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Introduction

1. Introduction

The key intuition for elastic stability comes from analyzing the quantity
U−Π around its extrema.

Maxima in U−Π correspond to unstable solutions;
Minima in U−Π correspond to stable solutions.

Investigating the second derivative
(“Hessian”) of the quantity allows
for efficient classification;

In 1D (u ∈ R), the sign of ∂(U−Π)
∂u2

is sufficient for this;

In higher dimensions, we obtain
an eigenvalue problem.
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Introduction Column Buckling

1.1. Column Buckling
Introduction

We already derived the governing equations for a beam under uniform
axial stress P

A . When this is compressive, the governing equation can be
written as

EIv′′′′ + Pv′′ = 0 .

We showed in class that this can be used to recover Euler’s Critical Loads,

Pn = n2π
2EI

ℓ2
, v(X1) = V sin

(
n
πX1

ℓ

)
.

We solved a Sturm-Liouville Problem to obtain these.
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Plates

2. Plates

We will now derive the governing equations of thin plates with the
Kirchhoff-Love Plate Theory, which is the simplest generalization of
Euler-Bernoulli Beam Theory.

Euler-Bernoulli Beams

Sections move rigidly;

Plane sections remain
perpendicular to the centroidal
axis.

KL Plates

Line elements along thickness move
rigidly;

Line elements remain perpendicular
to the mid-plane.

The above assumptions lead to the zeroing out of certain strains in the
formulation that leads to a simplified kinematic description. For plates
this is,

u1 = −X3w,1

u2 = −X3w,2

u3 = w,

where w is a function of X1, X2.
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Plates

2. Plates
Variational Approach for Derivation

Using the kinematic description we write out the strains (linear and
nonlinear) as

E11 = u1,1 +
1

2
(u2

1,1 + u2
2,1 + u2

3,1)

= −X3w,11 +
1

2

(
X2

3w
2
,11 +X2

3w
2
,12 + w2

,1

)
E22 = u2,2 +

1

2
(u2

1,2 + u2
2,2 + u2

3,2)

= −X3w,22 +
1

2

(
X2

3w
2
,12 +X2

3w
2
,22 + w2

,2

)
γ12 = u1,2 + u2,1 + (u1,1u1,2 + u2,1u2,2 + u3,1u3,2)

= −2X3w,12 +
(
X2

3w,11w,12 +X2
3w,12w,22 + w,1w,2

)
,

where the nonlinear (quadratic) terms are highlighted in blue.

Just like in the case of the beam, we retain only the quadratic terms
for the internal energy.
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Plates

2. Plates
Bending Strain Energy under Plane Stress

We have to first write down the stresses before the energy can be
expressed. Under plane stress assumptions we get,E11

E12

γ12

 =
1

E

 1 −ν 0
−ν 1 0
0 0 2(1 + ν)

σ11

σ22

σ12


=⇒

σ11

σ22

σ12

 =
E

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

E11

E12

γ12


The bending energy (up to O(v2)) is

Ub =

t
2∫

− t
2

1

2
(σ11E11 + σ22E22 + σ12γ12) dX3

=
1

2

Et3

12(1− ν2)︸ ︷︷ ︸
D

(
w2

,11 + w2
,22 + 2(1− ν)w2

,12 + 2w,11w,22

)
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Plates

2. Plates
Work Done by Axial Stresses

We consider axial loads P1, P2, P12 as shown. The work done by these is
contributed by the quadratic strains

Uc =
P1

24

(
t2(w2

,11 + w2
,12) + 12w2

,1

)
+

P2

24

(
t2(w2

,12 + w2
,22) + 12w2

,2

)
+

P12

12

(
t2w,12(w,11 + w,22) + 12w,1w,2

)
.

We will ignore the t2 terms in the above to give,

Uc =
1

2

(
P1w

2
,1 + P2w

2
,2 + 2P12w,1w,2

)
.

Other Loads

When there is also a distributed
transverse load f acting, the load work
done is given by

Π =

∫
D
fwdX1dX2
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Plates Principle of Virtual Work

2.1. Principle of Virtual Work
Plates

The total work done by the system is written as,

L = Ub + Uc −Π =
D

2

(
w2

,11 + w2
,22 + 2(1− ν)w2

,12 + 2w,11w,22

)
+

1

2

(
P1w

2
,1 + P2w

2
,2 + 2P12w,1w,2

)
− fw

The Euler-Lagrange Equations are written as:

d2

dX2
1

∂L
∂w,11

+
d2

dX2
2

∂L
∂w,22

+
d2

dX1dX2

∂L
∂w,12

− d

dX1

∂L
∂w,1

− d

dX2

∂L
∂w,2

+
∂L
∂w

= 0.

This leads to,

Et3

12(1− ν2)︸ ︷︷ ︸
D

(w,1111 + w,2222 + 2w,1122)− (P1w,11 + P2w,22 + 2P12w,12)− f = 0
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Plates Principle of Virtual Work

2.1. Principle of Virtual Work
Plates

The general plate equation can be interpreted in two ways just as before.

D (w,1111 + w,2222 + 2w,1122)− (P1w,11 + P2w,22 + 2P12w,12)− f = 0

Membranes

When the quantity D is very small,
the system is approximated well as

(P1w,11 + P2w,22 + 2P12w,12)+f = 0

For the isotropic case shear-free
case (P1 = P2 = P , P12 = 0) we
have,

P∇2w + f = 0

Plate Buckling

For the f = 0 case undergoing
compressive loading (P1 → −P1,
P2 → −P2 P12 → −P12), the
governing equation is

D∇4
w+(P1w,11+P2w,22+2P12w,12) = 0.

This is a slightly more complicated
Sturm-Liouville type problem than
the one encountered with column
buckling.

Note that it is also possible to express
the governing equations in terms of
moments and section-normal shear
forces (like we did with E.B.T.).
But we will not pursue this here.
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Plates Classical Solutions

2.2. Classical Solutions
Plates

One of the simplest case to consider is a plate with simply supported
edges (w = 0 on ∂D). The governing equations (for zero loading) is

D∇4w − f = 0, (X1, X2) ∈ D, w = 0, (X1, X2) ∈ ∂D.

(∂D is the closure of the open set D).

For a rectangular plate (sides a1 × a2 such that X1 ∈ [0, a1], X2 ∈ [0, a2]),
a popular approach is to use a Fourier Decomposition of the form

w(X1, X2) =
∑
n1,n2

An1n2 sin

(
n1

π

a1
X1

)
sin

(
n2

π

a2
X2

)
.

Note that the coefficients An1n2
may be retrieved by the integral,

An1n2
=

4

a1a2

a1∫
0

a2∫
0

w(X1, X2) sin

(
n1

π

a1
X1

)
sin

(
n2

π

a2
X2

)
dX1dX2.
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Plates Classical Solutions

2.2. Classical Solutions
Plates

Using this ansatz, the equilibrium equation now reads,

∑
n1,n2

Dπ4

(
n2
1

a21
+

n2
2

a22

)2

An1n2
sin

(
n1

π

a1
X1

)
sin

(
n2

π

a2
X2

)
︸ ︷︷ ︸

D∇4w

= f.

Expressing the Fourier coefficients of the load f as Fn1n2
we can write,

An1n2 =
1

Dπ4

(
n2
1

a21
+

n2
2

a22

)−2

Fn1n2 .

This means that excitation along the function sin(n1
π
a1
X1) sin(n2

π
a2
X2)

will result in deformation in the same shape.

For an arbitrary deformation, this leads to a series representation of
the deformation shape.
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Plates Classical Solutions

2.2. Classical Solutions: Uniform Loading
Plates

For the case of uniform loading (f(X1, X2) = 1), it can be shown that

Fn1n2 =


16

π2n1n2
n1, n2 both odd

0 otherwise
.
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Plates Buckling of Plates

2.3. Buckling of Plates
Plates

We will consider buckling of plates also under the same conditions
(simply supported ends). Let us set P12 = 0 here (since it introduces
cosine terms also).
The governing equations become

D∇4
w − (P1w,11 + P2w,22) =∑

n1,n2

(
Dπ

4

(
n2
1

a2
1

+
n2
2

a2
2

)2

− π
2

(
n2
1

a2
1

P1 +
n2
2

a2
2

P2

))
An1n2 sin

(
n1

π

a1

X1

)
sin

(
n2

π

a2

X2

)
= 0.

Non-trivial An1n2 for P2 = 0

P1 = π2D
a2
1

n2
1

(
n2
1

a2
1

+
n2
2

a2
2

)2

.

The critical load (lowest P1) corresponds
to n2 = 1:

P ∗
1 =

π2D

a2
2

(
n1a2

a1
+

a1

n1a2

)2

.

Non-trivial An1n2 for P1 = 0

P2 = π2D
a2
2

n2
2

(
n2
1

a2
1

+
n2
2

a2
2

)2

.

The critical load (lowest P2) corresponds
to n1 = 1:

P ∗
2 =

π2D

a2
1

(
n2a1

a2
+

a2

n2a1

)2

.

Denoting k =
(
na
b + b

na

)2

Figure from [1]
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Plates Buckling of Plates
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