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Solid Section Torsion

1. Solid Section Torsion
Basic Setup

We assume:
1 No direct stresses applied:

σ11 = σ22 = σ33 = 0

2 Sections “rotate rigidly”:

γ23 = 0 =⇒ σ23 = 0.

3 Body is at equilibrium under
constant torque applied at right
end.

We will denote the section by S
and the section-boundary by Γ.
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Solid Section Torsion Stress Formulation

1.1. Stress Formulation
Solid Section Torsion

Since we assume σ11 = σ22 = σ33 = σ23 = 0, the equilibrium equations
read,

σ12,2 + σ13,3 = 0, σ12,1 = 0, σ13,1 = 0.

We introduce the Prandtl Stress Function ϕ(X2, X3) (no dependence
on X1) such that

σ12 = ϕ,3, σ13 = −ϕ,2.
This satisfies equilibrium by definition.
In terms of strains the above assumptions imply that we only have E12

and E13 active. Recall that Strain compatibility is ϵmjkϵnilEij,mn = 0
(see Module 3).
The non-trivial compatibility equations read,

E12,23 − E13,22 = 0

E12,33 − E13,23 = 0

}
=⇒

ϕ,332 + ϕ,222 = 0

ϕ,333 + ϕ,322 = 0

}
=⇒ ∇2ϕ = constant .

This is known as the Poisson’s problem. What about Boundary
Conditions?

Kinematic consid-
erations will give
us this ”constant”.
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Solid Section Torsion Stress Formulation

1.1. Stress Formulation
Solid Section Torsion

We derive the coordinate
transformation on the boundary as
follows:
dX2e2 + dX3e3 = dses + dnen

=⇒
[
dX2

dX3

]
=

[
⟨e2, es⟩ ⟨e2, en⟩
⟨e3, es⟩ ⟨e3, en⟩

] [
ds
dn

]
and,

[
es
en

]
=

[
⟨e2, es⟩ ⟨e3, es⟩
⟨e2, en⟩ ⟨e3, en⟩

] [
e2
e3

]
=

[
X2,s X3,s

X2,n X3,n

] [
e2
e3

]
Considering only Cartesian
transformations (inverse has to be
transpose), we will also have[

es
en

]
=

[
X3,n −X2,n

−X3,s X2,s

] [
e2
e3

]
.

These are two alternate
but equivalent representa-
tions for es and en that we
will invoke as convenient.

Balaji, N. N. (AE, IITM) AS3020* October 15, 2024 5 / 41



Solid Section Torsion Stress Formulation

1.1. Stress Formulation
Solid Section Torsion

We derive the coordinate
transformation on the boundary as
follows:
dX2e2 + dX3e3 = dses + dnen

=⇒
[
dX2

dX3

]
=

[
⟨e2, es⟩ ⟨e2, en⟩
⟨e3, es⟩ ⟨e3, en⟩

] [
ds
dn

]
and,

[
es
en

]
=

[
⟨e2, es⟩ ⟨e3, es⟩
⟨e2, en⟩ ⟨e3, en⟩

] [
e2
e3

]
=

[
X2,s X3,s

X2,n X3,n

] [
e2
e3

]
Considering only Cartesian
transformations (inverse has to be
transpose), we will also have[

es
en

]
=

[
X3,n −X2,n

−X3,s X2,s

] [
e2
e3

]
.

These are two alternate
but equivalent representa-
tions for es and en that we
will invoke as convenient.

Balaji, N. N. (AE, IITM) AS3020* October 15, 2024 5 / 41



Solid Section Torsion Stress Formulation

1.1. Derivation of Coordinate Transformation
Relationships
Stress Formulation

For cartesian transformations, the determinant has to be unity. So the
inverse can be written as[

X2,s X3,s

X2,n X3,n

]−1

︸ ︷︷ ︸
T−1

=

[
X3,n −X3,s

−X2,n X2,s

]
︸ ︷︷ ︸

Adj(T)

.

Also, for cartesian transformations, the inverse has to be the transpose of
the matrix. So we have[

X2,s X2,n

X3,s X3,n

]
︸ ︷︷ ︸

TT

=

[
X3,n −X3,s

−X2,n X2,s

]
︸ ︷︷ ︸

T−1

.

So the following equalities make sense:[
es
en

]
=

[
X2,s X3,s

X2,n X3,n

] [
e2
e3

]
, and

[
es
en

]
=

[
X3,n −X2,n

−X3,s X2,s

] [
e2
e3

]
.

T−T
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Solid Section Torsion Stress Formulation

1.1. Stress Formulation
Solid Section Torsion

Enforcing stress-free section
boundary condtion leads to:

 0 σ12 σ13
σ12 0 0
σ13 0 0


n̂=−en︷ ︸︸ ︷ 0
X3,s

−X2,s

 =

00
0


=⇒ σ12X3,s − σ13X2,s = 0

(ϕ,3X3,s + ϕ2X2,s) = ϕ,s = 0

That is, on the section-boundary,
the stress function is constant, set
to 0 w.l.o.g.:

ϕ =�����:0
constant on Γ.

We invoke
en = −X3,se2 + X2,se3 here.
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Solid Section Torsion Displacement Formulation

1.2. Displacement Formulation
Solid Section Torsion

The strains are,
E11 = u1,1 = 0

E22 = −θ,2X3 = 0

E33 = θ,3X2 = 0

2E23 = θ − θ = 0

2E12 = u1,2 − θ,1X3 =
σ12

G
=
ϕ,3

G

2E13 = u1,3 + θ,1X2 =
σ13

G
= −ϕ,2

G

Differentiating the strain expressions for
σ12 and σ13 above allows us to write:

ϕ,kk = −2Gθ,1 ,

which gives us the “constant” required for
the Poisson problem from before (along
with the B.C. ϕ = 0onΓ).
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Solid Section Torsion Section Moment

1.3. Section Moment
Solid Section Torsion

The non-trivial shear strains are:

σ12 = ϕ,3 = G(u1,2 −X3θ,1)

σ13 = −ϕ,2 = G(u1,3 +X2θ,1)

The moment about e1 is

M1 =

∫
S
(X2σ13 −X3σ12)dA .

Since σ12 and σ13 are expressed in terms
of kinematic quantities as well as the
stress function ϕ, we will write down
relationships with both before proceeding.

It is also obvious that ϕ,kk = −2Gθ,1
implies

u1,kk = 0 .
This is the governing equation

in terms of the section-
axial displacement field.
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Solid Section Torsion Section Moment

1.3. Section Moment
Solid Section Torsion

In terms of stress function

M1 =

∫
S
(X2σ13 −X3σ12)dA

= −
∫
S
(ϕ,2X2 + ϕ,3X3)dA

M1 = 2

∫
S
ϕdA .

In terms of kinematic description

M1 =G

∫
S
(X2u1,3 −X3u1,2)dA

+G

∫
S
(X2

2 +X2
3 )dA︸ ︷︷ ︸

I11

θ,1

=GI11θ,1 +G

∫
S
ϵ1jkXju1,kdA

=GI11θ,1 +G

∫
S
ϵijk(Xju1),kdA

−G

∫
S
���ϵijkδjku1dA

M1 =GI11θ,1 +G

∫
Γ

ϵ1jkXjnku1d|s|

M1 = GI11θ,1 +G

∫
Γ

(X × n)1u1d|s| .

This term is clearly
zero for a perfectly

circular section. What
about other types?

Not zero in the general case.
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Solid Section Torsion Section Moment

1.3. Section Moment: St. Venant’s Warping Function
Solid Section Torsion

For a “pure twist” condition, due to translational symmetry, u1 can
not depend on X1. It also makes sense that u1 has to be proportional to
the twist θ somehow.

Since θ depends on X1, but θ,1 is a constant, St. Venant introduced a
warping function ψ(X2, X3) such that

u1 = θ,1ψ(X2, X3) .

Under this definition, the effective moment M1 can be given as,

M1 = G

(
I11 +

∫
Γ

(X × n)1ψd|s|
)

︸ ︷︷ ︸
J

θ,1 = GJθ,1 .

Alternatively, J can also be written as,

J = I11 +

∫
S
X2ψ,3 −X3ψ,2dA

The product GJ is also known as Torsional Rigidity
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Solid Section Torsion Membrane Analogy

1.4. Membrane Analogy
Solid Section Torsion

The governing equations in terms of Prandtl Stress function is

ϕ,kk + 2Gθ,1 = 0, ϕ = 0onΓ,

along with M1 = 2
∫
S ϕdA.

Transverse Deflections of a Membrane under Isotropic Linear Tension
Density T and Uniform Planar Load Density P

The displacement field

u1 = 0, u2 = 0, u3 = w(X1, X2)

The strain Field

E11 =
w2

,1

2
, E22 =

w2
,2

2
, 2E12 = w,1w,2

The Stress Field

σ11 =
1

t
T, σ22 =

1

t
T.

The governing equations,
therefore, are identical
to that of a membrane

undergoing deformation
under the action of a
uniform area-load P .
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Strain Energy Density
(Integrated over thickness)

U =
1

2

(
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,2
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Equations of Motion a:
∂

∂Xk

∂U
∂w,k

− ∂U
∂w
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T (w,11 + w,22)− P = 0

aEuler-Ostrogradsky
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Solid Section Torsion Membrane Analogy

1.4. Membrane Analogy: Governing Equations of u1
(Warping)
Solid Section Torsion

The governing equations in terms of u1 is the Laplace equation:

u1,kk = 0,

and its boundary conditions (Neumann B.C.s) are written as (again
based on zero traction at free end:

G ⟨(u1,2 −X3θ,1)e2 + (u1,3 +X2θ,1)e3, en⟩ = 0

=⇒ ⟨u1,2e2 + u1,3e3, X2,ne2 +X3,ne3⟩
− θ,1⟨X3e2 −X2e3,−X3,se2 +X2,se3⟩ = 0

=⇒ u1,n = −θ,1
2

d

ds

(
X2

2 +X2
3

)
= −θ,1

X3X2,n︸ ︷︷ ︸
−n2

−X2X3,n︸ ︷︷ ︸
−n3

 .

Note: We have used two differ-
ent representations of en here:

en = X2,ne2 +X3,ne3, and

en = −X3,se2 +X2,se3.

Also, we are representing
the outward normal as

n̂ = n2e2 + n3e3 = −en.
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Solid Section Torsion Membrane Analogy

1.4. Membrane Analogy
Solid Section Torsion

Equations in the Stress Function

∇2ϕ = −2Gθ,1,

ϕ = 0onΓ,

M1 = 2

∫
S
ϕdA.

Equations in Warping

∇2u1 = 0,

∂u1

∂n
= θ,1 (X3n2 −X2n3) onΓ.

M1 = GJθ,1

Relating the two

Once we find ϕ, we can integrate the
following to get u1:

1

G
ϕ,3 = u1,2 −X3θ,1

− 1

G
ϕ,2 = u1,3 +X2θ,1

If interested, you can see
the FreeFem scripts in

the website for numerical
implementations of these.
You need to know just a

little bit about weak forms
to understand the code,

it is very straightforward.

(not for exam)
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Solid Section Torsion Tutorial: Elliptical Section

1.5. Tutorial: Elliptical Section
Solid Section Torsion

Let us consider an elliptical section and choose the stress function as

ϕ = C

(
X2

2

a2
+
X2

3

b2
− 1

)
.

The Laplacian of ϕ evaluates as,

∇2ϕ = 2C

(
1

a2
+

1

b2

)
= −2Gθ,1 =⇒ C = −Gθ,1

a2b2

a2 + b2
.

Let us first compute the total resultant twisting moment M1 that this
represents:

M1 = 2

∫
S
ϕ = 2C

 1

a2

πa3b
4︷ ︸︸ ︷∫

S
X2

2dA+
1

b2

πab3

4︷ ︸︸ ︷∫
S
X2

3dA−

πab︷ ︸︸ ︷∫
S
dA

 = −Cπab

M1 = G
πa3b3

a2 + b2
θ,1 .

The torsional rigidity reads,

GJ = G
πa3b3

a2 + b2
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(
X2

2

a2
+
X2

3

b2
− 1

)
.

The Laplacian of ϕ evaluates as,

∇2ϕ = 2C

(
1

a2
+

1

b2

)
= −2Gθ,1 =⇒ C = −Gθ,1

a2b2

a2 + b2
.

Let us first compute the total resultant twisting moment M1 that this
represents:

M1 = 2

∫
S
ϕ = 2C

 1

a2

πa3b
4︷ ︸︸ ︷∫

S
X2

2dA+
1

b2

πab3

4︷ ︸︸ ︷∫
S
X2

3dA−

πab︷ ︸︸ ︷∫
S
dA

 = −Cπab

M1 = G
πa3b3

a2 + b2
θ,1 .

The torsional rigidity reads,

GJ = G
πa3b3

a2 + b2
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Solid Section Torsion Tutorial: Elliptical Section

1.5. Tutorial: Elliptical Section
Solid Section Torsion

For the axial deflection we have two equations (by equating shear stress
expressions),

u1,2 = θ,1ψ,2 = − 2a2

a2 + b2
θ,1X3 + θ,1X3 = −a

2 − b2

a2 + b2
θ,1X3

u1,3 = θ,1ψ,3 =
2b2

a2 + b2
θ,1X2 − θ,1X2 = −a

2 − b2

a2 + b2
θ,1X2

Integrating them separately we have,

u1 = −a
2 − b2

a2 + b2
θ,1X2 + f1(X3)

= −a
2 − b2

a2 + b2
θ,1X2 + f2(X2)

f1 and f2 have to be constant. Setting it to zero we have,

u1 = −a
2 − b2

a2 + b2
θ,1X2X3 = − a2 − b2

Gπa3b3
M1X2X3 .
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Solid Section Torsion Tutorial: Elliptical Section

1.5. Tutorial: Elliptical Section
Solid Section Torsion

Stress Function

Section Warping

General Sections

Torsion is amenable to analysis when the solid section boundary can be expressed in closed form AND its
Laplacian evaluates to a constant. (See Chapter 9 in [1])

Every assumed form of ϕ will give us a warping field. For an application wherein the section warping is also
constrained, this solution is not exact. (St. Venant’s principle can be invoked, however).

Several analytical techniques exist (check [1] and references therein).

Fully numerical approaches are also possible, see the FreeFem scripts in the website.
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Solid Section Torsion Tutorial: Elliptical Section

1.5. Tutorial: Elliptical Section: Results in 3D
Solid Section Torsion

Here is a 3D FE Result.
(Salome Meca HDF Files in website)

Mid-Section Warping
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Solid Section Torsion Tutorial: Elliptical Section

1.5. General Sections
Solid Section Torsion

Square Section Triangular Section
An Arbitrary Hand-drawn Section

Sections with Holes

The validity of the governing equations extend beyond
singly connected sections. Nothing stops us from applying
it for multiply connected sections also for the warping
formulation. (Some additional considerations necessary for
the stress function, see sec. 9.3.3 in [1]).
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Solid Section Torsion Rectangular Sections

1.6. Rectangular Sections
Solid Section Torsion

Rectangular sections are slightly more involved, in general. But an
important simplifcation is achieved for thin sections.
Let us look at some numerical results for motivation (FreeFem code
b rectangle.edp).

t
h = 1 1

2
1
4

1
8

1
16

t

h

For the thin cases, we will ap-
proximate the shear function as

This will form the basis for
the study of thin sections.

≈
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Solid Section Torsion Rectangular Sections

1.6. Rectangular Sections: Thin Strip Idealization
Solid Section Torsion

Idealizing the rectangle as a “strip” (t/h is very small), we can write the
stress function Poisson problem as,

ϕ,22 = −2Gθ′, with ϕ = 0 at X2 ∈
{
− t

2
,
t

2

}
, X3 ∈

{
−h
2
,
h

2

}
,

solved by ϕ(X2, X3) = −Gθ′
(
X2

2 −
(
t

2

)2
)

.

This implies the following shear stress and resultant moment:

σ12 =

ϕ,3︷︸︸︷
0 , σ13 =

−ϕ,2︷ ︸︸ ︷
2GX2θ

′, M1 = 2

∫
S
ϕdA = G

J︷︸︸︷
ht3

3
θ′.

The shear strain is γ13 = u1,3 + u3,1 = u1,3 +X2θ,1, which implies

u1 = θ′X2X3 as the warping field (setting integration constant to zero).

Warping Profile
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Torsion of Thin-Walled Sections

2. Torsion of Thin-Walled Sections

Using the same notation as in Module 4, the equilibrium equations, for a
thin-walled section undergoing pure torsion (σ11 = σss = σnn = σsn = 0)
can be written as

��*0
σ11,1 + σ1s,s = 0, σ1s,1 = 0.

This implies, when in “pure torsion”, σ1s,s is constant along the section
arc.

Since q(s) =
∫
σ1s,sdXn, this shows that shear flow is constant across

the section when it is under pure torsion.

The resultant moment of a shear flow distribution q(s) can be given by

M1 =

∫
S
X × (q(s)dses) = q

∫
S
pds,

where p is the perpendicular distance to the point on the skin under
consideration.

An important simplification occurs
when S is a closed section. This

leads to the Bredt-Batho Formula:

M1 = 2Aq.
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Torsion of Thin-Walled Sections Coordinate Transformations

2.1. Transformation of Displacement Field to Skin-local Coordinates
Torsion of Thin-Walled Sections

The section displacement field transforms
as, [

us
un

]
=

[
X2,s X3,s

X2,n X3,n

] [
u2
u3

]
=

[
X3,n −X2,n

−X3,s X2,s

] [
u2
u3

]
.

The tangential component of
displacement along the boundary Γ can be
written as,

us = X2,s(v −X3θ) +X3,s(w +X2θ)

= X2,sv +X3,sw + θ (X3,sX2 −X2,sX3)︸ ︷︷ ︸
−Xn=p

=⇒ us = pθ + vX2,s + wX3,s .

We will consider the
bending-torsion com-

bined displacement field:

u2 = v −X3θ

u3 = w +X3θ,

and transform this to

the skin local co-

ordinate system.

Balaji, N. N. (AE, IITM) AS3020* October 15, 2024 23 / 41



Torsion of Thin-Walled Sections Coordinate Transformations

2.1. Transformation of Displacement Field to Skin-local Coordinates
Torsion of Thin-Walled Sections

The transformed displacement field combining bending and torsion is:

u1 = −X3v
′ −X2w

′ + θ′ψ

u2 = v −X3θ

u3 = w +X2θ

 =⇒
u1 (unchanged)
us = pθ + vX2,s + wX3,s

un = Xsθ − vX3,s + wX2,s

The shear strain along a thin section between the e1, es directions is

γ1s = u1,s + us,1 = u1,s + pθ′ +X2,sv
′ +X3,sw

′ =
τ

G
=
q(s)

Gt
.

Integrating this over the skin, we get
s∫

0

q(x)

Gt
dx =(u1(s)− u1(0)) + θ′

s∫
0

pdx+ v′
s∫

0

X2,xdx+ w′
s∫

0

X3,xdx

= (u1(s)− u1(0)) + θ′2AOs(s) + v′(X2(s)−X2(0)) + w′(X3(s)−X3(0)).

Over a completely closed section we have,
∮
q(s)

Gt
ds = 2Aθ′
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Torsion of Thin-Walled Sections Closed Sections

2.2. Closed Sections: Bredt-Batho Theory
Torsion of Thin-Walled Sections

For closed sections under pure torsion, we will set v = w = 0.
So q is constant over the section and is written with the Bredt-Batho
Formula based on the resultant twisting moment M1 as

M1 = 2Aq =⇒ q =
M1

2A
.

The shear flow integral reads,

q

s∫
0

1

Gt
dx

︸ ︷︷ ︸
δOs(s)

= (u1(s)− u1(0)) + θ′
s∫

0

pdx

︸ ︷︷ ︸
2AOs(s)

.

For the whole section, this becomes

q

∮
1

Gt
ds = θ′2A =⇒ θ′ =

q

2A

∮
1

Gt
ds.

So we can write the warping as

u1(s)− u1(0) =

qδ︷ ︸︸ ︷
M1δ

2A

(
δOs(s)

δ
− AOs(s)

A

)

The integration constant u1(0) can be found by enforc-
ing σ11 = 0 on the section after assuming σ11 ∝ u1. So∮
u1(s)ds = 0 in the section, leading to:

u1(0) =

∮
u10(s)tds∮

tds
,

where u10(s) is the warping distriution assuming u1(0) =
0.

Combining these two, we
get the torsional rigidity:

M1 = 2Aq

=
4A2

δ
θ′.

For constant G, t, we get,

M1 =
4A2

|Γ|
Gtθ′ = GJθ′

=⇒ J =
4tA2

|Γ|
.

|Γ| is the section circumference.
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Torsion of Thin-Walled Sections Closed Sections

2.2. Closed Sections: The Neuber Beam
Torsion of Thin-Walled Sections

A natural question arises: what should I do if I want to
minimize/eliminate warping?

We want to set u1(s)− u1(0) = 0, ∀ s ∈ Γ. This implies:

δOs(s)

δ
=

AOs(s)

A
,

which is satisfied iff

1

δ

dδOs(s)

ds︷︸︸︷
1

Gt
=

p

2A
.

This implies that the quantity pGt (modulus as well as thickness can vary
along section) has to be a constant:

pGt =
2A
δ
.

It is known as a Neuber Beam if this is satisfied. (eg., circular sections)
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Torsion of Thin-Walled Sections Closed Sections

2.2. Closed Sections: The Shear Center
Torsion of Thin-Walled Sections

Based on relating the kinematics to stress (through linear elastic
constitutive relationships), we have written the shear flow integral as:∮

q(s; ξ2, ξ3)

Gt
ds = 2Aθ′.

Suppose, for a closed section, we evaluated the shear flow by the approach
in Module 4. Recall that we required the resultant moment M1 to be
zero for this: ∮

p

q(s;ξ2,ξ3)︷ ︸︸ ︷
(qb(s; ξ2, ξ3) + q0(ξ2, ξ3)) ds = 0.

We can not take it for granted that the section does not twist when no
moment is applied. So we add this additional consideration in our
definition of shear center. We posit that the resultant twist angle must
also be zero when the shear resultants act along the shear center:

θ′ = 0 =⇒
∮
qb(s; ξ2, ξ3) + q0(ξ2, ξ3)

Gt
ds = 0

Considering V2, V3 separately, we can get 3 equations in the 3 unknowns
and can solve it.
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Torsion of Thin-Walled Sections Closed Sections

2.2. Closed Sections: The Shear Center
Torsion of Thin-Walled Sections

One possible sequence of analysis is this (for shear):

1 We choose some convenient point as origin, say O.

2 We first obtain the “baseline” shear flow qb(s) using some arbitrary
starting point for the shear flow integral.

3 We estimate q0 by requiring zero twist:

∮
qb(s) + q0

Gt
ds = 0 =⇒ q0 = −

∮ qb(s)
Gt ds∮
1
Gtds

.

4 We write down the resultant moment as∮
p(qb(s) + q0(s))ds = V2(−ξ3) + V3(ξ2).

The shear center coordinates (ξ2, ξ3) are estimated by comparing the
coefficients of V2 & V3 in the above.

Question: We never required
the zero twist condition for

open sections. Does this mean
open sections can undergo

twisting even when M1 = 0?
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Torsion of Thin-Walled Sections Closed Sections

2.2. Closed Sections: Tutorial on Rectangular Closed
Sections
Torsion of Thin-Walled Sections

Consider this rectangular Section:

A
B

C D

e2

O

e2

We will write out the warping quantity
1

2Aθ′ (u(s)− u(0)) = δOS(s)
δ − AOS(s)

A as a table in the following fashion:

Section δOS(s) AOS(s)
δOS(s)

δ − AOS(s)
A

1
2Aθ′ (uend − ustart)

A→B
a
2−X2

Gt
b
4 (

a
2 −X2)

a−b
4a(a+b) (

a
2 −X2)

a−b
4(a+b)

B→C
b
2−X3

Gt
a
4 (

b
2 −X3) − a−b

4b(a+b) (
b
2 −X3) − a−b

4a(a+b)

C→D
a
2+X2

Gt
b
4 (

a
2 +X2)

a−b
4a(a+b) (

a
2 +X2)

a−b
4a(a+b)

D→A
b
2+X3

Gt
a
4 (

b
2 +X3) − a−b
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b
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2.2. Closed Sections: Tutorial on Rectangular Closed
Section
Torsion of Thin-Walled Sections

Letting uA be some constant, we have the following:

uB = uA + 2Aθ′ a− b

4(a+ b)
, uC = uA, uD = uA + 2Aθ′ a− b

4(a+ b)
.

In each member, the warping function is distributed linearly in each
member such that the warped shape looks like:

Figures from [2]

Imposing zero net translation of section we get,∮
u(s)ds = uA2(a+ b) +

a− b

4
:= 0 =⇒ uA = − a− b

8(a+ b)
.
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2.3. Open Sections
Torsion of Thin-Walled Sections

We will invoke the thin-strip idealization for this. The main results from
the idealization are:

ϕ = −Gθ′
(
X2

2 − t2

4

)
; M1 = G

ht3

3
θ′;

σ12 = 0, σ13 = 2GX2θ
′, u1 = θ′X2X3.

For general thin-walled sections, the torsion constant J is generalized as,

J =
1

3

∫
S
t3ds, s.t. M1 = GJθ′.

Thin Section Kinematics

The kinematics of thin sections can be given as

us = −Xnθ + vX2,s + wX3,s
Xn=−p
=====⇒pθ + vX2,s + wX3,s

un = Xsθ − vX3,s + wX2,s
Xs=s
====⇒ sθ − vX3,s + wX2,s.
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2.3. Open Sections: Warping
Torsion of Thin-Walled Sections

Along the centerline σ1n = σ1s = 0 (Note: shear flow is zero under the
idealization!). So we have (on the centerline),

γ1s = 0 = u1,s + us,1 = u1,s + pθ′,

where p is the perpendicular distance to the point on the skin. This can
be integrated to

u1(s)− u1(0) = −θ′
s∫

0

pds = −2θ′AOs(s).

u1(0) can be fixed based on enforcing the zero straight-stress (σ11 = 0,
σ11 ∝ u1) assumption which leads to∫

Γ

u1(s)ds = 0 =⇒ u1(0) =
1

|Γ|
2θ′
∫
Γ

AOs(s)ds.

|Γ| is the total circumference.
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2.3. Open Sections
Torsion of Thin-Walled Sections

For points off of the centerline, we consider σ1n = 0, which implies,

γ1n = u1,n + un,1 = u1,n + sθ′ = 0 =⇒ u1,n = −sθ′,

where s is the position of the point along the skin (measured relative to
the central line).

This can be integrated to

u1 = −θ′ns+ u1(n = 0),

where n is the position with respect to the centerline along en.

Note that while e2 × e3 = e1, we have es × en = e1. Hence the negative
sign in comparison to the thin-strip expression.

u1(n = 0) = u0 − 2θ′AOs(s) from the centerline considerations above.
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2.3. Open Sections
Torsion of Thin-Walled Sections

In summary, the warping can be written in terms of section-local
coordinates as,

u1 = u0 − 2AOs(s)θ
′︸ ︷︷ ︸

u1(n=0)

−θ′ns .

The first term in the above, representing center-line warping, is known as
primary warping, and the second term, representing section warping, is
known as secondary warping.

For sufficiently thin sections, the latter is usually neglected.
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2.3. Open Sections Tutorial: C-Section
Torsion of Thin-Walled Sections

Let us consider the C-Section from
Module 4.

We will shift the origin to the
shear center and consider the
integrals.

The torsional rigidity is given by:

GJ =
Gt3

3

∫
Γ

ds = G
t3(h+ 2b)

3

Warping is worked out as,

AOs(s) end

B → A h
2 (b+ ξs −X2)

bh
2

A→ C −ξs(h2 −X3) −ξsh
C → D h

2 (X2 − ξs)
bh
2

Using the table we can write:

ub(s) = −θ′


h
2
(b+ ξs −X2) B → A

bh
2
− ξs(

h
2
−X3) A→ C

bh
2
− h

2
(X2 − 2ξs) C → D

.
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2.3. Open Sections Tutorial: C-Section I
Torsion of Thin-Walled Sections

Since warping is linear in each segment, it is sufficient to look at points
A,B,C,D to visualize it completely.

Here we have:

uB = 0, uA = −θ′ bh
2
, uC = −θ′ bh

2

(
1− 2

ξs
b

)
, uD = −θ′ bh

2

(
2− 2

ξs
b

)
.

The integral of warping over the complete section comes out to be∫
Γ

ubds = −θ′
(
b2h

4
+
bh2

2
(1− ξs

b
) +

b2h

4
(3− 4

ξs
b
)

)
= −θ′ bh(h+ 2b)

2

(
1− ξs

b

)
Requiring

∫
Γ
uds = 0 implies, since u = ub + u0,

u0 = − 1

|Γ|

∫
Γ

ubds = θ′
bh

2

(
1− ξs

b

)
.
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2.3. Open Sections Tutorial: C-Section II
Torsion of Thin-Walled Sections

Notice that uo is exactly the negative of the warping at the mid-point between
points A and C (marked O in figure). The warping at this point is given by:

uO =
uA + uC

2
= −θ′ bh

2

(
1− ξs

b

)
.

This implies that the section warps in such a manner as to ensure that point O
does not move at all (uo + uO = 0).

Finally the warping function at the corner points come out to be,

uB = θ′
bh

2

(
1− ξs

b

)
, uA = −θ′ ξsh

2
, uC = θ′

ξsh

2
, uD = −θ′ bh

2

(
1− ξs

b

)
Original Section Warped Section

Twist direction
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2.3. Open Sections Tutorial: C-Section
Torsion of Thin-Walled Sections

Let us also illustrate the above with exact (numerical) results.

Stress Function Distribution

Warping Distribution

Primary Warping

Secondary Warping
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2.4. Combined Cells
Torsion of Thin-Walled Sections

It is instructive to now take stock of what we have obtained so far. The
moment-twist relationship is generically written by

M1 = GJθ′,

with J being the torsion constant.

Solid Sections

J = I11 +

∫
S
X2ψ,3 −X3ψ,2dA

Closed Sections

J =
4tA2

|Γ|

Open Sections

J =
t3|Γ|
3

Let us consider the implications on a Circular Section of radius R.

Solid Section Js = I11 = πR4

2 .

Closed Section Jc =
4t×(πR2)2

2πR = 2πR3t

Open Section Jo = t3

3 2πR = 2π
3 Rt

3

For Jc = Js, we need
t = 1

4R = 0.25R.

For Jo = Js, we need

t = 3

√
3
4R ≈ 0.91R.

For a given thickness,

Jo
Jc

=
1

3

(
t

R

)2

= O(t2).

So open sections can safely be
ignored for torsion calcula-

tions in the combined context!

For shear, we can follow ex-
actly the same procedure as in
module 4 for combined sections.
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3. Summary of Final Expressions

Solid Sections

J = I11 +

∫
S
X2ψ,3 −X3ψ,2dA

u1 = θ′ψ(X2, X3)

Thin Strip Idealization

J =
ht3

3

u1 = X2X3θ
′

Closed Sections

GJ =
4A2

δ

u1(s) = u0 + 2Aθ′
(
δOs(s)

δ
− AOs(s)

A

)

Open Sections

GJ =
1

3

∫
S
Gt3ds

u1(s) = u0 − 2θ′AOs(s)−θ′ns

δOs(s) =

s∫
0

1

Gt
dx; AOs(s) =

1

2

s∫
0

pdx
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