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Solid Section Torsion

1. Solid Section Torsion
Basic Setup

We assume:
1 No direct stresses applied:

σ11 = σ22 = σ33 = 0

2 Sections “rotate rigidly”:

γ23 = 0 =⇒ σ23 = 0.

3 Body is at equilibrium under
constant torque applied at right
end.

We will denote the section by S
and the section-boundary by Γ.
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Solid Section Torsion Stress Formulation

1.1. Stress Formulation
Solid Section Torsion

Since we assume σ11 = σ22 = σ33 = σ23 = 0, the equilibrium equations
read,

σ12,2 + σ13,3 = 0, σ12,1 = 0, σ13,1 = 0.

We introduce the Prandtl Stress Function ϕ(X2, X3) (no dependence
on X1) such that

σ12 = ϕ,3, σ13 = −ϕ,2.
This satisfies equilibrium by definition.
In terms of strains the above assumptions imply that we only have E12

and E13 active. Recall that Strain compatibility is ϵmjkϵnilEij,mn = 0
(see Module 3).
The non-trivial compatibility equations read,

E12,23 − E13,22 = 0

E12,33 − E13,23 = 0

}
=⇒

ϕ,332 + ϕ,222 = 0

ϕ,333 + ϕ,322 = 0

}
=⇒ ∇2ϕ = constant .

This is known as the Poisson’s problem. What about Boundary
Conditions?

Kinematic consid-
erations will give
us this ”constant”.
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Solid Section Torsion Stress Formulation

1.1. Stress Formulation
Solid Section Torsion

We derive the coordinate
transformation on the boundary as
follows:
dX2e2 + dX3e3 = dses + dnen

=⇒
[
dX2

dX3

]
=

[
⟨e2, es⟩ ⟨e2, en⟩
⟨e3, es⟩ ⟨e3, en⟩

] [
ds
dn

]
and,

[
es
en

]
=

[
⟨e2, es⟩ ⟨e3, es⟩
⟨e2, en⟩ ⟨e3, en⟩

] [
e2
e3

]
=

[
X2,s X3,s

X2,n X3,n

] [
e2
e3

]
Considering only Cartesian
transformations (inverse has to be
transpose), we will also have[

es
en

]
=

[
X3,n −X2,n

−X3,s X3,n

] [
e2
e3

]
.

These are two alternate
but equivalent representa-
tions for es and en that we
will invoke as convenient.
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Solid Section Torsion Stress Formulation

1.1. Stress Formulation
Solid Section Torsion

Enforcing stress-free section
boundary condtion leads to: 0 σ12 σ13
σ12 0 0
σ13 0 0

 0
−X3,s

X2,s

 =

00
0


=⇒ −σ12X3,s + σ13X2,s = 0

−(ϕ,3X3,s + ϕ2X2,s) = −ϕ,s = 0

That is, on the section-boundary,
the stress function is constant, set
to 0 w.l.o.g.:

ϕ =�����:0
constant on Γ.

We invoke
en = −X3,se2 + X2,se3 here.
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Solid Section Torsion Displacement Formulation

1.2. Displacement Formulation
Solid Section Torsion

The strains are,
E11 = u1,1 = 0

E22 = −θ,2X3 = 0

E33 = θ,3X2 = 0

2E23 = θ − θ = 0

2E12 = u1,2 − θ,1X3 =
σ12

G
=

ϕ,3

G

2E13 = u1,3 + θ,1X2 =
σ13

G
= −ϕ,2

G

Differentiating the strain expressions for
σ12 and σ13 above allows us to write:

ϕ,kk = −2Gθ,1 ,

which gives us the “constant” required for
the Poisson problem from before (along
with the B.C. ϕ = 0onΓ).
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Solid Section Torsion Section Moment

1.3. Section Moment
Solid Section Torsion

The non-trivial shear strains are:

σ12 = ϕ,3 = G(u1,2 −X3θ,1)

σ13 = −ϕ,2 = G(u1,3 +X2θ,1)

The moment about e1 is

M1 =

∫
S
(X2σ13 −X3σ12)dA .

Since σ12 and σ13 are expressed in terms
of kinematic quantities as well as the
stress function ϕ, we will write down
relationships with both before proceeding.

Firstly, it is obvious that ϕ,kk = 0 implies

u1,kk = 0.
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Solid Section Torsion Section Moment

1.3. Section Moment
Solid Section Torsion

In terms of stress function

M1 =

∫
S
(X2σ13 −X3σ12)dA

= −
∫
S
(ϕ,2X2 + ϕ,3X3)dA

M1 = −2

∫
S
ϕdA .

In terms of kinematic description

M1 =G

∫
S
(X2u1,3 −X3u1,2)dA

+G

∫
S
(X2

2 +X2
3 )dA︸ ︷︷ ︸

I11

θ,1

=GI11θ,1 +G

∫
S
ϵ1jkXju1,kdA

=GI11θ,1 +G

∫
S
ϵijk(Xju1),kdA

−G

∫
S
���ϵijkδjku1dA

M1 =GI11θ,1 +G

∫
Γ

ϵ1jkXjnku1d|ℓ|

M1 = GI11θ,1 +G

∫
Γ

(X × n)1u1d|ℓ| .

This term is clearly
zero for a perfectly

circular section. What
about other types?

Not zero in the general case.

Balaji, N. N. (AE, IITM) AS3020* September 26, 2024 9 / 16



Solid Section Torsion Section Moment

1.3. Section Moment
Solid Section Torsion

In terms of stress function

M1 =

∫
S
(X2σ13 −X3σ12)dA

= −
∫
S
(ϕ,2X2 + ϕ,3X3)dA

M1 = −2

∫
S
ϕdA .

In terms of kinematic description

M1 =G

∫
S
(X2u1,3 −X3u1,2)dA

+G

∫
S
(X2

2 +X2
3 )dA︸ ︷︷ ︸

I11

θ,1

=GI11θ,1 +G

∫
S
ϵ1jkXju1,kdA

=GI11θ,1 +G

∫
S
ϵijk(Xju1),kdA

−G

∫
S
���ϵijkδjku1dA

M1 =GI11θ,1 +G

∫
Γ

ϵ1jkXjnku1d|ℓ|

M1 = GI11θ,1 +G

∫
Γ

(X × n)1u1d|ℓ| .

This term is clearly
zero for a perfectly

circular section. What
about other types?

Not zero in the general case.

Balaji, N. N. (AE, IITM) AS3020* September 26, 2024 9 / 16



Solid Section Torsion Section Moment

1.3. Section Moment
Solid Section Torsion

In terms of stress function

M1 =

∫
S
(X2σ13 −X3σ12)dA

= −
∫
S
(ϕ,2X2 + ϕ,3X3)dA

M1 = −2

∫
S
ϕdA .

In terms of kinematic description

M1 =G

∫
S
(X2u1,3 −X3u1,2)dA

+G

∫
S
(X2

2 +X2
3 )dA︸ ︷︷ ︸

I11

θ,1

=GI11θ,1 +G

∫
S
ϵ1jkXju1,kdA

=GI11θ,1 +G

∫
S
ϵijk(Xju1),kdA

−G

∫
S
���ϵijkδjku1dA

M1 =GI11θ,1 +G

∫
Γ

ϵ1jkXjnku1d|ℓ|

M1 = GI11θ,1 +G

∫
Γ

(X × n)1u1d|ℓ| .

This term is clearly
zero for a perfectly

circular section. What
about other types?

Not zero in the general case.

Balaji, N. N. (AE, IITM) AS3020* September 26, 2024 9 / 16



Solid Section Torsion Section Moment

1.3. Section Moment: St. Venant’s Warping Function
Solid Section Torsion

For a “pure twist” condition, due to translational symmetry, u1 can
not depend on X1. It also makes sense that u1 has to be proportional to
the twist θ somehow.

Since θ depends on X1, but θ,1 is a constant, St. Venant’s introduced a
warping function ψ(X2, X3) such that

u1 = θ,1ψ(X2, X3) .

Under this definition, the effective moment M1 can be given as,

M1 = G

(
I11 +

∫
Γ

(X × n)1ψd|ℓ|
)

︸ ︷︷ ︸
J

θ,1 = GJθ,1 .

Alternatively, J can also be written as,

J = I11 +

∫
S
X2ψ,3 −X3ψ,2dA
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Solid Section Torsion Membrane Analogy

1.4. Membrane Analogy: Contributions from Warping
Solid Section Torsion

The governing equations in terms of Prandtl Stress function is

ϕ,kk + 2Gθ,1 = 0, ϕ = 0onΓ,

along with M1 = 2
∫
S ϕdA.

Transverse Deflections of a Membrane under Isotropic Linear Tension
Density T and Uniform Planar Load Density P

The displacement field

u1 = 0, u2 = 0, u3 = w(X1, X2)

The strain Field

E11 =
w2

,1

2
, E22 =

w2
,2

2
, 2E12 = w,1w,2

The Stress Field

σ11 =
1

t
T, σ22 =

1

t
T.
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,1

2
, E22 =

w2
,2

2
, 2E12 = w,1w,2

The Stress Field

σ11 =
1

t
T, σ22 =

1

t
T.

Strain Energy Density
(Integrated over thickness)

U =
1

2

(
w2

,1 + w2
,2

)
T + Pw

Equations of Motion a:
∂

∂Xk

∂U
∂w,k

− ∂U
∂w

= 0:

T (w,11 + w,22)− P = 0

aEuler-Ostrogradsky
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Solid Section Torsion Membrane Analogy

1.4. Membrane Analogy: Contributions from Warping
Solid Section Torsion

The governing equations in terms of Prandtl Stress function is

ϕ,kk + 2Gθ,1 = 0, ϕ = 0onΓ,

along with M1 = 2
∫
S ϕdA.

The governing equations, therefore, are identical to that of a membrane
undergoing deformation under the action of a uniform area-load
P .
Also note that the governing equations in terms of u1 is the Laplacian
problem:

u1,kk = 0,

and its boundary conditions are written as

⟨(u1,2 −X3θ,1)e2 + (u1,3 +X2θ,1)e3, en⟩ = 0

=⇒ ⟨u1,2e2 + u1,3e3, X2,ne2 +X3,ne3⟩
− θ,1⟨X3e2 −X2e3,−X3,se2 +X2,se3⟩ = 0

=⇒ u1,n = −θ,1
d

ds

(
X2

2 +X2
3

)
.

Note: We have used
two different repre-
sentations of es here
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Thin Section Torsion Open Sections

2.1. Open Sections
Thin Section Torsion
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Thin Section Torsion Closed Sections

2.2. Closed Sections
Thin Section Torsion
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Thin Section Torsion Combined Cells

2.3. Combined Cells
Thin Section Torsion
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Thin Section Torsion Combined Cells
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