

AS3020: Aerospace Structures Module 7: Elastic Stability

Instructor: Nidish Narayanaa Balaji

Dept. of Aerospace Engg., IIT-Madras, Chennai

November 1, 2024

Balaji, N. N. (AE, IITM) [AS3020*](#page-38-0) November 1, 2024 1/28

Table of Contents

[Introduction](#page-2-0)

- [Column Buckling](#page-3-0)
- ² [Plates](#page-4-0)
	- [Principle of Virtual Work](#page-8-0)
	- [Classical Solutions](#page-11-0)
	- [Buckling of Plates](#page-15-0) [Shear Buckling](#page-18-0)
- ³ [Basic Post Buckling Analysis](#page-25-0)
	- [The Bifurcation Diagram](#page-31-0)
	- [Axial Deflections](#page-33-0)

Chapter 9 in Timoshenko and Gere [\[1\]](#page-38-1). Good reference in general.

Chapters 7-9 in Megson [\[2\]](#page-38-2)

1. [Introduction](#page-2-0)

- The key intuition for elastic stability comes from analyzing the quantity $U - \Pi$ around its extrema.
	- Maxima in $U \Pi$ correspond to **unstable solutions**;
	- Minima in $U \Pi$ correspond to stable solutions.
- Investigating the second derivative $(U \Pi)$ ("Hessian") of the quantity allows for efficient classification;
- In 1D $(u \in \mathbb{R})$, the sign of $\frac{\partial (U \Pi)}{\partial u^2}$ is sufficient for this;
- In higher dimensions, we obtain an eigenvalue problem.

 \leftarrow \Box \rightarrow

1.1. [Column Buckling](#page-3-0)

[Introduction](#page-2-0)

We already derived the governing equations for a beam under uniform axial stress $\frac{P}{A}$. When this is compressive, the governing equation can be written as

$$
EIv'''' + Pv'' = 0.
$$

We showed in class that this can be used to recover Euler's Critical Loads,

$$
P_n = n^2 \frac{\pi^2 EI}{\ell^2}, \quad v(X_1) = V \sin\left(n \frac{\pi X_1}{\ell}\right).
$$

(above expressions are for a simply supported beam)

We solved a Sturm-Liouville Problem to obtain these.

[Plates](#page-4-0)

2. [Plates](#page-4-0)

We will now derive the governing equations of thin plates with the Kirchhoff-Love Plate Theory, which is the simplest generalization of Euler-Bernoulli Beam Theory.

Euler-Bernoulli Beams

- Sections *move* rigidly;
- **Plane sections remain** perpendicular to the centroidal axis.

KL Plates

- Line elements along thickness move rigidly;
- Line elements remain perpendicular to the mid-plane.
- The above assumptions lead to the zeroing out of certain strains in the formulation that leads to a simplified kinematic description. For plates this is,

$$
u_1 = -X_3 w_{,1}
$$

\n
$$
u_2 = -X_3 w_{,2}
$$

\n
$$
u_3 = w,
$$

where w is a function of X_1, X_2 .

 $e₂$

2. [Plates](#page-4-0)

Variational Approach for Derivation

Using the kinematic description we write out the strains (linear and nonlinear) as

$$
E_{11} = u_{1,1} + \frac{1}{2} (u_{1,1}^2 + u_{2,1}^2 + u_{3,1}^2)
$$

= $-X_3 w_{,11} + \frac{1}{2} (X_3^2 w_{,11}^2 + X_3^2 w_{,12}^2 + w_{,1}^2)$

$$
E_{22} = u_{2,2} + \frac{1}{2} (u_{1,2}^2 + u_{2,2}^2 + u_{3,2}^2)
$$

= $-X_3 w_{,22} + \frac{1}{2} (X_3^2 w_{,12}^2 + X_3^2 w_{,22}^2 + w_{,2}^2)$

$$
\gamma_{12} = u_{1,2} + u_{2,1} + (u_{1,1}u_{1,2} + u_{2,1}u_{2,2} + u_{3,1}u_{3,2})
$$

= $-2X_3 w_{,12} + (X_3^2 w_{,11} w_{,12} + X_3^2 w_{,12} w_{,22} + w_{,1}w_{,2}),$

where the nonlinear (quadratic) terms are highlighted in blue.

• Just like in the case of the beam, we retain only the quadratic terms for the internal energy. \leftarrow \Box

Balaji, N. N. (AE, IITM) [AS3020*](#page-0-0) November 1, 2024 6 / 28

2. [Plates](#page-4-0)

Bending Strain Energy under Plane Stress

We have to first write down the stresses before the energy can be expressed. Under plane stress assumptions we get,

$$
\begin{bmatrix} E_{11} \\ E_{12} \\ \gamma_{12} \end{bmatrix} = \frac{1}{E} \begin{bmatrix} 1 & -\nu & 0 \\ -\nu & 1 & 0 \\ 0 & 0 & 2(1+\nu) \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix}
$$

$$
\implies \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} = \frac{E}{1-\nu^2} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1-\nu}{2} \end{bmatrix} \begin{bmatrix} E_{11} \\ E_{12} \\ \gamma_{12} \end{bmatrix}
$$

The bending energy (up to $\mathcal{O}(v^2)$) is

$$
U_b = \int_{-\frac{t}{2}}^{\frac{t}{2}} \frac{1}{2} (\sigma_{11} E_{11} + \sigma_{22} E_{22} + \sigma_{12} \gamma_{12}) dX_3
$$

=
$$
\frac{1}{2} \underbrace{\frac{Et^3}{12(1-\nu^2)}}_{D} (w_{,11}^2 + w_{,22}^2 + 2(1-\nu)w_{,12}^2 + 2w_{,11}w_{,22})
$$

Balaji, N. N. (AE, IITM) [AS3020*](#page-0-0) November 1, 2024 7 / 28

[Plates](#page-4-0)

2. [Plates](#page-4-0)

Work Done by Axial Stresses

• We consider axial loads P_1, P_2, P_{12} as shown. The work done by these is contributed by the quadratic strains

$$
U_c = \frac{P_1}{24} \left(t^2 (w_{,11}^2 + w_{,12}^2) + 12w_{,1}^2 \right) + \frac{P_2}{24} \left(t^2 (w_{,12}^2 + w_{,22}^2) + 12w_{,2}^2 \right) + \frac{P_{12}}{12} \left(t^2 w_{,12} (w_{,11} + w_{,22}) + 12w_{,1}w_{,2} \right).
$$

We will ignore the t^2 terms in the above to give,

$$
U_c = \frac{1}{2} \left(P_1 w_{,1}^2 + P_2 w_{,2}^2 + 2 P_{12} w_{,1} w_{,2} \right).
$$

Other Loads

When there is also a distributed transverse load f acting, the load work done is given by

$$
\Pi=\int_{\mathcal{D}}fw dX_1 dX_2
$$

Balaji, N. N. (AE, IITM) AS3020^{*} AS3020^{*} November 1, 2024 8/28

2.1. [Principle of Virtual Work](#page-8-0)

[Plates](#page-4-0)

The total work done by the system is written as,

$$
\mathcal{L} = U_b + U_c - \Pi = \frac{D}{2} \left(w_{,11}^2 + w_{,22}^2 + 2(1 - \nu)w_{,12}^2 + 2w_{,11}w_{,22} \right) \n+ \frac{1}{2} \left(P_1 w_{,11}^2 + P_2 w_{,21}^2 + 2P_{12}w_{,1}w_{,2} \right) - fw
$$

The Euler-Lagrange Equations are written as:

$$
\frac{d^2}{dX_1^2}\frac{\partial \mathcal{L}}{\partial w_{,11}}+\frac{d^2}{dX_2^2}\frac{\partial \mathcal{L}}{\partial w_{,22}}+\frac{d^2}{dX_1dX_2}\frac{\partial \mathcal{L}}{\partial w_{,12}}-\frac{d}{dX_1}\frac{\partial \mathcal{L}}{\partial w_{,1}}-\frac{d}{dX_2}\frac{\partial \mathcal{L}}{\partial w_{,2}}+\frac{\partial \mathcal{L}}{\partial w}=0.
$$

This leads to,

 Et^3 $12(1 - \nu)$ 2) \sum_{D} D $(w_{,1111} + w_{,2222} + 2w_{,1122}) - (P_1w_{,11} + P_2w_{,22} + 2P_{12}w_{,12}) - f = 0$

 $(1 - 1)$

2.1. [Principle of Virtual Work](#page-8-0)

[Plates](#page-4-0)

The general plate equation can be interpreted in two ways just as before.

 $D(w_{.1111} + w_{.2222} + 2w_{.1122}) - (P_1w_{.11} + P_2w_{.22} + 2P_{12}w_{.12}) - f = 0$

Membranes

When the quantity D is very small, \bullet for the $f =$ the system is approximated well as $P_2 \rightarrow -P_2$ is

 $(P_1w_{,11} + P_2w_{,22} + 2P_{12}w_{,12}) + f = 0$

• For the isotropic case shear-free case $(P_1 = P_2 = P, P_{12} = 0)$ we have,

$$
P\nabla^2 w + f = 0
$$

Plate Buckling

• For the $f = 0$ case undergoing compressive loading $(P_1 \rightarrow -P_1,$ $P_2 \rightarrow -P_2$ $P_{12} \rightarrow -P_{12}$), the $\frac{1}{\text{governing}}$ equation is

 $D\nabla^4 w + (P_1 w_{,11} + P_2 w_{,22} + 2P_{12} w_{,12}) = 0.$

• This is a slightly more complicated Sturm-Liouville type problem than the one encountered with column buckling.

2.1. [Principle of Virtual Work](#page-8-0) [Plates](#page-4-0)

The general plate equation can be interpreted in two ways just as before.

 $D(w_{.1111} + w_{.2222} + 2w_{.1122}) - (P_1w_{.11} + P_2w_{.22} + 2P_{12}w_{.12}) - f = 0$

2.2. [Classical Solutions](#page-11-0)

[Plates](#page-4-0)

• One of the simplest case to consider is a plate with simply supported edges ($w = 0$ on $\partial \mathcal{D}$). The governing equations (for zero loading) is

$$
D\nabla^4 w - f = 0, \quad (X_1, X_2) \in \mathcal{D}, \qquad w = 0, \quad (X_1, X_2) \in \partial \mathcal{D}.
$$

 $(\partial \mathcal{D})$ is the closure of the open set \mathcal{D}).

• For a rectangular plate (sides $a_1 \times a_2$ such that $X_1 \in [0, a_1], X_2 \in [0, a_2],$ a popular approach is to use a **Fourier Decomposition** of the form

$$
w(X_1, X_2) = \sum_{n_1, n_2} A_{n_1 n_2} \sin \left(n_1 \frac{\pi}{a_1} X_1 \right) \sin \left(n_2 \frac{\pi}{a_2} X_2 \right).
$$

• Note that the coefficients $A_{n_1n_2}$ may be retrieved by the integral,

$$
A_{n_1 n_2} = \frac{4}{a_1 a_2} \int_{0}^{a_1} \int_{0}^{a_2} w(X_1, X_2) \sin\left(n_1 \frac{\pi}{a_1} X_1\right) \sin\left(n_2 \frac{\pi}{a_2} X_2\right) dX_1 dX_2.
$$

4 0 1

2.2. [Classical Solutions](#page-11-0)

[Plates](#page-4-0)

Using this ansatz, the equilibrium equation now reads,

$$
\sum_{n_1,n_2} D\pi^4 \left(\frac{n_1^2}{a_1^2} + \frac{n_2^2}{a_2^2}\right)^2 A_{n_1n_2} \sin\left(n_1 \frac{\pi}{a_1} X_1\right) \sin\left(n_2 \frac{\pi}{a_2} X_2\right) = f.
$$

• Expressing the Fourier coefficients of the load f as $F_{n_1n_2}$ we can write,

$$
A_{n_1 n_2} = \frac{1}{D\pi^4} \left(\frac{n_1^2}{a_1^2} + \frac{n_2^2}{a_2^2}\right)^{-2} F_{n_1 n_2}.
$$

- This means that excitation along the function $\sin(n_1 \frac{\pi}{a_1} X_1) \sin(n_2 \frac{\pi}{a_2} X_2)$ will result in deformation in the same shape.
- For an arbitrary deformation, this leads to a series representation of the deformation shape.

4 0 1

2.2. [Classical Solutions:](#page-11-0) Uniform Loading [Plates](#page-4-0)

• For the case of uniform loading $(f(X_1, X_2) = 1)$, it can be shown that

$$
F_{n_1 n_2} = \begin{cases} \frac{16}{\pi^2 n_1 n_2} & n_1, n_2 \text{ both odd} \\ 0 & \text{otherwise} \end{cases}
$$

.

2.2. [Classical Solutions:](#page-11-0) Uniform Loading [Plates](#page-4-0)

• For the case of uniform loading $(f(X_1, X_2) = 1)$, it can be shown that

$$
F_{n_1 n_2} = \begin{cases} \frac{16}{\pi^2 n_1 n_2} & n_1, n_2 \text{ both odd} \\ 0 & \text{otherwise} \end{cases}
$$

.

2.3. [Buckling of Plates](#page-15-0)

[Plates](#page-4-0)

- We will consider buckling of plates also under the same conditions
 $\lim_{\epsilon \to 0}$ here (since it introduced) (simply supported ends). Let us set $P_{12} = 0$ here (since it introduces cosine terms also).
- The governing equations become

$$
D\nabla^4 w - (P_1 w_{,11} + P_2 w_{,22}) =
$$

$$
\sum_{n_1, n_2} \left(D\pi^4 \left(\frac{n_1^2}{a_1^2} + \frac{n_2^2}{a_2^2} \right)^2 - \pi^2 \left(\frac{n_1^2}{a_1^2} P_1 + \frac{n_2^2}{a_2^2} P_2 \right) \right) A_{n_1 n_2} \sin \left(n_1 \frac{\pi}{a_1} X_1 \right) \sin \left(n_2 \frac{\pi}{a_2} X_2 \right) = 0.
$$

Non-trivial $A_{n_1 n_2}$ for $P_2 = 0$ $P_1 = \pi^2 D \frac{a_1^2}{n_1^2}$ 1 $\left(\frac{n_1^2}{a_1^2}+\frac{n_2^2}{a_2^2}\right)$ 1 2 $\bigg)$ ². The critical load (lowest P_1) corresponds to $n_2 = 1$:

$$
P_1^* = \frac{\pi^2 D}{a_2^2} \left(\frac{n_1 a_2}{a_1} + \frac{a_1}{n_1 a_2} \right)^2.
$$

Non-trivial $A_{n_1 n_2}$ for $P_1 = 0$ $P_2 = \pi^2 D \frac{a_2^2}{n_2^2}$ 2 $\left(\frac{n_1^2}{a_1^2}+\frac{n_2^2}{a_2^2}\right)$ 1 2 $\bigg)$ ². The critical load (lowest P_2) corresponds to $n_1 = 1$:

$$
+\frac{a_1}{n_1a_2}\bigg)^2.
$$

$$
P_2^* = \frac{\pi^2 D}{a_1^2} \bigg(\frac{n_2a_1}{a_2} + \frac{a_2}{n_2a_1}\bigg)^2.
$$

Balaji, N. N. (AE, IITM) [AS3020*](#page-0-0) November 1, 2024 14 / 28

2.3. [Buckling of Plates](#page-15-0)

[Plates](#page-4-0)

2.3. [Buckling of Plates:](#page-15-0) [Shear Buckling](#page-18-0) [Plates](#page-4-0)

Under pure shear, the governing equations is

$$
D\nabla^4 w - P_{12} 2w_{,12} = 0.
$$

 \leftarrow \Box

Using the same ansatz (simply supported boundaries) we have,

$$
\sum_{n_1,n_2}\left[D\pi^4\bigg(\frac{n_1^2}{a_1^2}+\frac{n_2^2}{a_2^2}\bigg)^2A_{n_1n_2}\mathcal{S}_{n_1}\mathcal{S}_{n_2}-P_{12}2\pi^2\frac{n_1n_2}{a_1a_2}\mathcal{C}_{n_1}\mathcal{C}_{n_2}\right]=0.
$$

Note that $\int_0^a S_n S_m dx = \frac{a}{2} \delta_{nm}$ and

$$
\int_{0}^{a} S_n C_m dx = \begin{cases} 0 & n \pm m \text{ is even,} \\ \frac{2a}{\pi} \frac{n}{n^2 - m^2} & n \pm m \text{ is odd} \end{cases}.
$$

Multiplying the above equation by $S_{m_1}S_{m_2}$ and integrating over $(0, a_1) \times (0, a_2)$ we get $D\frac{\pi^4}{2}$ $a_1^2 a_2^2$ $\left(m_1^2 a_2 \right)$ $rac{a_1^2a_2}{a_1} + \frac{m_2^2a_1}{a_2}$ a_2 $\bigg)^2 A_{m_1m_2} - P_{12} \frac{32}{3}$ a_1a_2 \sum n_1n_2 $n_1n_2m_1m_2$ $\frac{n_1 n_2 m_1 m_2}{(n_1^2 - m_1^2)(n_2^2 - m_2^2)} A_{n_1 n_2} = 0.$

Balaji, N. N. (AE, IITM) [AS3020*](#page-0-0) November 1, 2024 15 / 28

2.3. [Buckling of Plates:](#page-15-0) [Shear Buckling](#page-18-0) [Plates](#page-4-0)

We can move around the terms a little bit and setting the aspect ratio $\beta = \frac{a_2}{a_1}$ we get

$$
\underbrace{\frac{\pi^4 D}{32 a_2^2}}_{\alpha} \left(m_1^2 \beta^2 + m_2^2 \right)^2 A_{m_1 m_2} - P_{12} \beta \sum_{n_1 n_2} \frac{n_1 n_2 m_1 m_2}{(n_1^2 - m_1^2)(n_2^2 - m_2^2)} A_{n_1 n_2} = 0.
$$

• If we truncate the n_1 and n_2 to finite N_1 and N_2 , this represents a Generalized Eigenvalue Problem (GEVP). Restricting ourselves to $N_1, N_2 = 2$ we have,

$$
\left(\alpha \begin{bmatrix} (\beta^2+1)^2 & 0 & 0 & 0 \\ 0 & (\beta^2+4)^2 & 0 & 0 \\ 0 & 0 & (4\beta^2+1)^2 & 0 \\ 0 & 0 & 0 & (4\beta^2+4)^2 \end{bmatrix} - P_{12} \frac{4\beta}{9} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \right) \begin{bmatrix} A_{11} \\ A_{12} \\ A_{21} \\ A_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}
$$

• This is quite convenient since we can analytically estimate its eigen solutions. (I use maxima)

2.3. [Buckling of Plates:](#page-15-0) [Shear Buckling](#page-18-0) [Plates](#page-4-0)

The eigenpairs are evaluated as

$$
\left(\pm 9\alpha\frac{(\beta^2+1)^2}{\beta},\begin{bmatrix}1\\0\\0\\1\\4\end{bmatrix}\right),\qquad \left(\pm 9\alpha\frac{(\beta^2+4)(4\beta^2+1)}{4\beta},\begin{bmatrix}0\\1\\ \pm\frac{\beta^2+4}{4\beta^2+1}\\0\end{bmatrix}\right)
$$

Substituting for $\alpha = \frac{\pi^4 D}{32 a_2^2}$ we have, \overline{A}

$$
P_{12}^* = \pm \frac{\pi^2 D}{a_2^2} \frac{9\pi^2}{32} \frac{(\beta^2 + 1)^2}{\beta}, \quad \pm \frac{\pi^2 D}{a_2^2} \frac{9\pi^2}{128} \frac{(\beta^2 + 4)(4\beta^2 + 1)}{\beta}
$$

2.3. [Buckling of Plates:](#page-15-0) [Shear Buckling](#page-18-0)

[Plates](#page-4-0)

Substituting for $\alpha = \frac{\pi^4 D}{32 a_2^2}$ we have, \overline{A}

$$
P_{12}^* = \pm \frac{\pi^2 D}{a_2^2} \frac{9\pi^2}{32} \frac{(\beta^2 + 1)^2}{\beta}, \quad \pm \frac{\pi^2 D}{a_2^2} \frac{9\pi^2}{128} \frac{(\beta^2 + 4)(4\beta^2 + 1)}{\beta}
$$

2.3. [Buckling of Plates:](#page-15-0) [Shear Buckling](#page-18-0)

[Plates](#page-4-0)

4 0 8

2.3. [Buckling of Plates](#page-15-0)

[Plates](#page-4-0)

In general, the boundary conditions as well as loads may be completely different, warranting different analysis to be done to estimate the buckling coefficient k.

2.3. [Buckling of Plates](#page-15-0)

[Plates](#page-4-0)

In general, the boundary conditions as well as loads may be completely different, warranting different analysis to be done to estimate the buckling coefficient k.

We have so far only looked at buckling/pre-buckling analysis.

The study of postbuckling requires the consideration of nonlinear strain energy contributions.

Under the kinematic description $u_1 = -X_2v'$, and $u_2 = v$, the **von** Karman strain E_{11} is,

$$
E_{11} = u_{1,1} + \frac{u_{2,1}^2}{2} = -X_2v'' + \frac{(v')^2}{2}.
$$

The corresponding total strain energy is

$$
U = \int_{0}^{\ell} \left(\frac{E_y I_{33}}{2} (v'')^2 - \frac{P}{2} (v')^2 + \frac{E_y A}{8} (v')^4 \right) dX_1
$$

NOTE: Positive P is compressive here.

Von Karman Beam Equations

Applying the Euler-Lagrange equations directly here, we get:

$$
E_y I_{33} v''' - \frac{3E_y A}{2} (v')^2 v'' + P v'' = 0.
$$

This is the starting point for the von Karman beam theory which allows the study for nominally finite amplitude deformations of beams.

• For P values slightly above P_{cr} , the deflection may be written as

$$
v(X_1) = V \sin\left(n\frac{\pi}{\ell}X_1\right).
$$

• Choosing $n = 1$, substituting this into the strain energy expression yields,

$$
U = \int_{0}^{\ell} \left[\frac{\pi^{4} E_{y} I_{33} V^{2}}{2\ell^{4}} \sin^{2} \left(\frac{\pi X_{1}}{\ell} \right) - \frac{\pi^{2} PV^{2}}{2\ell^{2}} \cos^{2} \left(\frac{\pi X_{1}}{\ell} \right) + \frac{\pi^{4} E_{y} AV^{4}}{8\ell^{4}} \cos^{4} \left(\frac{\pi X_{1}}{\ell} \right) \right] dX_{1}
$$

$$
= \frac{\pi^{4} E_{y} I_{33} V^{2}}{2\ell^{4}} \frac{\ell}{2} - \frac{\pi^{2} PV^{2}}{2\ell^{2}} \frac{\ell}{2} + \frac{\pi^{4} E_{y} AV^{4}}{8\ell^{4}} \frac{3\ell}{8} = \frac{\pi^{2}}{4\ell} (P_{cr} - P) V^{2} + \frac{3\pi^{2} A}{64 I_{33} \ell} P_{cr} V^{4}
$$

$$
= \boxed{\frac{\pi^{2}}{4\ell} \left[(P_{cr} - P) V^{2} + \frac{3A}{16 I_{33}} P_{cr} V^{4} \right]}.
$$

Stationarizing this with respect to variations in V (setting $\delta U = \frac{\partial U}{\partial V} \delta V = 0$ for all δV , we obtain

$$
\boxed{(P_{cr} - P)V + \frac{3A}{8I_{33}}P_{cr}V^3 = 0} \implies V^* = 0, \pm \sqrt{\frac{8I_{33}}{3A} \left(\frac{P}{P_{cr}} - 1\right)}.
$$

Balaji, N. N. (AE, IITM) [AS3020*](#page-0-0) November 1, 2024 21 / 28

• For P values slightly above P_{cr} , the deflection may be written as

$$
v(X_1) = V \sin\left(n\frac{\pi}{\ell}X_1\right).
$$

• Choosing $n = 1$, substituting this into the strain energy expression yields,

$$
U = \int_{0}^{\ell} \left[\frac{\pi^{4} E_{y} I_{33} V^{2}}{2\ell^{4}} \sin^{2} \left(\frac{\pi X_{1}}{\ell} \right) - \frac{\pi^{2} PV^{2}}{2\ell^{2}} \cos^{2} \left(\frac{\pi X_{1}}{\ell} \right) + \frac{\pi^{4} E_{y} AV^{4}}{8\ell^{4}} \cos^{4} \left(\frac{\pi X_{1}}{\ell} \right) \right] dX_{1}
$$

\n
$$
= \frac{\pi^{4} E_{y} I_{33} V^{2}}{2\ell^{4}} \frac{\ell}{2} - \frac{\pi^{2} PV^{2}}{2\ell^{2}} \frac{\ell}{2} + \frac{\pi^{4} E_{y} AV^{4}}{8\ell^{4}} \frac{3\ell}{8} = \frac{\pi^{2}}{4\ell} (P_{cr} - P) V^{2} + \frac{3\pi^{2} A}{64 I_{33} \ell} P_{cr} V^{4}
$$

\n
$$
= \boxed{\frac{\pi^{2}}{4\ell} \left[(P_{cr} - P) V^{2} + \frac{3A}{16 I_{33}} P_{cr} V^{4} \right]}.
$$

\nStationarizing this with respect to variations in
\n
$$
V = P_{cr}
$$

\n
$$
\delta U = \frac{\partial U}{\partial V} \delta V = 0 \text{ for all } \delta V, \text{ we obtain}
$$

\n
$$
(P_{cr} - P) V + \frac{3A}{8 I_{33}} P_{cr} V^{3} = 0 \implies V^{*} = 0, \pm \sqrt{\frac{8 I_{33}}{3A} \left(\frac{P}{P_{cr}} - 1 \right)}.
$$

Balaji, N. N. (AE, IITM) [AS3020*](#page-0-0) November 1, 2024 21 / 28

So equilibrium is achieved for either

$$
V_0^2 = 0
$$
, or $V_{1,2}^2 = \frac{8I_{33}}{3A} \left(\frac{P}{P_{cr}} - 1\right)$.

Looking for the second order optimality conditions we have,

$$
U = \frac{\pi^2}{4\ell} \left[(P_{cr} - P)V^2 + \frac{3A}{16I_{33}} V^4 \right].
$$

\n
$$
\frac{dU}{dV} = \frac{\pi^2}{2\ell} \left[(P_{cr} - P)V + \frac{3A}{8I_{33}} V^3 \right]
$$

\n
$$
\frac{d^2U}{dV^2} = \frac{\pi^2}{2\ell} \left[(P_{cr} - P) + \frac{9A}{8I_{33}} V^2 \right]
$$

Substituting the equilibrium solutions we have,

$$
V = V_0 = 0
$$

\n
$$
\frac{d^2U}{dV^2} = -\frac{\pi^2}{2\ell}(P - P_{cr})
$$
\nBalaji, N. N. (AE, IITM)
\nBalaji, N. N. (AE, IITM)
\n
$$
A S3020^*
$$
\nNovember 1, 2024

\n
$$
22/28
$$

So equilibrium is achieved for either

$$
V_0^2 = 0
$$
, or $V_{1,2}^2 = \frac{8I_{33}}{3A} \left(\frac{P}{P_{cr}} - 1\right)$.

Looking for the second order optimality conditions we have,

$$
U = \frac{\pi^2}{4\ell} \left[(P_{cr} - P)V^2 + \frac{3A}{16I_{33}} V^4 \right].
$$

\n
$$
\frac{dU}{dV} = \frac{\pi^2}{2\ell} \left[(P_{cr} - P)V + \frac{3A}{8I_{33}} V^3 \right]
$$

\n
$$
P < P_{cr} \text{ Stable}
$$

\n
$$
P > P_{cr} \text{ Unstable}
$$

\n
$$
V = V_0 = 0
$$

\n
$$
\frac{d^2U}{dV^2} = -\frac{\pi^2}{2\ell} (P - P_{cr})
$$

\n
$$
P = \frac{QA}{2\ell} \left[(P_{cr} - P)V + \frac{3A}{8I_{33}} V^3 \right]
$$

\n
$$
P < P_{cr} \text{ Non-Real}
$$

\n
$$
P > P_{cr} \text{ Real, Stable}
$$

\n
$$
V = V_{1,2}
$$

\n
$$
\frac{d^2U}{dV^2} = \frac{\pi^2}{\ell} (P - P_{cr}).
$$

\n
$$
P = \frac{Q}{2\ell} \left[(P - P_{cr}) \right]
$$

\n
$$
\frac{d^2U}{dV^2} = \frac{\pi^2}{\ell} (P - P_{cr}).
$$

\n
$$
P = \frac{Q}{2\ell} \left[(P - P_{cr}) \right]
$$

\n
$$
\frac{Q}{dV^2} = \frac{\pi^2}{\ell} (P - P_{cr}).
$$

3.1. [The Bifurcation Diagram](#page-31-0)

[Basic Post Buckling Analysis](#page-25-0)

• The above analysis allows us to sketch the **bifurcation diagram**. This type of bifurcation is often termed the Pitchfork bifurcation (for obvious reasons).

Unlike linearized stability analysis, the nonlinear analysis allows us to study the force-deflection curve of the system post buckling also.

3.1. [The Bifurcation Diagram](#page-31-0)

[Basic Post Buckling Analysis](#page-25-0)

• The above analysis allows us to sketch the **bifurcation diagram**. This type of bifurcation is often termed the Pitchfork bifurcation (for obvious reasons).

Unlike linearized stability analysis, the nonlinear analysis allows us to study the force-deflection curve of the system post buckling also.

But what about axial deformations??

Balaji, N. N. (AE, IITM) [AS3020*](#page-0-0) November 1, 2024 23 / 28

[Basic Post Buckling Analysis](#page-25-0)

• For studying the axial deflections also, we modify the kinematics to allow these, such that

$$
u_1 = u - X_2 v
$$
, $u_2 = v \implies E_{11} = u' - X_2 v' + \frac{(v')^2}{2}$.

Using this, the strain energy density becomes

$$
U = \frac{E_y I_{33}}{2} (v'')^2 + \frac{E_y A}{8} (v')^4 - \frac{P}{2} (v')^2 + \frac{E_y A}{2} (u')^2 + \frac{E_y A}{2} u' (v')^2 - (-P u_T),
$$

with the new terms highlighted in blue. (u_T) is tip axial displacement) \bullet The equation governing axial deflection u cdis

$$
E_y A u'' + E_y A v' v'' = 0, \quad u = 0, \quad u = 0, \quad u = u_T, \quad u = u = \ell.
$$

Substituting $v = V \sin\left(\frac{\pi X_1}{\ell}\right)$ and applying the boundary conditions leads to,

$$
u = -\frac{\pi V^2}{8\ell} \sin\left(\frac{2\pi X_1}{\ell}\right) + u_T \frac{X_1}{\ell}.
$$

Balaji, N. N. (AE, IITM) AS3020^{*} AS3020^{*} November 1, 2024 24/28

[Basic Post Buckling Analysis](#page-25-0)

• Resubstituting the above and extremizing in u_T yields,

$$
u_T = -\frac{P\ell}{E_y A} - \frac{\ell}{4E_y I_{33}} P_{cr} V^2.
$$

- On the "main branch", $V = 0$ so we have $u_T = -\frac{\ell}{E}$ $\frac{c}{E_{y}A}P$.
- On the bifurcated branch, $V^2 = \frac{8I_{33}}{3A}(\frac{P}{P_{cr}}-1)$. So,

$$
u_T = -\frac{5}{3} \frac{\ell}{E_y A} P + \frac{2\ell}{3E_y A} P_{cr}.
$$

In simpler terms, the axial stiffness before and after bifurcation are:

Before bifurcation $(P < P_{cr})$ $\frac{du_T}{dP} = \frac{E_y A}{\ell}$ ℓ After Bifurcation $P > P_{cr}$ $\frac{du_T}{dP} = \frac{3}{5}$ 5 E_yA ℓ Balaji, N. N. (AE, IITM) [AS3020*](#page-0-0) November 1, 2024 25/28

[Basic Post Buckling Analysis](#page-25-0)

• Resubstituting the above and extremizing in u_T yields,

$$
u_T = -\frac{P\ell}{E_y A} - \frac{\ell}{4E_y I_{33}} P_{cr} V^2.
$$

- On the "main branch", $V = 0$ so we have $u_T = -\frac{\ell}{E}$ $\frac{c}{E_{y}A}P$.
- On the bifurcated branch, $V^2 = \frac{8I_{33}}{3A}(\frac{P}{P_{cr}}-1)$. So,

$$
u_T = -\frac{5}{3} \frac{\ell}{E_y A} P + \frac{2\ell}{3E_y A} P_{cr}.
$$

In simpler terms, the axial stiffness before and \vert Loss in stiffness Before bifurcation $(P < P_{cr})$ $\frac{du_T}{dP} = \frac{E_y A}{\ell}$ ℓ After Bifurcation $P > P_{cr}$ $\frac{du_T}{dP} = \frac{3}{5}$ 5 E_yA ℓ Balaji, N. N. (AE, IITM) AS3020^{*} AS3020^{*} November 1, 2024 25/28

[Basic Post Buckling Analysis](#page-25-0)

We can now sketch the bifurcation diagram of the axial component also in terms of u_T :

The axial deformation field is written as

$$
u(X_1) = -\frac{\pi}{8\ell}V^2 \left[\sin\left(\frac{2\pi}{\ell}X_1\right) + \frac{2\pi}{\ell}X_1\right] - \frac{P}{E_yA}X_1.
$$

Balaji, N. N. (AE, IITM) [AS3020*](#page-0-0) November 1, 2024 26 / 28

[Basic Post Buckling Analysis](#page-25-0)

References I

- [1] S. P. Timoshenko and J. M. Gere. Theory of Elastic Stability, Courier Corporation, June 2009. isbn: 978-0-486-47207-2 (cit. on p. [2\)](#page-1-0).
- [2] T. H. G. Megson. Aircraft Structures for Engineering Students, Elsevier, 2013. isbn: 978-0-08-096905-3 (cit. on pp. [2,](#page-1-0) [16–](#page-15-0)[18,](#page-17-0) [24,](#page-23-0) [25\)](#page-24-0).