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Introduction

1. Introduction

The key intuition for elastic stability comes from analyzing the quantity
U−Π around its extrema.

Maxima in U−Π correspond to unstable solutions;
Minima in U−Π correspond to stable solutions.

Investigating the second derivative
(“Hessian”) of the quantity allows
for efficient classification;

In 1D (u ∈ R), the sign of ∂(U−Π)
∂u2

is sufficient for this;

In higher dimensions, we obtain
an eigenvalue problem.

Balaji, N. N. (AE, IITM) AS3020* November 1, 2024 3 / 28



Introduction Column Buckling

1.1. Column Buckling
Introduction

We already derived the governing equations for a beam under uniform
axial stress P

A . When this is compressive, the governing equation can be
written as

EIv′′′′ + Pv′′ = 0 .

We showed in class that this can be used to recover Euler’s Critical Loads,

Pn = n2π
2EI

ℓ2
, v(X1) = V sin

(
n
πX1

ℓ

)
.

(above expressions are for a simply supported beam)

We solved a Sturm-Liouville Problem to obtain these.
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Plates

2. Plates

We will now derive the governing equations of thin plates with the
Kirchhoff-Love Plate Theory, which is the simplest generalization of
Euler-Bernoulli Beam Theory.

Euler-Bernoulli Beams

Sections move rigidly;

Plane sections remain
perpendicular to the centroidal
axis.

KL Plates

Line elements along thickness move
rigidly;

Line elements remain perpendicular
to the mid-plane.

The above assumptions lead to the zeroing out of certain strains in the
formulation that leads to a simplified kinematic description. For plates
this is,

u1 = −X3w,1

u2 = −X3w,2

u3 = w,

where w is a function of X1, X2.
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Plates

2. Plates
Variational Approach for Derivation

Using the kinematic description we write out the strains (linear and
nonlinear) as

E11 = u1,1 +
1

2
(u2

1,1 + u2
2,1 + u2

3,1)

= −X3w,11 +
1

2

(
X2

3w
2
,11 +X2

3w
2
,12 + w2

,1

)
E22 = u2,2 +

1

2
(u2

1,2 + u2
2,2 + u2

3,2)

= −X3w,22 +
1

2

(
X2

3w
2
,12 +X2

3w
2
,22 + w2

,2

)
γ12 = u1,2 + u2,1 + (u1,1u1,2 + u2,1u2,2 + u3,1u3,2)

= −2X3w,12 +
(
X2

3w,11w,12 +X2
3w,12w,22 + w,1w,2

)
,

where the nonlinear (quadratic) terms are highlighted in blue.

Just like in the case of the beam, we retain only the quadratic terms
for the internal energy.
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Plates

2. Plates
Bending Strain Energy under Plane Stress

We have to first write down the stresses before the energy can be
expressed. Under plane stress assumptions we get,E11

E12

γ12

 =
1

E

 1 −ν 0
−ν 1 0
0 0 2(1 + ν)

σ11

σ22

σ12


=⇒

σ11

σ22

σ12

 =
E

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

E11

E12

γ12


The bending energy (up to O(v2)) is

Ub =

t
2∫

− t
2

1

2
(σ11E11 + σ22E22 + σ12γ12) dX3

=
1

2

Et3

12(1− ν2)︸ ︷︷ ︸
D

(
w2

,11 + w2
,22 + 2(1− ν)w2

,12 + 2w,11w,22

)
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Plates

2. Plates
Work Done by Axial Stresses

We consider axial loads P1, P2, P12 as shown. The work done by these is
contributed by the quadratic strains

Uc =
P1

24

(
t2(w2

,11 + w2
,12) + 12w2

,1

)
+

P2

24

(
t2(w2

,12 + w2
,22) + 12w2

,2

)
+

P12

12

(
t2w,12(w,11 + w,22) + 12w,1w,2

)
.

We will ignore the t2 terms in the above to give,

Uc =
1

2

(
P1w

2
,1 + P2w

2
,2 + 2P12w,1w,2

)
.

Other Loads

When there is also a distributed transverse load f
acting, the load work done is given by

Π =

∫
D
fwdX1dX2
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Plates Principle of Virtual Work

2.1. Principle of Virtual Work
Plates

The total work done by the system is written as,

L = Ub + Uc −Π =
D

2

(
w2

,11 + w2
,22 + 2(1− ν)w2

,12 + 2w,11w,22

)
+

1

2

(
P1w

2
,1 + P2w

2
,2 + 2P12w,1w,2

)
− fw

The Euler-Lagrange Equations are written as:

d2

dX2
1

∂L
∂w,11

+
d2

dX2
2

∂L
∂w,22

+
d2

dX1dX2

∂L
∂w,12

− d

dX1

∂L
∂w,1

− d

dX2

∂L
∂w,2

+
∂L
∂w

= 0.

This leads to,

Et3

12(1− ν2)︸ ︷︷ ︸
D

(w,1111 + w,2222 + 2w,1122)− (P1w,11 + P2w,22 + 2P12w,12)− f = 0
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Plates Principle of Virtual Work

2.1. Principle of Virtual Work
Plates

The general plate equation can be interpreted in two ways just as before.

D (w,1111 + w,2222 + 2w,1122)− (P1w,11 + P2w,22 + 2P12w,12)− f = 0

Membranes

When the quantity D is very small,
the system is approximated well as

(P1w,11 + P2w,22 + 2P12w,12)+f = 0

For the isotropic case shear-free
case (P1 = P2 = P , P12 = 0) we
have,

P∇2w + f = 0

Plate Buckling

For the f = 0 case undergoing
compressive loading (P1 → −P1,
P2 → −P2 P12 → −P12), the
governing equation is

D∇4
w+(P1w,11+P2w,22+2P12w,12) = 0.

This is a slightly more complicated
Sturm-Liouville type problem than
the one encountered with column
buckling.

Note that it is also possible to express
the governing equations in terms of
moments and section-normal shear
forces (like we did with E.B.T.).
But we will not pursue this here.
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Plates Classical Solutions

2.2. Classical Solutions
Plates

One of the simplest case to consider is a plate with simply supported
edges (w = 0 on ∂D). The governing equations (for zero loading) is

D∇4w − f = 0, (X1, X2) ∈ D, w = 0, (X1, X2) ∈ ∂D.

(∂D is the closure of the open set D).

For a rectangular plate (sides a1 × a2 such that X1 ∈ [0, a1], X2 ∈ [0, a2]),
a popular approach is to use a Fourier Decomposition of the form

w(X1, X2) =
∑
n1,n2

An1n2 sin

(
n1

π

a1
X1

)
sin

(
n2

π

a2
X2

)
.

Note that the coefficients An1n2
may be retrieved by the integral,

An1n2
=

4

a1a2

a1∫
0

a2∫
0

w(X1, X2) sin

(
n1

π

a1
X1

)
sin

(
n2

π

a2
X2

)
dX1dX2.

Balaji, N. N. (AE, IITM) AS3020* November 1, 2024 11 / 28



Plates Classical Solutions

2.2. Classical Solutions
Plates

Using this ansatz, the equilibrium equation now reads,

∑
n1,n2

Dπ4

(
n2
1

a21
+

n2
2

a22

)2

An1n2
sin

(
n1

π

a1
X1

)
sin

(
n2

π

a2
X2

)
︸ ︷︷ ︸

D∇4w

= f.

Expressing the Fourier coefficients of the load f as Fn1n2
we can write,

An1n2 =
1

Dπ4

(
n2
1

a21
+

n2
2

a22

)−2

Fn1n2 .

This means that excitation along the function sin(n1
π
a1
X1) sin(n2

π
a2
X2)

will result in deformation in the same shape.

For an arbitrary deformation, this leads to a series representation of
the deformation shape.
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Plates Classical Solutions

2.2. Classical Solutions: Uniform Loading
Plates

For the case of uniform loading (f(X1, X2) = 1), it can be shown that

Fn1n2
=


16

π2n1n2
n1, n2 both odd

0 otherwise
.

Force Decomposition Deflection Decomposition

Forcing Coefficients

 0
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Plates Buckling of Plates

2.3. Buckling of Plates
Plates

We will consider buckling of plates also under the same conditions
(simply supported ends). Let us set P12 = 0 here (since it introduces
cosine terms also).
The governing equations become

D∇4
w − (P1w,11 + P2w,22) =∑

n1,n2

(
Dπ

4

(
n2
1

a2
1

+
n2
2

a2
2

)2

− π
2

(
n2
1

a2
1

P1 +
n2
2

a2
2

P2

))
An1n2 sin

(
n1

π

a1

X1

)
sin

(
n2

π

a2

X2

)
= 0.

Non-trivial An1n2 for P2 = 0

P1 = π2D
a2
1

n2
1

(
n2
1

a2
1

+
n2
2

a2
2

)2

.

The critical load (lowest P1) corresponds
to n2 = 1:

P ∗
1 =

π2D

a2
2

(
n1a2

a1
+

a1

n1a2

)2

.

Non-trivial An1n2 for P1 = 0

P2 = π2D
a2
2

n2
2

(
n2
1

a2
1

+
n2
2

a2
2

)2

.

The critical load (lowest P2) corresponds
to n1 = 1:

P ∗
2 =

π2D

a2
1

(
n2a1

a2
+

a2

n2a1

)2

.

Denoting k =
(

n1a1

a2
+ a2

n1a1

)2

s.t. P ∗
1 = k π2D

a2
2

Figure from [2], a = a1, b = a2.
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Plates Buckling of Plates

2.3. Buckling of Plates: Shear Buckling
Plates

Under pure shear, the governing equations is

D∇4w − P122w,12 = 0.

Using the same ansatz (simply supported boundaries) we have,∑
n1,n2

[
Dπ4

(
n2
1

a21
+

n2
2

a22

)2

An1n2
Sn1

Sn2
− P122π

2n1n2

a1a2
Cn1

Cn2

]
= 0.

Note that
∫ a

0
SnSmdx = a

2 δnm and

a∫
0

SnCmdx =

{
0 n±m is even,
2a
π

n
n2−m2 n±m is odd

.

Multiplying the above equation by Sm1
Sm2

and integrating over
(0, a1)× (0, a2) we get

D
π4

a2
1a

2
2

(
m2

1a2

a1
+

m2
2a1

a2

)2

Am1m2 − P12
32

a1a2

∑
n1n2

n1n2m1m2

(n2
1 −m2

1)(n
2
2 −m2

2)
An1n2 = 0.
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Plates Buckling of Plates

2.3. Buckling of Plates: Shear Buckling
Plates

We can move around the terms a little bit and setting the aspect ratio
β = a2

a1
we get

π4D

32a22︸ ︷︷ ︸
α

(
m2

1β
2 +m2

2

)2
Am1m2

− P12β
∑
n1n2

n1n2m1m2

(n2
1 −m2

1)(n
2
2 −m2

2)
An1n2

= 0.

If we truncate the n1 and n2 to finite N1 and N2, this represents a
Generalized Eigenvalue Problem (GEVP). Restricting ourselves to
N1, N2 = 2 we have,

α


(β2 + 1)2 0 0 0

0 (β2 + 4)2 0 0
0 0 (4β2 + 1)2 0
0 0 0 (4β2 + 4)2

− P12
4β

9

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0



A11

A12

A21

A22

 =

000
0



This is quite convenient since we can analytically estimate its eigen
solutions. (I use maxima)
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Plates Buckling of Plates

2.3. Buckling of Plates: Shear Buckling
Plates

The eigenpairs are evaluated as±9α
(β2 + 1)2

β
,


1
0
0
1
4


 ,

±9α
(β2 + 4)(4β2 + 1)

4β
,


0
1

± β2+4
4β2+1

0




Substituting for α = π4D
32a2

2
we have,

P ∗
12 = ±π2D

a22

9π2

32

(β2 + 1)2

β
, ±π2D

a22

9π2

128

(β2 + 4)(4β2 + 1)

β

Mode 1 Mode 2

Mode 3 Mode 4
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Plates Buckling of Plates

2.3. Buckling of Plates
Plates

In general, the boundary conditions as well as loads may be completely
different, warranting different analysis to be done to estimate the buckling
coefficient k.

Compression

Bending

Shear

Figures from [2].

NOTICE: k approx. constant for a/b > 3.

Necessary Reading: Ch. 9 in Meg-
son [2]. Special focus on 9.4, 9.5.
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3. Basic Post Buckling Analysis

We have so far only looked at buckling/pre-buckling analysis.

The study of postbuckling requires the consideration of nonlinear
strain energy contributions.

But what about
the exact am-
plitudes post
buckling?
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3. Basic Post Buckling Analysis

Under the kinematic description u1 = −X2v
′, and u2 = v, the von

Karman strain E11 is,

E11 = u1,1 +
u2
2,1

2
= −X2v

′′ +
(v′)

2

2
.

The corresponding total strain energy is

U =

ℓ∫
0

(
EyI33

2
(v′′)

2 − P

2
(v′)

2
+

EyA

8
(v′)

4
)
dX1

NOTE: Positive P is compressive here.

Von Karman Beam Equations

Applying the Euler-Lagrange equations directly here, we get:

EyI33v
′′′′ − 3EyA

2

(
v′
)2

v′′ + Pv′′ = 0.

This is the starting point for the von Karman beam theory which allows the
study for nominally finite amplitude deformations of beams.

Balaji, N. N. (AE, IITM) AS3020* November 1, 2024 20 / 28



Basic Post Buckling Analysis

3. Basic Post Buckling Analysis

For P values slightly above Pcr, the deflection may be written as

v(X1) = V sin
(
n
π

ℓ
X1

)
.

Choosing n = 1, substituting this into the strain energy expression yields,

U =

ℓ∫
0

[
π4EyI33V

2

2ℓ4
sin

2

(
πX1

ℓ

)
−

π2PV 2

2ℓ2
cos

2

(
πX1

ℓ

)
+

π4EyAV 4

8ℓ4
cos

4

(
πX1

ℓ

)]
dX1

=
π4EyI33V

2

2ℓ4
ℓ

2
−

π2PV 2

2ℓ2
ℓ

2
+

π4EyAV 4

8ℓ4
3ℓ

8
=

π2

4ℓ
(Pcr − P )V

2
+

3π2A

64I33ℓ
PcrV

4

=
π2

4ℓ

[
(Pcr − P )V

2
+

3A

16I33
PcrV

4

]
.

Stationarizing this with respect to variations in V (setting
δU = ∂U

∂V δV = 0 for all δV ), we obtain

(Pcr − P )V +
3A

8I33
PcrV

3 = 0 =⇒ V ∗ = 0,±

√
8I33
3A

(
P

Pcr
− 1

)
.

Real only for
P > Pcr
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3. Basic Post Buckling Analysis

So equilibrium is achieved for either

V 2
0 = 0, or V 2

1,2 =
8I33
3A

(
P

Pcr
− 1

)
.

Looking for the second order optimality conditions we have,

U =
π2

4ℓ

[
(Pcr − P )V 2 +

3A

16I33
V 4

]
.

dU

dV
=

π2

2ℓ

[
(Pcr − P )V +

3A

8I33
V 3

]
d2U

dV 2
=

π2

2ℓ

[
(Pcr − P ) +

9A

8I33
V 2

]
Substituting the equilibrium solutions we have,

V = V0 = 0

d2U

dV 2
= −π2

2ℓ
(P − Pcr)

V = V1,2

d2U

dV 2
=

π2

ℓ
(P − Pcr).

P < Pcr Stable

P > Pcr Unstable

P < Pcr Non-Real

P > Pcr Real, Stable
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3.1. The Bifurcation Diagram
Basic Post Buckling Analysis

The above analysis allows us to sketch the bifurcation diagram. This
type of bifurcation is often termed the Pitchfork bifurcation (for
obvious reasons).

Unlike linearized stability analysis, the nonlinear analysis allows us to
study the force-deflection curve of the system post buckling also.

But what about axial deformations??
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3.2. Axial Deflections
Basic Post Buckling Analysis

For studying the axial deflections also, we modify the kinematics to allow
these, such that

u1 = u−X2v, u2 = v =⇒ E11 = u′ −X2v
′ +

(v′)
2

2
.

Using this, the strain energy density becomes

U =
EyI33

2
(v′′)2+

EyA

8
(v′)4−P

2
(v′)2+

EyA

2
(u′)2 +

EyA

2
u′(v′)2 − (−PuT ),

with the new terms highlighted in blue. (uT is tip axial displacement)
The equation governing axial deflection u cdis

EyAu
′′ + EyAv

′v′′ = 0, u = 0, @X1 = 0, u = uT , @X1 = ℓ.

Substituting v = V sin
(
πX1

ℓ

)
and applying the boundary conditions leads

to,

u = −πV 2

8ℓ
sin

(
2πX1

ℓ

)
+ uT

X1

ℓ
.
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3.2. Axial Deflections
Basic Post Buckling Analysis

Resubstituting the above and extremizing in uT yields,

uT = − Pℓ

EyA
− ℓ

4EyI33
PcrV

2 .

On the “main branch”, V = 0 so we have uT = − ℓ

EyA
P .

On the bifurcated branch, V 2 = 8I33
3A ( P

Pcr
− 1). So,

uT = −5

3

ℓ

EyA
P +

2ℓ

3EyA
Pcr .

In simpler terms, the axial stiffness before and after bifurcation are:

Before bifurcation (P < Pcr)

duT

dP
=

EyA

ℓ

After Bifurcation P > Pcr

duT

dP
=

3

5

EyA

ℓ

Loss in stiffness
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3.2. Axial Deflections
Basic Post Buckling Analysis

We can now sketch the bifurcation diagram of the axial component also in
terms of uT :

The axial deformation field is written as

u(X1) = − π

8ℓ
V 2

[
sin

(
2π

ℓ
X1

)
+

2π

ℓ
X1

]
− P

EyA
X1 .
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3.2. Axial Deflections
Basic Post Buckling Analysis

Summary
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