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Solid Section Torsion

1. Solid Section Torsion
Basic Setup

We assume:
1 No direct stresses applied:

σ11 = σ22 = σ33 = 0

2 Sections “rotate rigidly”:

γ23 = 0 =⇒ σ23 = 0.

3 Body is at equilibrium under
constant torque applied at right
end.

We will denote the section by S
and the section-boundary by Γ.
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Solid Section Torsion Stress Formulation

1.1. Stress Formulation
Solid Section Torsion

Since we assume σ11 = σ22 = σ33 = σ23 = 0, the equilibrium equations
read,

σ12,2 + σ13,3 = 0, σ12,1 = 0, σ13,1 = 0.

We introduce the Prandtl Stress Function ϕ(X2, X3) (no dependence
on X1) such that

σ12 = ϕ,3, σ13 = −ϕ,2.
This satisfies equilibrium by definition.
In terms of strains the above assumptions imply that we only have E12

and E13 active. Recall that Strain compatibility is ϵmjkϵnilEij,mn = 0
(see Module 3).
The non-trivial compatibility equations read,

E12,23 − E13,22 = 0

E12,33 − E13,23 = 0

}
=⇒

ϕ,332 + ϕ,222 = 0

ϕ,333 + ϕ,322 = 0

}
=⇒ ∇2ϕ = constant .

This is known as the Poisson’s problem. What about Boundary
Conditions?

Kinematic consid-
erations will give
us this ”constant”.
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Solid Section Torsion Stress Formulation

1.1. Stress Formulation
Solid Section Torsion

We derive the coordinate
transformation on the boundary as
follows:
dX2e2 + dX3e3 = dses + dnen

=⇒
[
dX2

dX3

]
=

[
⟨e2, es⟩ ⟨e2, en⟩
⟨e3, es⟩ ⟨e3, en⟩

] [
ds
dn

]
and,

[
es
en

]
=

[
⟨e2, es⟩ ⟨e3, es⟩
⟨e2, en⟩ ⟨e3, en⟩

] [
e2
e3

]
=

[
X2,s X3,s

X2,n X3,n

] [
e2
e3

]
Considering only Cartesian
transformations (inverse has to be
transpose), we will also have[

es
en

]
=

[
X3,n −X2,n

−X3,s X2,s

] [
e2
e3

]
.

These are two alternate
but equivalent representa-
tions for es and en that we
will invoke as convenient.
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Solid Section Torsion Stress Formulation

1.1. Derivation of Coordinate Transformation
Relationships
Stress Formulation

For cartesian transformations, the determinant has to be unity. So the
inverse can be written as[

X2,s X3,s

X2,n X3,n

]−1

︸ ︷︷ ︸
T−1

=

[
X3,n −X3,s

−X2,n X2,s

]
︸ ︷︷ ︸

Adj(T)

.

Also, for cartesian transformations, the inverse has to be the transpose of
the matrix. So we have[

X2,s X2,n

X3,s X3,n

]
︸ ︷︷ ︸

TT

=

[
X3,n −X3,s

−X2,n X2,s

]
︸ ︷︷ ︸

T−1

.

So the following equalities make sense:[
es
en

]
=

[
X2,s X3,s

X2,n X3,n

] [
e2
e3

]
, and

[
es
en

]
=

[
X3,n −X2,n

−X3,s X2,s

] [
e2
e3

]
.

T−T
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Solid Section Torsion Stress Formulation

1.1. Stress Formulation
Solid Section Torsion

Enforcing stress-free section
boundary condtion leads to:

 0 σ12 σ13
σ12 0 0
σ13 0 0


n̂=−en︷ ︸︸ ︷ 0
X3,s

−X2,s

 =

00
0


=⇒ σ12X3,s − σ13X2,s = 0

(ϕ,3X3,s + ϕ2X2,s) = ϕ,s = 0

That is, on the section-boundary,
the stress function is constant, set
to 0 w.l.o.g.:

ϕ =�����:0
constant on Γ.

We invoke
en = −X3,se2 + X2,se3 here.
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Solid Section Torsion Displacement Formulation

1.2. Displacement Formulation
Solid Section Torsion

The strains are,
E11 = u1,1 = 0

E22 = −θ,2X3 = 0

E33 = θ,3X2 = 0

2E23 = θ − θ = 0

2E12 = u1,2 − θ,1X3 =
σ12

G
=

ϕ,3

G

2E13 = u1,3 + θ,1X2 =
σ13

G
= −ϕ,2

G

Differentiating the strain expressions for
σ12 and σ13 above allows us to write:

ϕ,kk = −2Gθ,1 ,

which gives us the “constant” required for
the Poisson problem from before (along
with the B.C. ϕ = 0onΓ).
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Solid Section Torsion Section Moment

1.3. Section Moment
Solid Section Torsion

The non-trivial shear strains are:

σ12 = ϕ,3 = G(u1,2 −X3θ,1)

σ13 = −ϕ,2 = G(u1,3 +X2θ,1)

The moment about e1 is

M1 =

∫
S
(X2σ13 −X3σ12)dA .

Since σ12 and σ13 are expressed in terms
of kinematic quantities as well as the
stress function ϕ, we will write down
relationships with both before proceeding.

It is also obvious that ϕ,kk = −2Gθ,1
implies

u1,kk = 0 .
This is the governing equation

in terms of the section-
axial displacement field.
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Solid Section Torsion Section Moment

1.3. Section Moment
Solid Section Torsion

In terms of stress function

M1 =

∫
S
(X2σ13 −X3σ12)dA

= −
∫
S
(ϕ,2X2 + ϕ,3X3)dA

M1 = 2

∫
S
ϕdA .

In terms of kinematic description

M1 =G

∫
S
(X2u1,3 −X3u1,2)dA

+G

∫
S
(X2

2 +X2
3 )dA︸ ︷︷ ︸

I11

θ,1

=GI11θ,1 +G

∫
S
ϵ1jkXju1,kdA

=GI11θ,1 +G

∫
S
ϵijk(Xju1),kdA

−G

∫
S
���ϵijkδjku1dA

M1 =GI11θ,1 +G

∫
Γ

ϵ1jkXjnku1d|s|

M1 = GI11θ,1 +G

∫
Γ

(X × n)1u1d|s| .

This term is clearly
zero for a perfectly

circular section. What
about other types?

Not zero in the general case.
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Solid Section Torsion Section Moment

1.3. Section Moment: St. Venant’s Warping Function
Solid Section Torsion

For a “pure twist” condition, due to translational symmetry, u1 can
not depend on X1. It also makes sense that u1 has to be proportional to
the twist θ somehow.

Since θ depends on X1, but θ,1 is a constant, St. Venant introduced a
warping function ψ(X2, X3) such that

u1 = θ,1ψ(X2, X3) .

Under this definition, the effective moment M1 can be given as,

M1 = G

(
I11 +

∫
Γ

(X × n)1ψd|s|
)

︸ ︷︷ ︸
J

θ,1 = GJθ,1 .

Alternatively, J can also be written as,

J = I11 +

∫
S
X2ψ,3 −X3ψ,2dA

The product GJ is also known as Torsional Rigidity
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Solid Section Torsion Membrane Analogy

1.4. Membrane Analogy
Solid Section Torsion

The governing equations in terms of Prandtl Stress function is

ϕ,kk + 2Gθ,1 = 0, ϕ = 0onΓ,

along with M1 = 2
∫
S ϕdA.

Transverse Deflections of a Membrane under Isotropic Linear Tension
Density T and Uniform Planar Load Density P

The displacement field

u1 = 0, u2 = 0, u3 = w(X1, X2)

The strain Field

E11 =
w2

,1

2
, E22 =

w2
,2

2
, 2E12 = w,1w,2

The Stress Field

σ11 =
1

t
T, σ22 =

1

t
T.

The governing equations,
therefore, are identical
to that of a membrane

undergoing deformation
under the action of a
uniform area-load P .
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(Integrated over thickness)

U =
1

2

(
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,2

)
T + Pw

Equations of Motion a:
∂

∂Xk

∂U
∂w,k

− ∂U
∂w

= 0:

T (w,11 + w,22)− P = 0

aEuler-Ostrogradsky
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Solid Section Torsion Membrane Analogy

1.4. Membrane Analogy: Governing Equations of u1
(Warping)
Solid Section Torsion

The governing equations in terms of u1 is the Laplace equation:

u1,kk = 0,

and its boundary conditions (Neumann B.C.s) are written as (again
based on zero traction at free end:

G ⟨(u1,2 −X3θ,1)e2 + (u1,3 +X2θ,1)e3, en⟩ = 0

=⇒ ⟨u1,2e2 + u1,3e3, X2,ne2 +X3,ne3⟩
− θ,1⟨X3e2 −X2e3,−X3,se2 +X2,se3⟩ = 0

=⇒ u1,n = −θ,1
d

ds

(
X2

2 +X2
3

)
= −θ,1

2
(X3X2,n −X2X3,n) .

Note: We have used two differ-
ent representations of en here:

en = X2,ne2 +X3,ne3, and

en = −X3,se2 +X2,se3
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Solid Section Torsion Membrane Analogy

1.4. Membrane Analogy
Solid Section Torsion

Equations in the Stress Function

∇2ϕ = −2Gθ,1,

ϕ = 0onΓ,

M1 = 2

∫
S
ϕdA.

Equations in Warping

∇2u1 = 0,

∂u1

∂n
= −θ,1

d

ds

(
X2

2 +X2
3

)
onΓ.

M1 = GJθ,1

Relating the two

Once we find ϕ, we can integrate the
following to get u1:

1

G
ϕ,3 = u1,2 −X3θ,1

− 1

G
ϕ,2 = u1,3 +X2θ,1
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Solid Section Torsion Tutorial

1.5. Tutorial: Elliptical Section
Solid Section Torsion

Let us consider an elliptical section and choose the stress function as

ϕ = C

(
X2

2

a2
+
X2

3

b2
− 1

)
.

The Laplacian of ϕ evaluates as,

∇2ϕ = 2C

(
1

a2
+

1

b2

)
= −2Gθ,1 =⇒ C = −Gθ,1

a2b2

a2 + b2
.

Let us first compute the total resultant twisting moment M1 that this
represents:

M1 = 2

∫
S
ϕ = 2C

 1

a2

πa3b
4︷ ︸︸ ︷∫

S
X2

2dA+
1

b2

πab3

4︷ ︸︸ ︷∫
S
X2

3dA−

πab︷ ︸︸ ︷∫
S
dA

 = −Cπab

M1 = G
πa3b3

a2 + b2
θ,1 .

The torsional rigidity reads,

GJ = G
πa3b3

a2 + b2
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Solid Section Torsion Tutorial

1.5. Tutorial: Elliptical Section
Solid Section Torsion

For the axial deflection we have two equations (by equating shear stress
expressions),

u1,2 = θ,1ψ,2 = − 2a2

a2 + b2
θ,1X3 + θ,1X3 = −a

2 − b2

a2 + b2
θ,1X3

u1,3 = θ,1ψ,3 =
2b2

a2 + b2
θ,1X2 − θ,1X2 = −a

2 − b2

a2 + b2
θ,1X2

Integrating them separately we have,

u1 = −a
2 − b2

a2 + b2
θ,1X2 + f1(X3)

= −a
2 − b2

a2 + b2
θ,1X2 + f2(X2)

f1 and f2 have to be constant. Setting it to zero we have,

u1 = −a
2 − b2

a2 + b2
θ,1X2X3 = − a2 − b2

Gπa3b3
M1X2X3 .
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Solid Section Torsion Tutorial

1.5. Tutorial
Solid Section Torsion

Stress Function Section Warping

General Sections

Torsion is amenable to analysis when the solid section boundary can be expressed in closed form AND its
Laplacian evaluates to a constant. (See Chapter 9 in [3])

Every assumed form of ϕ will give us a warping field. For an application wherein the section warping is also
constrained, this solution is not exact. (St. Venant’s principle can be invoked, however).

Several analytical techniques exist (check [3] and references therein).

Fully numerical approaches are also possible, see the FreeFem scripts in the website.
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Thin Section Torsion

2. Thin Section Torsion
Transformation of Displacement Field to Skin-local Coordinates

The section displacement field transforms
as, [

us
un

]
=

[
X2,s X3,s

X2,n X3,n

] [
u2
u3

]
=

[
X3,n −X2,n

−X3,s X3,n

] [
u2
u3

]
.

The tangential component of
displacement along the boundary Γ can be
written as,

us = X2,s(v −X3θ) +X3,s(w +X2θ)

= X2,sv +X3,sw + θ (X3,sX2 −X2,sX3)︸ ︷︷ ︸
−Xn

=⇒ us = pθ + vX2,s + wX3,s .

We will consider the
bending-torsion com-

bined displacement field:

u2 = v −X3θ

u3 = w +X3θ,

and transform this to

the skin local co-

ordinate system.
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Thin Section Torsion

2. Thin Section Torsion
Transformation of Displacement Field to Skin-local Coordinates

The transformed displacement field combining bending and torsion is:

u1 = −X3v
′ −X2w

′ + θ′ψ

u2 = v −X3θ

u3 = w +X2θ

 =⇒
u1 (unchanged)
us = pθ + vX2,s + wX3,s

un = Xsθ − vX3,s + wX2,s

The shear strain along a thin section between the e1, es directions is

γ1s = u1,s + us,1 = u1,s + pθ′ +X2,sv
′ +X3,sw

′ =
τ

G
=
q(s)

Gt
.

Integrating this, we get
s∫

0

q(x)

Gt
dx =(u1(s)− u1(0)) + θ′

s∫
0

pdx+ v′
s∫

0

X2,xdx+

s∫
0

X3,xdx

=(u1(s)− u1(0)) + θ′2Asweep(s) + v′(X2(s)−X2(0))

+ w′(X3(s)−X3(0)).

Over a complete closed section we have,
∮

q(s)

Gt
ds = 2Aθ′
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Thin Section Torsion Open Sections

2.1. Open Sections
Thin Section Torsion
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Thin Section Torsion Closed Sections

2.2. Closed Sections
Thin Section Torsion
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Thin Section Torsion Combined Cells

2.3. Combined Cells
Thin Section Torsion
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Thin Section Torsion Combined Cells

References I

[1] C. T. Sun. Mechanics of Aircraft Structures, 2nd edition. Hoboken, N.J: Wiley,
June 2006. isbn: 978-0-471-69966-8 (cit. on p. 2).

[2] T. H. G. Megson. Aircraft Structures for Engineering Students, Elsevier, 2013.
isbn: 978-0-08-096905-3 (cit. on p. 2).

[3] M. H. Sadd. Elasticity: Theory, Applications, and Numerics, 2nd ed.
Amsterdam ; Boston: Elsevier/AP, 2009. isbn: 978-0-12-374446-3 (cit. on pp. 28,
29).

Balaji, N. N. (AE, IITM) AS3020* September 28, 2024 23 / 23


	Solid Section Torsion
	Stress Formulation
	Displacement Formulation
	Section Moment
	Membrane Analogy
	Tutorial

	Thin Section Torsion
	Open Sections
	Closed Sections
	Combined Cells

	References

