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Solid Section Torsion

1. Solid Section Torsion

Basic Setup

o We assume:
@ No direct stresses applied:

011 = 022 = 033 =0

@ Sections “rotate rigidly”:

AEs . Y23 =0 = 023 =0.

Section

Boundary @ Body is at equilibrium under

constant torque applied at right
/ end.

:QQ . o We will denote the section by S

\\ Section and the section-boundary by T'.
/S
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Solid Section Torsion  Stress Formulation

1.1. Stress Formulation

Solid Section Torsion

@ Since we assume 011 = 099 = 033 = 093 = 0, the equilibrium equations

read,
o122+ 0133 =0, 0121 =0, o131 =0.

e We introduce the Prandtl Stress Function ¢(Xs, X3) (no dependence

on X7) such that
O12 =03, 013=—0¢2.
This satisfies equilibrium by definition.

o In terms of strains the above assumptions imply that we only have 1
and Ei3 active. Recall that Strain compatibility is €, x€nitEij,mn = 0
(see Module 3).

@ The non-trivial compatibility equations read,

Eio93 — Eiz00 =0 $332 + P22 =0 ‘
—
$333+ P32 =0

@ This is known as the Poisson’s problem. What about Boundary
Conditions?

V2¢ = constant |.

Ei933 — Fi323 =0
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1.1. Stress Formulation

Solid Section Torsion

@ Since we assume 011 = 099 = 033 = 093 = 0, the equilibrium equations

read,
o122+ 0133 =0, 0121 =0, o131 =0.

e We introduce the Prandtl Stress Function ¢(Xs, X3) (no dependence

on X7) such that
O12 =03, 013=—0¢2.
This satisfies equilibrium by definition.

o In terms of strains the above assumptions imply t|
and Fh3 active. Recall that Strain compatibility
(see Module 3).

@ The non-trivial compatibility equations read,

Eio93 — Eiz00 =0 $332 + P22 =0 ‘
—
$333+ P32 =0

@ This is known as the Poisson’s problem. What about Boundary
Conditions?

Kinematic consid-
erations will give
us this ”constant”.

V2¢ = constant |

Ei933 — Fi323 =0
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Solid Section Torsion  Stress Formul.

1.1. Stress Formulation

Solid Section Torsion

ation

o We derive the coordinate

follows:

dXse, + dX3zeq = dse, + dne,,

transformation on the boundary as

(&

%

0Xae,
=X, s€ + X3, s€3

|

\

wiP
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dXa| _ -<627e ) <§27Qn>- ds

:> |:dX‘5:| <e37 s> <§37 §n>_ dn

€ [(ez:€,)  (esre >] {g ]

and, |*° 2 35 Cs 2

|:§n:| <e2, n> <§37 §n> €3
> X2,s X3,s 22_
En - _Xgﬁn X3,n €3]

o Considering only Cartesian
transformations (inverse has to be
transpose), we will also have

€q _X2,n €9
Cn X3,n €3 '
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Solid Section Torsion

1.1. Stress Formulation

Solid Section Torsion

Stress Formulation

o We derive the coordinate
transformation on the boundary as

[

follows:

dXse, + dX3zeq = dse, + dne,,

dXs

- LZX3

€3
/ These are two alternate
but equivalent representa-
tions for e, and e,, that we

will invoke as convenient.

and, [*S

=n

N ——

|

\

. -
ol >

X2 562 + X3 363
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€n
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_X2,n

<§27 €
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onsidering only Cartesian

I

gQ]
€3

transformations (inverse has to be
transpose), we will also have
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Solid Section Torsion  Stress Formulation

1.1. Stress Formulation
Solid Section Torsion We invoke
e, = —X3 ey + Xo se3 here.

-n

AS2

e Enforcing stress-free section
boundary condtion leads to:

é Ql 0 012 013 0 0
AT o2 0 0| |-Xs3.| =10
ﬂ 013 0 0 X2)S 0

= —012X35+013X2,=0
e
A=s e _(¢,3X3,s + ¢2X2,s) - —Qb,s =0

=n

e That is, on the section-boundary,

/ . %e,ef»jé Xyes the stress function is constant, set
&2

X2, to 0 w.l.o.g.:

J ey = Xo e + X3 0e5 0
¢ = constant onI.

e, = —Xszse + Xose3
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Solid Section Torsion Displacement Formulation

1.2. Displacement Formulation

Solid Section Torsion

@ The strains are,
By =ui1=0
By = —0,X5=0
Ess=05X2=0
2F23 =60—-0=0

012 ¢3
2E12 =u12 —01X3 = relimie
013 b2
2F13 =u13 + 01X = N lRE
Let = “19(;"}{2‘}{3) o Differentiating the strain expressions for
up = —0X3 .
s = 0X, o012 and o3 above allows us to write:

A (9\\\‘—. 22
1) Ok = —2G0 1|,

which gives us the “constant” required for
the Poisson problem from before (along
with the B.C. ¢ = 0onT).
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Solid Section Torsion Section Moment

1.3. Section Moment

Solid Section Torsion

@ The non-trivial shear strains are:
oi2=0¢3 =G(ui2— X36,)
o13=—¢2=GCGuiz+ X20)

@ The moment about e; is

M1 == /(X20'13 - X30'12)dA .
S

Let uy = u (X1, Xo, X3) . .
g = —0Xs @ Since 012 and o013 are expressed in terms
0 us = 0Xs of kinematic quantities as well as the
ANE2) stress function ¢, we will write down

relationships with both before proceeding.

e Firstly, it is obvious that ¢ i = 0 implies

Uy g = 0.
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Solid Section Torsion Section Moment

1.3. Section Moment

Solid Section Torsion
In terms of kinematic description

M, :G/(X2u1,3 — Xszuy 2)dA
S

+G/(X§+X§)dAo,1
S

In terms of stress function B
11

ZGI119,1 +G/ €1ijjU1,de
S

My /(X20'13 7X3012)dA
S

:G1119,1—|—G/ €ijk(XjU1),de
S

—/(¢,2X2 + ¢ 3X3)dA
s

*G/%éj/kuldA
S

Ml_—2/¢dA.
S

y M, IG1119,1 +G/ elijjnku1d|€|
T

M, = GI110,1 —I—G/(X X Q)1U1d‘€| .
r
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Solid Section Torsion Section Moment

1.3. Section Moment

Solid Section Torsion
In terms of kinematic description

M, :G/(X2u1,3 — Xszuy 2)dA
S

+G/(X§+X§)dAo,1
S

In terms of stress function B
11

ZGI119,1 + G /qijjuLde
This term is clearly
zero for a perfectly 1).kdA

circular section. What
about other types?

M, /(X2013 — X3012)dA
s

—/(¢,2Xz+¢,3X3)dA
s

Ml_—2/¢dA.
S

y M, IG1119,1 +G/ eljk}(jnku1d|€|
T

M, = GI119,1 +G/(£ X @)1U1d‘€| .
r
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Solid Section Torsion Section Moment

1.3. Section Moment

Solid Section Torsion
In terms of kinematic description

M, :G/(X2u1,3 — Xszuy 2)dA
S

+G/(X§+X§)dAa,1
S

In terms of stress function B
11

ZGI119,1 + G /qijjul,de

My = [ (Xs013 — X3015)dA : _
' /s( o s12) This term is clearly
zero for a perfectly 1), kdA
o /s(¢’2X2 9.2 Xa)dA circular section. What
about other types?
-2 / bdA
s

M, = . = }
/ Not zero in the general case.

v
M, = GI119,1 +G/(£ X @)1U1d‘€| .
r
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Solid Section Torsion  Section Moment

1.3. Section Moment: St. Venant’s Warping Function

Solid Section Torsion

e For a “pure twist” condition, due to translational symmetry, u; can
not depend on X;. It also makes sense that u; has to be proportional to
the twist 6 somehow.

@ Since 0 depends on X, but 0 ; is a constant, St. Venant’s introduced a
warping function ¥ (X, X3) such that

w1 = 0,19(Xz, Xa) |

@ Under this definition, the effective moment M; can be given as,

M1 =G (111 + /(K X n)lwd|€|> 9’1 = GJ(971 .
T

J

@ Alternatively, J can also be written as,

J=Iy+ / Xt — XathdA
S
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Solid Section Torsion Membrane Analogy

1.4. Membrane Analogy: Contributions from Warping

Solid Section Torsion
e The governing equations in terms of Prandtl Stress function is
(b,kk + 2G971 =0, (b =0onl,

along with M; = 2 [ ¢dA.
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Solid Section Torsion Membrane Analogy

1.4. Membrane Analogy: Contributions from Warping

Solid Section Torsion

e The governing equations in terms of Prandtl Stress function is
(b,kk + 2G9’1 =0, (]5 =0onl,
along with M; = 2 [s ¢dA.

Transverse Deflections of a Membrane under Isotropic Linear Tension
Density 7" and Uniform Planar Load Density P

@ The displacement field
ur =0, u2=0, uz=w(X1,Xo)

@ The strain Field
2 2
U}’l ’w’g
Pz Peean

@ The Stress Field

1 1
011 = ?T’ o920 = ET.

2E12 = wiw,2

v
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Solid Section Torsion Membrane Analogy

1.4. Membrane Analogy: Contributions from Warping

Solid Section Torsion

e The governing equations in terms of Prandtl Stress function is
(b,kk + 2G9’1 =0, (]5 =0onl,
along with M; = 2 [s ¢dA.

Transverse Deflections of a Membrane under Isotropic Linear Tension
Density 7" and Uniform Planar Load Density P

@ Strain Energy Density
@ The displacement field (Integrated over thickness)

uy = 0, U2 = O, uz = w(X1,X2)

1
@ The strain Field

2
_wa _ We _ @ Equations of Motion “:
Ei = R Fao = 5 2F12 = waw,2 o ou ou
00Xy Ow g Ow .
@ The Stress Field
1 1
o1l = ZT, o9 = ZT. ‘T(w,n +wa)—P=0 ‘

aBuler-Ostrogradsky
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Solid Section Torsion Membrane Analogy

1.4. Membrane Analogy: Contributions from Warping

Solid Section Torsion

e The governing equations in terms of Prandtl Stress function is
¢,kk + 2G9’1 =0, (]5 =0onl,

along with M; = 2 [ ¢dA.

@ The governing equations, therefore, are identical to that of a membrane
undergoing deformation under the action of a uniform area-load
P.

@ Also note that the governing equations in terms of u; is the Laplacian
problem:

uy gk = 0,
and its boundary conditions are written as
((u1,2 — X301)es + (u1,3 + X20,1)es,€,) =0
= (u1,2ey + u1,3e3, Xoney + X3 n€3)
—01(Xsey — Xoez, — X3 560 + X2 5€5) =0

d
_9)1£

N u17n =

(X3 +X3) |
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Solid Section Torsion Membrane Analogy

1.4. Membrane Analogy: Contributions from Warping

Solid Section Torsion

e The governing equations in terms of Prandtl Stress function is
¢,kk + 2G9’1 =0, (]5 =0onl,

along with M; = 2 [ ¢dA.

@ The governing equations, therefore, are identical to that of a membrane
undergoing deformation under the action of a uniform area-load
P.

e Also note that the governing equations in terms of u; is the Laplacian
problem:

uy e = 0,

and its boundary conditions are written as

((u1,2 — X301)es + (u13 + X260 1)eg,¢,) =0

Note: We have used | 25 + u1 365, X265 + X3 n€3)

two different repre- 01(Xsey — Xoeg, — X3 .5 + X se5) =0
sentations of e, here y

= |u1n = (X3 +X3) |

0, —
Lds
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-~ ThinSectionTomsion OpenSections
2.1. Open Sections

Thin Section Torsion
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Thin Section Torsion Closed Sections

2.2. Closed Sections

Thin Section Torsion

Balaji, N. N. (AE, IITM) AS3020%* September 26, 2024 14 /16



Thin Section Torsion Combined Cells

2.3. Combined Cells

Thin Section Torsion
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Thin Section Torsion Combined Cells
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