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Solid Section Torsion

1. Solid Section Torsion

Basic Setup

o We assume:
@ No direct stresses applied:

011 = 022 = 033 =0

@ Sections “rotate rigidly”:

AEs . Y23 =0 = 023 =0.

Section

Boundary @ Body is at equilibrium under

constant torque applied at right
/ end.

:QQ . o We will denote the section by S

\\ Section and the section-boundary by T'.
/S
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Solid Section Torsion  Stress Formulation

1.1. Stress Formulation

Solid Section Torsion

@ Since we assume 011 = 099 = 033 = 093 = 0, the equilibrium equations

read,
o122+ 0133 =0, 0121 =0, o131 =0.

e We introduce the Prandtl Stress Function ¢(Xs, X3) (no dependence

on X7) such that
O12 =03, 013=—0¢2.
This satisfies equilibrium by definition.

o In terms of strains the above assumptions imply that we only have 1
and Ei3 active. Recall that Strain compatibility is €, x€nitEij,mn = 0
(see Module 3).

@ The non-trivial compatibility equations read,

Eio93 — Eiz00 =0 $332 + P22 =0 ‘
—
$333+ P32 =0

@ This is known as the Poisson’s problem. What about Boundary
Conditions?

V2¢ = constant |.

Ei933 — Fi323 =0
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1.1. Stress Formulation

Solid Section Torsion

@ Since we assume 011 = 099 = 033 = 093 = 0, the equilibrium equations

read,
o122+ 0133 =0, 0121 =0, o131 =0.

e We introduce the Prandtl Stress Function ¢(Xs, X3) (no dependence

on X7) such that
O12 =03, 013=—0¢2.
This satisfies equilibrium by definition.

o In terms of strains the above assumptions imply t|
and Fh3 active. Recall that Strain compatibility
(see Module 3).

@ The non-trivial compatibility equations read,

Eio93 — Eiz00 =0 $332 + P22 =0 ‘
—
$333+ P32 =0

@ This is known as the Poisson’s problem. What about Boundary
Conditions?

Kinematic consid-
erations will give
us this ”constant”.

V2¢ = constant |

Ei933 — Fi323 =0
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Solid Section Torsion  Stress Formulation

1.1. Stress Formulation

Solid Section Torsion

o We derive the coordinate
transformation on the boundary as
follows:
dXse, + dXze; = dse, + dne,,

ARNR
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n
0X2€5 (itward vorma

=X, s€ + X3, s€3
= _XS sy + X2 s€3

-]
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[

XB,n
X3,s

o Considering only Cartesian
transformations (inverse has to be
, transpose), we will also have

_X2,n €9
XZ,S €3 '

September 28, 2024

dXo] _ [lesre,) (e2:€n)] [ds
:> |:dX‘5:| <e37 s> <§37§n>_ dn
¢ [(e2re.)  (esre >] {g ]
and, S 2 37 =s 2
B |:§n:| <e2, n> <§37 §n> €3
X2,s XB,S 22_
_X2,n X3,n €3]
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Solid Section Torsion  Stress Formulation

1.1. Stress Formulation

Solid Section Torsion

o We derive the coordinate

AE2 transformation on the boundary as
follows:
dXse, + dX3zeq = dse, + dne,,
/ & . dXo]  [legres)  {esre,)] [ds

e - dX3 [(esre.)  (es,e,)]| [dn

€3 _

/ These are two alternate and, [gs} (€2,€5) (s e, >] {Q]
but equivalent representa- En :<e2’ "> (e, ”> €3
tions for e, and ¢, that we N\T—u_ Xo,s Xs,s} |:§2
will invoke as convenient. [ X2 Xan] [es]

onsidering only Cartesian
/ ey transformations (inverse has to be
\ > 5Xaes (i tRanspose), we will also have
€ €
y _Xg 562+X3363
€, = — X365+ Xa.4€5 €| _ | Xam  —Xon| |en
Cn _X3,s XQ,S €3
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Solid Section Torsion  Stress Formulation

1.1. Derivation of Coordinate Transformation
Relationships

Stress Formulation

e For cartesian transformations, the determinant has to be unity. So the
inverse can be written as

X2,s XS,s o o XS,n _X3,s
X2,n X3,n N _X2,n X2,s ’

T-1 Adj(T)

@ Also, for cartesian transformations, the inverse has to be the transpose of
the matrix. So we have

X2ﬁs X27n _ X37n _X37s
X3,s X3,n N _X2,n X2,s '

T T-1 T_T

@ So the following equalities make sense:

\k
Qs o X2,s X3,s QQ and ﬁs o X3,n 7X2,’n QQ
€n N X2,n X3,n €3 ’ €, o _X3,S X2,s €3 i
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Solid Section Torsion  Stress Formulation

1.1. Stress Formulation

Solid Section Torsion We invoke
e, = —X3,s6y + Xo se5 here.
AE2 e Enforcing stress-free section
&

boundary condtion leads to:

n=-e¢,
—_—

oz 0 0 —Xo s
= 012X3,s —013X2,s =
(p3X3,s+ P2Xos) =0 s =

0 012 013 0 0
g12 0 O X373 = 0
0

0

0

\E3

e That is, on the section-boundary,
the stress function is constant, set
to 0 w.l.o.g.:

/AN
)

ey = Xo ey + X353
= TR R ® —MO onT
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Solid Section Torsion Displacement Formulation

1.2. Displacement Formulation

Solid Section Torsion

@ The strains are,
By =ui1=0
By = —0,X5=0
Ess=05X2=0
2F23 =60—-0=0

012 ¢3
2E12 =u12 —01X3 = relimie
013 b2
2F13 =u13 + 01X = N lRE
Let = “19(;"}{2‘}{3) o Differentiating the strain expressions for
up = —0X3 .
s = 0X, o012 and o3 above allows us to write:

A (9\\\‘—. 22
1) Ok = —2G0 1|,

which gives us the “constant” required for
the Poisson problem from before (along
with the B.C. ¢ = 0onT).
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Solid Section Torsion Section Moment

1.3. Section Moment

Solid Section Torsion

\E2

i
\{

Let uy = uy (X1, X2, X3)
uy = —0X3
uz = 60X

&)

Balaji, N. N. (AE, IITM)

@ The non-trivial shear strains are:
or2=¢3 =Gui2— X36;)
o135 =—0¢2=G(u13+ X201)

e The moment about e; is

M1 = /(X2013 - Xgo'lg)dA .
S

@ Since 019 and o3 are expressed in terms
of kinematic quantities as well as the
stress function ¢, we will write down
relationships with both before proceeding.

e It is also obvious that ¢, = —2G6

implies
>]] uy gk = 0|
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Solid Section Torsion Section Moment

1.3. Section Moment

Solid Section Torsion
@ The non-trivial shear strains are:
or2=¢3 =Gui2— X36;)
= o135 =—0¢2=G(u13+ X201)

e The moment about e; is

M1 = /(nglg - Xgo'lg)dA .
S

Let w :“lg(j(("XZ*X“ @ Since o2 and o3 are expressed in terms
up = —0X3

o = X, of kinematic quantities as well as the
€5 stress function ¢, we will write down
relationships with both before proceeding.

e It is also obvious that ¢, = —2G6
This is the governing equation implies

in terms of the section- >]] Ul pr = 0|.

axial displacement field.
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Solid Section Torsion Section Moment

1.3. Section Moment

Solid Section Torsion

In terms of stress function

M, = /(X20'13 — X3012)dA
s
= —/(¢,2X2 + ¢,3X3)dA
s
My = 2/ ¢dA|
s

In terms of kinematic description

M, :G/(X2u1,3 — Xsuy2)dA
S

+G/(X§+X§)dAo,1
S
I

ZGI110,1 +G/ e1ijju17de
S

:Gfua,l —|—G/ €ijk(XjU1),de
S

*G/%éj/kuldA
S
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T

M, = GI110,1 +G/(£ X @)1U1d‘8| .
T
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Solid Section Torsion Section Moment

1.3. Section Moment

Solid Section Torsion
In terms of kinematic description

M, :G/(X2u1,3 — Xsuy2)dA
S

+G/(X§+X§)dAo,1
S

In terms of stress function B
11

ZGI119,1 +G /qijjuLde
This term is clearly
zero for a perfectly 1) kdA

circular section. What
about other types?

M, /(X2013 — X3012)dA
s

—/(¢,2Xz+¢,3X3)dA
s

M1:2/¢dA.
S

y M, IG1119,1 + G/ 61ijjnku1d|s|
T

M, = GI110,1 +G/(£ X @)1U1d‘8| .
T
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Solid Section Torsion Section Moment

1.3. Section Moment

Solid Section Torsion
In terms of kinematic description

M, :G/(X2u1,3 — Xsuy2)dA
S

+G/(X§+X§)dAa,1
S

In terms of stress function B
11

ZGI119,1 +G /qijjuLde
This term is clearly
zero for a perfectly 1).kdA

circular section. What
about other types?

M, =2 / BdA | o '
s __ _
/ Not zero in the general case.

v
My, = GI11160,1 + G/(K x n)iud|s| |.
r

M,y /(X2013 — X3012)dA
s

—/(¢,2X2+¢,3X3)dz4
s
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Solid Section Torsion  Section Moment

1.3. Section Moment: St. Venant’s Warping Function

Solid Section Torsion

e For a “pure twist” condition, due to translational symmetry, u; can
not depend on X;. It also makes sense that u; has to be proportional to
the twist # somehow.

@ Since 0 depends on X, but 6 is a constant, St. Venant introduced a
warping function ¢ (X, X3) such that

= 0,9(Xs, Xy) |

e Under this definition, the effective moment M7 can be given as,

M1 =G (111 + /(K X n)11/1d|5|> 971 = GJGJ .
JI

J

@ Alternatively, J can also be written as,

J=1In +/ Xop 3 — Xg1p 2dA
S
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1.3. Section Moment: St. Venant’s Warping Function

Solid Section Torsion

e For a “pure twist” condition, due to translational symmetry, u; can
not depend on X;. It also makes sense that u; has to be proportional to
the twist # somehow.

@ Since 0 depends on X, but 6 is a constant, St. Venant introduced a
warping function ¢ (X, X3) such that

= 0,9(Xs, Xy) |

e Under this definition, the effective moment M7 can be given as,

M1 =G (111 + /(K X n)11/1d|5|> 971 = GJGJ .
JI

J

o Al The product GJ is also known as Torsional Rigidity

J=1In +/ Xop 3 — Xg1p 2dA
S
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Solid Section Torsion Membrane Analogy

1.4. Membrane Analogy

Solid Section Torsion
e The governing equations in terms of Prandtl Stress function is
dre +2G0, =0, ¢=0onT,
along with M; = 2 [ ¢dA.
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Solid Section Torsion Membrane Analogy

1.4. Membrane Analogy

Solid Section Torsion

e The governing equations in terms of Prandtl Stress function is
(b,kk + 2G9’1 =0, (]5 =0onl,
along with M; = 2 [s ¢dA.

Transverse Deflections of a Membrane under Isotropic Linear Tension
Density 7" and Uniform Planar Load Density P

@ The displacement field
ur =0, u2=0, uz=w(X1,Xo)

@ The strain Field
2 2
U}’l ’w’g
Pz Peean

@ The Stress Field

1 1
011 = ?T’ o920 = ET.

2E12 = wiw,2

v
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Solid Section Torsion Membrane Analogy

1.4. Membrane Analogy

Solid Section Torsion

e The governing equations in terms of Prandtl Stress function is
(b,kk + 2G9’1 =0, (]5 =0onl,
along with M; = 2 [s ¢dA.

Transverse Deflections of a Membrane under Isotropic Linear Tension
Density 7" and Uniform Planar Load Density P

@ Strain Energy Density
@ The displacement field (Integrated over thickness)

uy = 0, U2 = O, uz = w(X1,X2)

1
@ The strain Field

2
_wa _ We _ @ Equations of Motion “:
Ei = R Fao = 5 2F12 = waw,2 o ou ou
00Xy Ow g Ow .
@ The Stress Field
1 1
o1l = ZT, o9 = ZT. ‘T(w,n +wa)—P=0 ‘

aBuler-Ostrogradsky
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Solid Section Torsion Membrane Analogy

1.4. Membrane Analogy

Solid Section Torsion

e The governing equations in terms of Prandtl Stress function is
(b,kk + 2G9’1 =0, (]5 =0onl,
along with M; = 2 [s ¢dA.

Transverse Deflections of a Membrane under Isotropic Linear Tension

Density T' and Un|

@ The displacen]
Uy = 0, U =

The governing equations,
therefore, are identical
to that of a membrane
undergoing deformation
under the action of a
uniform area-load P.

Energy Density
rated over thickness)

@ The strain Fi

TCT

2

2
w1y w2 @ Equations of Motion “:
By = — Foy = 2E2 = w 1w, 2 qd :

au U _ (.

00Xy Ow g Ow

2’ 2’ 9
@ The Stress Field
1
g11 = ¥T7 022 = ;T~

‘T(w,n +w,22)—P:0‘

aBuler-Ostrogradsky
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Solid Section Torsion Membrane Analogy

1.4. Membrane Analogy: Governing Equations of w4
(Warping)

Solid Section Torsion

@ The governing equations in terms of u; is the Laplace equation:
uy gk =0,

and its boundary conditions (Neumann B.C.s) are written as (again
based on zero traction at free end:

G ((u1,2 — X30,1)es + (u1,3 + X20,1)es,¢,) =0
- <u1,2§2 + U1,3€3, X2,n§2 + X3,n§3>
—0,1(Xsey, — Xoeg, — X3 565 + X2 s65) =0

d 0
= |wan =01 (X3 +X3)|=— ; (XsXom — X2X3.2).
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Solid Section Torsion Membrane Analogy

1.4. Membrane Analogy: Governing Equations of w4
(Warping)

Solid Section Torsion

@ The governing equations in terms of 211 is the T.anlace equation:
Note: We have used two differ-

ent representations of e, here:

and its boundary €, = X2,n€y + X3ne;, and

based on zero traq e, = —X3sey + Xa s

re written as (again

G ((u1,2 — X30,1)es + (u1,3 + X20,1)es,¢,) =0
- <u1,2§2 + U1,3€3, X2,n§2 + X3,n§3>
—0,1(Xsey, — Xoeg, — X3 565 + X2 s65) =0

d 0
= |wan =01 (X3 +X3)|=— ; (XsXom — X2X3.2).
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Solid Section Torsion

1.4. Membrane Analogy

Solid Section Torsion

Equations in the Stress Function

Membrane Analogy

Equations in Warping

Vi =—-2G01, Vui =0,
¢ =0onl, ou d
a—nl =01 (X3 +X7)onT".
My, = 2/$¢>dA. M, = GJo,
y )
Relating the two
@ Once we find ¢, we can integrate the
following to get u;:
lqﬁ =uj,2 — X30
G¥s = e 301
1
—Eﬁb,z =u1,3 + X201
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Solid Section Torsion  Tutorial

1.5. Tutorial: Elliptical Section

Solid Section Torsion

@ Let us consider an elliptical section and choose the stress function as
X2 X2
p=C (22 + 22— > .
a

@ The Laplacian of ¢ evaluates as,

V20 (L + 1) = 260, — c=—co ot
N a2 b)) ! N Taz oy
o Let us first compute the total resultant twisting moment M; that this
represents:
ma®b mab? b
1 4 1 4 2
M, = 2/ ¢ =2C 7/X§dA+7/ X32dA—/ dA | = —Cmab
S a Js b Js S
na’h?
My =G——==01]|
1 2t
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Solid Section Torsion  Tutorial

1.5. Tutorial: Elliptical Section

Solid Section Torsion

@ Let us consider an elliptical section and choose the stress function as
X2 X2
p=C (22 + 22— > .
a

@ The Laplacian of ¢ evaluates as,

V20 (L + 1) = 260, — c=—co a*?
N a2 b)) ! N Taz oy
o Let us first compute the total resultant twisting moment M; that this
represents:
ma®b mab? b
1 : 1 : 2
M, = 2/ ¢ =2C 7/X§dA+7/ X32dA—/ dA | = —Cmab
S a Js b Js S
The torsional rigidity reads,
7a’b? . 313
M, = G——=071] _ . Ta’h
1 CL2 + b2 )1 GJ = Gm
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Solid Section Torsion  Tutorial

1.5. Tutorial: Elliptical Section

Solid Section Torsion

e For the axial deflection we have two equations (by equating shear stress

expressions),
2 2 a2 __b2
Uro =012 = pr b20 1X3+60:X3 = maJXB
2b2 a’® — b?
urz =013 P LA CRRLARE PR CLERE
@ Integrating them separately we have,
a? — b?
=———501X X
Uy 2Kt f1(X3)
a? — b?
=01 X X
prarLs| 2+ f2(X2)
e f; and f> have to be constant. Setting it to zero we have,
a® — b? a’® — b?
=————01XoX3=———-M X2 X3 |
“ a2 +p2 RS Gradps 28
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1.5. Tutorial

Solid Section Torsion

Stress Function Section Warping

(=]
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Solid Section Torsion  Tutorial

1.5. Tutorial

Solid Section Torsion

Stress Function Section Warping

General Sections
°

Torsion is amenable to analysis when the solid section boundary can be expressed in closed form AND its
Laplacian evaluates to a constant. (See Chapter 9 in [3])

Every assumed form of ¢ will give us a warping field. For an application wherein the section warping is also
constrained, this solution is not exact. (St. Venant’s principle can be invoked, however).

@ Several analytical techniques exist (check [3] and references therein).

Fully numerical approaches are also possible, see the FreeFem scripts in the website.

v

=}
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Thin Section Torsion

2. Thin Section Torsion

Transformation of Displacement Field to Skin-local Coordinates

We will consider the @ The section displacement field transforms
bending-torsion com- as
bined displacement field: ’
P o] ][]
U, U
us = w+ X397 n 2.n 3.n 3
| Xsn Xon| |u2
and transform this to =Xz Xz | |us|’
the skin local co-
ordinate system. e The tangential component of

displacement along the boundary I' can be
written as,

Ug = Xgﬁs(’l) — X39) + ngs(u) + X20)

e
/’—\ S
\\ = X550+ X3 w + 0 (X3, Xo — Xp : X3)

e = —X3s€y + Xos€3 —Xn

Xo ey + X3,5€3

— ’ Us = p9 + UX2,5 + wXB,s .
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Thin Section Torsion

2. Thin Section Torsion

Transformation of Displacement Field to Skin-local Coordinates

@ The transformed displacement field combining bending and torsion is:

u, = —Xzv' — Xow' +0'¢ Uy (unchanged)
uy =v— X360 = u; =pl+vXo,+wXs;,
uz = w+ Xof Unp :XSG*UX&S +’LUX2’S
@ The shear strain along a thin section between the e;, e, directions is
T s
Vis = Ul,s + Us,1 = Ul,s +p9/ + XQ,S’U/ + X3,sw/ = 5 = %

o Integrating this, we get

/%dm =(u1(s) ful(O))+9//pdm+v'/Xz,zder/Xg,md:v
=(u1(s) = u1(0)) + 0"2Asweep(s) +v'(X2(s) — X2(0))
+w'(X3(s) — X3(0)).

@ Over a complete closed section we have, 7{ %S)dg =240’
t
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-~ ThinSectionTomsion OpenSections
2.1. Open Sections

Thin Section Torsion
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Thin Section Torsion Closed Sections

2.2. Closed Sections

Thin Section Torsion
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Thin Section Torsion Combined Cells

2.3. Combined Cells

Thin Section Torsion
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Thin Section Torsion Combined Cells
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