + u_{3,1} u_{3,2}) \\ &= -2X_3 w_{,12} + \left( X_3^2 w_{,11} w_{,12} + X_3^2 w_{,12} w_{,22} + w_{,1} w_{,2} \right), \end{split}$$

where the nonlinear (quadratic) terms are highlighted in blue.

• Just like in the case of the beam, we **retain only the quadratic terms** for the internal energy.

#### 2. Plates

Bending Strain Energy under Plane Stress

• We have to first write down the stresses before the energy can be expressed. Under **plane stress** assumptions we get,

$$\begin{bmatrix} E_{11} \\ E_{12} \\ \gamma_{12} \end{bmatrix} = \frac{1}{E} \begin{bmatrix} 1 & -\nu & 0 \\ -\nu & 1 & 0 \\ 0 & 0 & 2(1+\nu) \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix}$$
$$\Longrightarrow \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} = \frac{E}{1-\nu^2} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1-\nu}{2} \end{bmatrix} \begin{bmatrix} E_{11} \\ E_{12} \\ \gamma_{12} \end{bmatrix}$$

• The bending energy (up to  $\mathcal{O}(v^2)$ ) is

$$U_{b} = \int_{-\frac{t}{2}}^{\frac{t}{2}} \frac{1}{2} \left( \sigma_{11} E_{11} + \sigma_{22} E_{22} + \sigma_{12} \gamma_{12} \right) dX_{3}$$
  
=  $\frac{1}{2} \underbrace{\frac{Et^{3}}{12(1-\nu^{2})}}_{D} \left( w_{,11}^{2} + w_{,22}^{2} + 2(1-\nu)w_{,12}^{2} + 2w_{,11}w_{,22} \right)$ 

Balaji, N. N. (AE, IITM)

October 26, 2024

7/19

#### Plates

#### 2. Plates

Work Done by Axial Stresses

• We consider axial loads  $P_1, P_2, P_{12}$  as shown. The work done by these is contributed by the quadratic strains

$$\begin{split} \mathbf{U}_{c} = & \frac{P_{1}}{24} \left( t^{2} (w_{,11}^{2} + w_{,12}^{2}) + 12w_{,1}^{2} \right) + \frac{P_{2}}{24} \left( t^{2} (w_{,12}^{2} + w_{,22}^{2}) + 12w_{,2}^{2} \right) \\ & + \frac{P_{12}}{12} \left( t^{2} w_{,12} (w_{,11} + w_{,22}) + 12w_{,1} w_{,2} \right). \end{split}$$

• We will ignore the  $t^2$  terms in the above to give,

$$U_c = \frac{1}{2} \left( P_1 w_{,1}^2 + P_2 w_{,2}^2 + 2P_{12} w_{,1} w_{,2} \right).$$

#### Other Loads

When there is also a distributed transverse load f acting, the load work done is given by

$$\Pi = \int_{\mathcal{D}} fw dX_1 dX_2$$

## 2.1. Principle of Virtual Work

Plates

• The total work done by the system is written as,

$$\mathcal{L} = U_b + U_c - \Pi = \frac{D}{2} \left( w_{,11}^2 + w_{,22}^2 + 2(1-\nu)w_{,12}^2 + 2w_{,11}w_{,22} \right) \\ + \frac{1}{2} \left( P_1 w_{,1}^2 + P_2 w_{,2}^2 + 2P_{12}w_{,1}w_{,2} \right) - fw$$

• The Euler-Lagrange Equations are written as:

$$\frac{d^2}{dX_1^2}\frac{\partial\mathcal{L}}{\partial w_{,11}} + \frac{d^2}{dX_2^2}\frac{\partial\mathcal{L}}{\partial w_{,22}} + \frac{d^2}{dX_1dX_2}\frac{\partial\mathcal{L}}{\partial w_{,12}} - \frac{d}{dX_1}\frac{\partial\mathcal{L}}{\partial w_{,1}} - \frac{d}{dX_2}\frac{\partial\mathcal{L}}{\partial w_{,2}} + \frac{\partial\mathcal{L}}{\partial w} = 0.$$

• This leads to,

 $\underbrace{\frac{Et^3}{12(1-\nu^2)}}_{D}(w_{,1111}+w_{,2222}+2w_{,1122}) - (P_1w_{,11}+P_2w_{,22}+2P_{12}w_{,12}) - f = 0$ 

# 2.1. Principle of Virtual Work

Plates

• The general plate equation can be interpreted in two ways just as before.

 $D(w_{,1111} + w_{,2222} + 2w_{,1122}) - (P_1w_{,11} + P_2w_{,22} + 2P_{12}w_{,12}) - f = 0$ 

#### Membranes

• When the quantity *D* is very small, the system is approximated well as

 $(P_1w_{,11} + P_2w_{,22} + 2P_{12}w_{,12}) + f = 0$ 

• For the isotropic case shear-free case  $(P_1 = P_2 = P, P_{12} = 0)$  we have.

 $P\nabla^2 w + f = 0$ 

#### Plate Buckling

• For the f = 0 case undergoing compressive loading  $(P_1 \rightarrow -P_1, P_2 \rightarrow -P_2 P_{12} \rightarrow -P_{12})$ , the governing equation is

 $D\nabla^4 w + (P_1 w_{,11} + P_2 w_{,22} + 2P_{12} w_{,12}) = 0.$ 

• This is a slightly more complicated Sturm-Liouville type problem than the one encountered with column buckling.

# 2.1. Principle of Virtual Work

Plates

• The general plate equation can be interpreted in two ways just as before.

 $D(w_{,1111} + w_{,2222} + 2w_{,1122}) - (P_1w_{,11} + P_2w_{,22} + 2P_{12}w_{,12}) - f = 0$ 

| Mem                            | Note that it is also possible to express <b>Buckling</b>                                                                                                                               |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • When the qua the system is a | the governing equations in terms of<br>moments and section-normal shear<br>forces (like we did with E.B.T.). as undergoing<br>$\dim (P_1 \to -P_1, \to -P_{12})$ , the<br>tion is      |
| $(P_1w_{,11}+P_2w$             | But we will not pursue this here.<br>$P = w_{\pm}(r_{\pm}w_{\pm}) + P_{2}w_{\pm}(2 + 2P_{12}w_{\pm}) = 0$                                                                              |
| have,                          | c case shear-free<br>= $P, P_{12} = 0$ ) we<br>w + f = 0<br>• This is a slightly more complicated<br>Sturm-Liouville type problem than<br>the one encountered with column<br>buckling. |

## 2.2. Classical Solutions

Plates

• One of the simplest case to consider is a plate with **simply supported** edges (w = 0 on  $\partial D$ ). The governing equations (for zero loading) is

$$D\nabla^4 w - f = 0, \quad (X_1, X_2) \in \mathcal{D}, \qquad w = 0, \quad (X_1, X_2) \in \partial \mathcal{D}.$$

 $(\partial \mathcal{D} \text{ is the closure of the open set } \mathcal{D}).$ 

• For a rectangular plate (sides  $a_1 \times a_2$  such that  $X_1 \in [0, a_1], X_2 \in [0, a_2]$ ), a popular approach is to use a **Fourier Decomposition** of the form

$$w(X_1, X_2) = \sum_{n_1, n_2} A_{n_1 n_2} \sin\left(n_1 \frac{\pi}{a_1} X_1\right) \sin\left(n_2 \frac{\pi}{a_2} X_2\right).$$

• Note that the coefficients  $A_{n_1n_2}$  may be retrieved by the integral,

$$A_{n_1n_2} = \frac{4}{a_1a_2} \int_{0}^{a_1} \int_{0}^{a_2} w(X_1, X_2) \sin\left(n_1 \frac{\pi}{a_1} X_1\right) \sin\left(n_2 \frac{\pi}{a_2} X_2\right) dX_1 dX_2.$$

## 2.2. Classical Solutions

Plates

• Using this ansatz, the equilibrium equation now reads,

$$\underbrace{\sum_{n_1,n_2} D\pi^4 \left(\frac{n_1^2}{a_1^2} + \frac{n_2^2}{a_2^2}\right)^2 A_{n_1n_2} \sin\left(n_1 \frac{\pi}{a_1} X_1\right) \sin\left(n_2 \frac{\pi}{a_2} X_2\right)}_{D\nabla^4 w} = f.$$

• Expressing the Fourier coefficients of the load f as  $F_{n_1n_2}$  we can write,

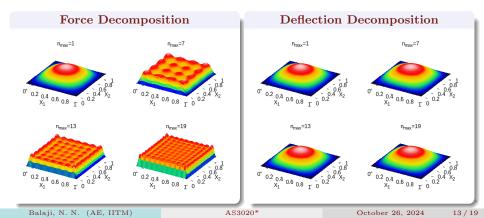
$$A_{n_1n_2} = \frac{1}{D\pi^4} \left( \frac{n_1^2}{a_1^2} + \frac{n_2^2}{a_2^2} \right)^{-2} F_{n_1n_2}.$$

- This means that excitation along the function  $\sin(n_1 \frac{\pi}{a_1} X_1) \sin(n_2 \frac{\pi}{a_2} X_2)$  will result in **deformation in the same shape**.
- For an arbitrary deformation, this leads to a **series representation** of the deformation shape.

# 2.2. Classical Solutions: Uniform Loading Plates

• For the case of uniform loading  $(f(X_1, X_2) = 1)$ , it can be shown that

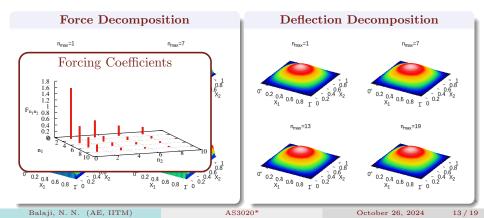
$$F_{n_1n_2} = \begin{cases} \frac{16}{\pi^2 n_1 n_2} & n_1, n_2 \text{ both odd} \\ 0 & \text{otherwise} \end{cases}$$



# 2.2. Classical Solutions: Uniform Loading Plates

• For the case of uniform loading  $(f(X_1, X_2) = 1)$ , it can be shown that

$$F_{n_1n_2} = \begin{cases} \frac{16}{\pi^2 n_1 n_2} & n_1, n_2 \text{ both odd} \\ 0 & \text{otherwise} \end{cases}$$



## 2.3. Buckling of Plates

Plates

- We will consider buckling of plates also under the same conditions (simply supported ends). Let us set  $P_{12} = 0$  here (since it introduces cosine terms also).
- The governing equations become

$$D\nabla^4 w - (P_1 w_{,11} + P_2 w_{,22}) = \sum_{n_1, n_2} \left( D\pi^4 \left( \frac{n_1^2}{a_1^2} + \frac{n_2^2}{a_2^2} \right)^2 - \pi^2 \left( \frac{n_1^2}{a_1^2} P_1 + \frac{n_2^2}{a_2^2} P_2 \right) \right) A_{n_1 n_2} \sin\left( n_1 \frac{\pi}{a_1} X_1 \right) \sin\left( n_2 \frac{\pi}{a_2} X_2 \right) = 0.$$

Non-trivial  $A_{n_1n_2}$  for  $P_2 = 0$  $P_1 = \pi^2 D \frac{a_1^2}{n_1^2} \left(\frac{n_1^2}{a_1^2} + \frac{n_2^2}{a_2^2}\right)^2.$ The critical load (lowest  $P_1$ ) corresponds

The critical load (lowest  $P_1$ ) corresponds to  $n_2 = 1$ :

$$P_1^* = \frac{\pi^2 D}{a_2^2} \left( \frac{n_1 a_2}{a_1} + \frac{a_1}{n_1 a_2} \right)^2.$$

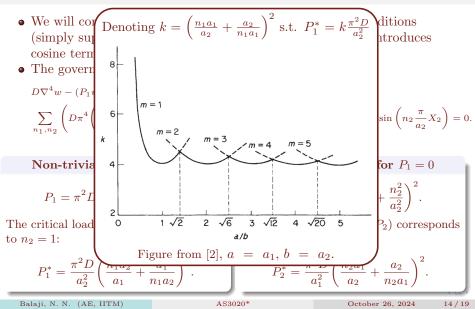
Non-trivial  $A_{n_1n_2}$  for  $P_1 = 0$  $P_2 = \pi^2 D \frac{a_2^2}{n_2^2} \left( \frac{n_1^2}{a_1^2} + \frac{n_2^2}{a_2^2} \right)^2.$ 

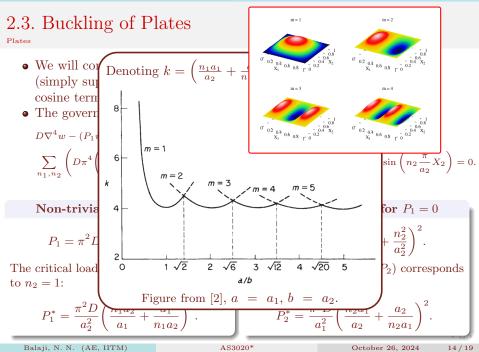
The critical load (lowest  $P_2$ ) corresponds to  $n_1 = 1$ :

$$P_2^* = \frac{\pi^2 D}{a_1^2} \left(\frac{n_2 a_1}{a_2} + \frac{a_2}{n_2 a_1}\right)^2.$$

### 2.3. Buckling of Plates

Plates

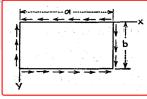




# 2.3. Buckling of Plates: Shear Buckling Plates

• Under pure shear, the governing equations is

$$D\nabla^4 w - P_{12} 2w_{,12} = 0.$$



• Using the same ansatz (simply supported boundaries) we have,

$$\sum_{n_1,n_2} \left[ D\pi^4 \left( \frac{n_1^2}{a_1^2} + \frac{n_2^2}{a_2^2} \right)^2 A_{n_1 n_2} \mathcal{S}_{n_1} \mathcal{S}_{n_2} - \mathbf{P_{12}} 2\pi^2 \frac{n_1 n_2}{a_1 a_2} \mathcal{C}_{n_1} \mathcal{C}_{n_2} \right] = 0.$$

• Note that 
$$\int_0^a S_n S_m dx = \frac{a}{2} \delta_{nm}$$
 and

$$\int_{0}^{a} S_{n} C_{m} dx = \begin{cases} 0 & n \pm m \text{ is even,} \\ \frac{2a}{\pi} \frac{n}{n^{2} - m^{2}} & n \pm m \text{ is odd} \end{cases}.$$

• Multiplying the above equation by  $S_{m_1}S_{m_2}$  and integrating over  $(0, a_1) \times (0, a_2)$  we get  $D \frac{\pi^4}{a_1^2 a_2^2} \left(\frac{m_1^2 a_2}{a_1} + \frac{m_2^2 a_1}{a_2}\right)^2 A_{m_1 m_2} - P_{12} \frac{32}{a_1 a_2} \sum_{n_1 n_2} \frac{n_1 n_2 m_1 m_2}{(n_1^2 - m_1^2)(n_2^2 - m_2^2)} A_{n_1 n_2} = 0.$ 

Balaji, N. N. (AE, IITM)

October 26, 2024 15 / 19

# 2.3. Buckling of Plates: Shear Buckling

• We can move around the terms a little bit and setting the aspect ratio  $\beta = \frac{a_2}{a_1}$  we get

$$\underbrace{\frac{\pi^4 D}{32a_2^2}}_{\alpha} \left(m_1^2 \beta^2 + m_2^2\right)^2 A_{m_1 m_2} - P_{12} \beta \sum_{n_1 n_2} \frac{n_1 n_2 m_1 m_2}{(n_1^2 - m_1^2)(n_2^2 - m_2^2)} A_{n_1 n_2} = 0.$$

• If we truncate the  $n_1$  and  $n_2$  to finite  $N_1$  and  $N_2$ , this represents a **Generalized Eigenvalue Problem** (GEVP). Restricting ourselves to  $N_1, N_2 = 2$  we have,

$$\begin{pmatrix} \alpha \begin{bmatrix} (\beta^2+1)^2 & 0 & 0 & 0 \\ 0 & (\beta^2+4)^2 & 0 & 0 \\ 0 & 0 & (4\beta^2+1)^2 & 0 \\ 0 & 0 & 0 & (4\beta^2+4)^2 \end{bmatrix} - P_{12} \frac{4\beta}{9} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} A_{11} \\ A_{12} \\ A_{21} \\ A_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

• This is quite convenient since we can analytically estimate its eigen solutions. (I use maxima)

# 2.3. Buckling of Plates: Shear Buckling Plates

#### • The eigenpairs are evaluated as

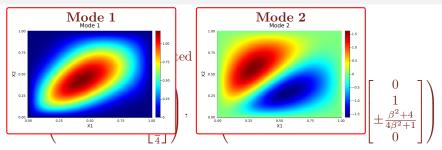
$$\left(\pm 9\alpha \frac{(\beta^2+1)^2}{\beta}, \begin{bmatrix} 1\\0\\0\\\frac{1}{4} \end{bmatrix}\right), \qquad \left(\pm 9\alpha \frac{(\beta^2+4)(4\beta^2+1)}{4\beta}, \begin{bmatrix} 0\\1\\\pm \frac{\beta^2+4}{4\beta^2+1}\\0 \end{bmatrix}\right)$$

• Substituting for  $\alpha = \frac{\pi^4 D}{32a_2^2}$  we have,

$$P_{12}^* = \pm \frac{\pi^2 D}{a_2^2} \frac{9\pi^2}{32} \frac{(\beta^2 + 1)^2}{\beta}, \quad \pm \frac{\pi^2 D}{a_2^2} \frac{9\pi^2}{128} \frac{(\beta^2 + 4)(4\beta^2 + 1)}{\beta}$$

## 2.3. Buckling of Plates: Shear Buckling

Plates

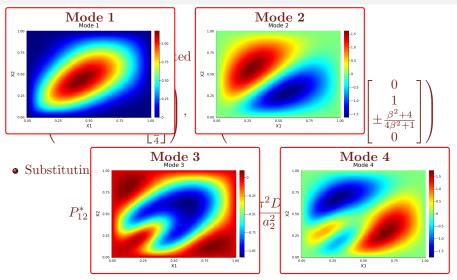


• Substituting for  $\alpha = \frac{\pi^4 D}{32a_2^2}$  we have,

$$P_{12}^* = \pm \frac{\pi^2 D}{a_2^2} \frac{9\pi^2}{32} \frac{(\beta^2 + 1)^2}{\beta}, \quad \pm \frac{\pi^2 D}{a_2^2} \frac{9\pi^2}{128} \frac{(\beta^2 + 4)(4\beta^2 + 1)}{\beta}$$

## 2.3. Buckling of Plates: Shear Buckling

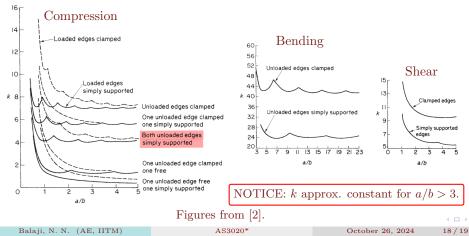
Plates



## 2.3. Buckling of Plates

Plates

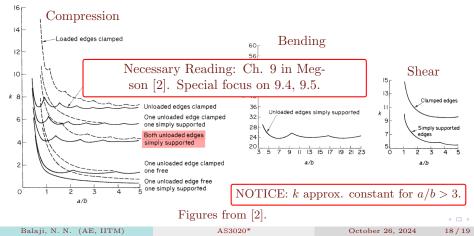
• In general, the boundary conditions as well as loads may be completely different, warranting different analysis to be done to estimate the buckling coefficient k.



## 2.3. Buckling of Plates

Plates

• In general, the boundary conditions as well as loads may be completely different, warranting different analysis to be done to estimate the buckling coefficient k.



#### References I

- S. P. Timoshenko and J. M. Gere. Theory of Elastic Stability, Courier Corporation, June 2009. ISBN: 978-0-486-47207-2 (cit. on p. 2).
- T. H. G. Megson. Aircraft Structures for Engineering Students, Elsevier, 2013. ISBN: 978-0-08-096905-3 (cit. on pp. 2, 16–18, 24, 25).