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Introduction

1. Introduction

@ The key intuition for elastic stability comes from analyzing the quantity
U — IT around its extrema.

e Maxima in U — IT correspond to unstable solutions;
e Minima in U — II correspond to stable solutions.

o Investigating the second derivative (U — IT)
(“Hessian”) of the quantity allows
for efficient classification;

e In 1D (u € R), the sign of %
is sufficient for this;

@ In higher dimensions, we obtain
an eigenvalue problem.
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Introduction Column Buckling

1.1. Column Buckling

Introduction

e We already derived the governing equations for a beam under uniform
axial stress %. When this is compressive, the governing equation can be
written as

|EL" 4 Pv" = 0]

@ We showed in class that this can be used to recover Euler’s Critical Loads,

2
_ omEI B . X,
P,=n R v(X1) = Vsin <n€> .

@ We solved a Sturm-Liouville Problem to obtain these.
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Plates

2. Plates

e We will now derive the governing equations of thin plates with the
Kirchhoff-Love Plate Theory, which is the simplest generalization of

Euler-Bernoulli Beam Theory.

Euler-Bernoulli Beams KL Plates
@ Sections move rigidly; @ Line elements along thickness move
rigidly;

@ Plane sections remain
perpendicular to the centroidal
axis.

@ The above assumptions lead to the zeroing out of certain strains in the
formulation that leads to a simplified kinematic description. For plates

@ Line elements remain perpendicular
to the mid-plane.

this is,
Uy = —X3’LU,1
Uy = —X3wW 2
Uz = w,

where w is a function of X1, Xs.
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Plates

2. Plates

Variational Approach for Derivation

e Using the kinematic description we write out the strains (linear and
nonlinear) as

1
By =uig+ 5(“?,1 +uj, +uj )
1
= —-Xzw 1 + 3 (X w? 11 +X3w 12 T W 1)
1
B =uz o+ 5(“?,2 + U3y + U3 ,)

1
_ 2.2 2 2 2
= —X3w 2 + 3 (XZw?y + XZwh,y +w?)
Y12 = U1 2 + Uz 1 + (U1 1U1 2 + U2 U202 + Uz, 1US2)

2 2
= —2X3w 12 + (Xjwiiw,12 + Xjw 12w 20 + w1w2),

where the nonlinear (quadratic) terms are highlighted in blue.

o Just like in the case of the beam, we retain only the quadratic terms
for the internal energy.
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Plates

2. Plates

Bending Strain Energy under Plane Stress

@ We have to first write down the stresses before the energy can be
expressed. Under plane stress assumptions we get,

Ell_ 1 1 -V 0 011
E12 = E -V 1 0 J929
Y12 0 0 2(14v)| |o12
0'11_ E 1 v 0 E11
— |[022| = m v 1 0 FE1s
o12 0 0 52| |m2

e The bending energy (up to O(v?)) is

t

1
Up = / 2 (011E11 + 022 F22 + 012712) dX3

1 Ef
= 5 1o =y (W w21 =)k + 20 10.2)
D
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Plates

2. Plates

Work Done by Axial Stresses

o We consider axial loads Py, P5, P> as shown. The work done by these is
contributed by the quadratic strains
P, P
U, :271 (P (w?iy + whs) + 12w7) + 2—Z (2 (W + why) + 12w%)
Pis

+ 0} (t2w712(w711 + w 99) + 12w,1w,2) .

e We will ignore the ¢? terms in the above to give,

1
Uc = 5 (le?l + P2w?2 —+ 2P12U)71’LU72) .

Other Loads

When there is also a distributed
transverse load f acting, the load work
done is given by

= / fwdX1dXs
D

v
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Plates Principle of Virtual Work

2.1. Principle of Virtual Work

Plates

@ The total work done by the system is written as,
D
L=U,+U,—-11 :5 (w?n + w?m + 2(1 — u)w?u + 2w,11w,22)
1
+ 3 (P1w?1 + P2w?2 +2Ppw ws) — fw

@ The Euler-Lagrange Equations are written as:

¢ o &£ oL & 9L d oL d 9L OL
dX12 6’(1),11 dX22 (9’LU722 XmdX2 6w712 dX1 611)71 dXQ 8w72 811} n

0.

@ This leads to,

Et3
12(1 — v?)

———
D

(w111 + w2222 + 2w 1122) — (Prw 1 + Paw oo + 2Pisw 12) — f =0

Balaji, N. N. (AE, IITM) AS3020%* October 23, 2024 9/15



Plates  Principle of Virtual Work

2.1. Principle of Virtual Work

Plates

@ The general plate equation can be interpreted in two ways just as before.

D (w1111 + w2222 + 2w 1122) — (Prw 11 + Pow og + 2P1sw12) — f =0

Plate Buckling

Membranes .
) ) @ For the f = 0 case undergoing
@ When the quantity D is very small, compressive loading (P, — — P,
the system is approximated well as Py, - —P, Pio — —Pi2), the

governing equation is

(Prw,11 + Pow 22 + 2Paw 12)+f =0 .
DV w+(Piw 11+Pow 22+2P12w 12) = 0.

@ For the isotropic case shear-free

case (P, = Py = P, P15 = 0) we @ This is a slightly more complicated
have Sturm-Liouville type problem than
7 PYV2w+f=0 the one encountered with column
buckling.
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Plates  Principle of Virtual Work

2.1. Principle of Virtual Work

Plates

@ The general plate equation can be interpreted in two ways just as before.

D (w1111 + w2222 + 2w 1122) — (Prw 11 + Pow og + 2P1sw12) — f =0

Men] Note that it is also possible to express ks
ase undergoing

the governing equations in terms of >
. ding (P1 — —Px,
moments and section-normal shear  [7" P1), the
forces (like we did with E.B.T.). ion is

(Prw1 + P2 But we will not pursue this here.
T T T TT P2w’22+2P12w’12) =0.

@ When the qual
the system is

@ For the isotropic case shear-free
case (P, = P, = P, Py = 0) we @ This is a slightly more complicated

Sturm-Liouville type problem than
the one encountered with column
buckling.

have,
PViw+ f=0
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Plates Classical Solutions

2.2. Classical Solutions

Plates

@ One of the simplest case to consider is a plate with simply supported
edges (w = 0 on D). The governing equations (for zero loading) is

DViw —f=0, (X1,Xs)eD, w=0, (X1,X3)edD.

(0D is the closure of the open set D).

@ For a rectangular plate (sides a1 X as such that X7 € [0,a4], X5 € [0, a2]),
a popular approach is to use a Fourier Decomposition of the form

w(Xy, Xo) = Z Apyn, sin (nl;rle) sin (ng;TQXQ) )
ni,n2

e Note that the coefficients A,,,, may be retrieved by the integral,

a1 a
4
Apimy = //w(Xl,Xg)sin (n17TX1> sin (nf)@) dX,dXo.
a1a9 ay ag
0 0
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Plates Classical Solutions

2.2. Classical Solutions

Plates

e Using this ansatz, the equilibrium equation now reads,
n n2 ? T T
Z Dr? ( ! 2) Apin, sin (anl) sin <n2X2) = f.
CL2 ay a2

ni,n2

DV4w
Expressing the Fourier coefficients of the load f as F),,,, we can write,

-2
1 n? n2
_ 1 2
Anpiny, = DAl 7a% + 7@% Frin,.

@ This means that excitation along the function sin(n; %Xl) sin(ns %Xg)
will result in deformation in the same shape.

e For an arbitrary deformation, this leads to a series representation of
the deformation shape.
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Plates Classical Solutions

2.2. Classical Solutions: Uniform Loading

Plates

e For the case of uniform loading (f (X7, X2) = 1), it can be shown that

16

Fpin, = { mning
0 otherwise

n1,ns both odd
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Plates

2.3. Buckling of Plates

Plates

Buckling of Plates

o We will consider buckling of plates also under the same conditions
(simply supported ends). Let us set P2 = 0 here (since it introduces

cosine terms also).
@ The governing equations become

DV*w — (Piw 11 4 Paw g2) =

2 2\ 2 2
n n n

> (ot (B42) - (H
ay az ai

ny,ng

Non-trivial A, ,, for P, =0

2 2 2\ 2

ai (n n

P =D (% + %) .
ny\ay az

The critical load (lowest P;) corresponds

to ng:l:

pr = 2D <n1a2 n a1 )2.

a3 ax niaz

2

ny . T . T
— Py Anqngsin | ng— X | sin ( na— X3 | = 0.
a ay az

Non-trivial A, ., for P, =0
2 2 2\ 2
202 (T nz
P2 =T sz (7 + 5 .
nz \ ay as

The critical load (lowest P») corresponds
to ny = 1:

P = 7722D(n2a1 . as )2.

al a naay
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2.3. Buckling of Plates

Plates

Plates Buckling of Plates

. . 5
° We will coy” Denoting k= (%2 + 1) )
(simply suj
cosine tern| ol
@ The goverr]
DV*w — (P,
Z (Dﬂ'4 o
ni,ng X
Non-trivid 4
P =71
2
The critical load] 0
to no = 1:

ditions
htroduces

) corresponds

Figure from [1]

2D [ a1 T [ T2a, as 2
Pl =— + Py =— + :
as al niaz ay a2 naai
4
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Plates Buckling of Plates
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