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Unsymmetrical Bending

1. Unsymmetrical Bending

e Displacement Field
= Uy = —X293 + X392, Ug = UV, U3 = W.

@ Zero shear = 03 =v/, 0y = —w!

@ Direct stress

0
Jg11 = Ey [Xg _XQ] |:9§;:|

_ [ —Xo] [IaMy + Iy My
Inolss — 125 |I23Ma + I2a M3

e Equilibrium Considerations:

My =Vs, Vo1 +F,=0
Mz, =—Va, V31 +F3=0.
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

o If shear strain is assumed zero, can we still have shear stress?

e We posit: y12 =0, v13 = 0, 723 = 0. As point quantities, the shear
stresses may still be small (712 = Goqa).

@ But the integral quantities are taken to be finite:
[owia=ve,  [onaa=v,

/012dX3 = q2, /013dX2 =qs.
o Invoking plane stress assumption at the section, the governing equation is,

o11,1 + 01,5 = 0.

e Integrating the above from s = 0 to s, we get the Shear flow formula:

q(s) —qo = — [Jo tXsds — [ tXads] [I35V5 — IsVs
Iyols3 — I3, I23V3 — 122V
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

Thin Section: Plane Stress Assumption

o We define the above section-local coordinate system and transform the
elasticity equations to o111 + 01p,n + 0155 = 0. Applying plane stress
assumption (for thin sections) drops the o1, term, leading to:

o11,1 + 0155 =0 = to111+qs =0,

where we have integrated along the e, direction once.
e Following through with the integral along e,, this leads to the shear flow
formula

q(s) —qo = — [y tXzds — [y tXads] [133‘/3 - 123‘/2]

InoIs3 — I3, Iy3V3 — 12V
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

e Consider the rectangular section with height i and thickness ¢:

t Shear
Flow
s X3

V- (A%
= —73 /tX3dS = —73 / ngXg
Iso I

0

tVs o h?
_hk -2 (Xx%_
2122( 24 )
@ Remember that V3 is NOT any externally applied force. It is merely
the resultant of all the shear stresses in the section.

Q

YounY
»

NP
|

@ So V3 and ¢(s) point in the same direction in this example. It is incorrect
to think that ¢(s) is balancing out V3.
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

The “I” section

o Consider the shear distribution through an
I-section as shown here

@ The shear distribution looks like it is
“flowing”, with more “flow” occurring in the

Flanges

e

F Q
thin vertical web and less in the flanges. e e
@ The second moment of area I, sums up as, | {
t
web flange
h3t 2bt3 h? h?
Iog = — +2 X | —— + 2bt X bh2)t. Flanges e
2=yt ( 2 " 7)) E ) ’
@ [33 sums up as, Flange Web
3 3 3
ht 20°t 4b°t
133 = ﬁ +2 x (3) ~ T I - {
~~ S~~~ FT%
web ~0 for small b
Balaji, N. N. (AE, IITM) AS3020%* September 19, 2024

7/19



Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

The “I” section
Idealization

@ Both I32 and I33 are dominated by flange
contributions, implying that bending is
supported primarily by the flanges.

@ This motivates the following idealization for
the I-section:

A = 2bt
Ipo = bh%t, Is3 = 0.

A = 2Dt

@ The lumped area elements denoted @ are
sometimes referred to as “Booms” in the
section.

@ Thickness in the web (denoted —) is taken
to be zero for bending-stress calculations.

Flanges
Flanges
€3
[ |
| |
t
2)t. Flanges €y
h
Web
[ N ] ¥
| |

b
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

The “I” section

o Let us consider the case with V5 = 0, V3 # 0.

@ The segments A — B, C — B, D — E, and

F — E are exposed in their free ends,

simplifying the shear flow integral (¢ = 0 at e

free ends).
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

The “I” section

@ Let us consider the case with V5 =0, V3 # 0.
@ The segments A — B, C' — B, D — E, and

. . e
F — E are exposed in their free ends, AB:s—bix, Bl
simplifying the shear flow integral (¢ = 0 at +_)_ ______ ) S + -
free ends) A A Bise(0,b) CoBisc(0b) (f
. Xot b0, Xy =1 Xoibo0, Xg= 1 ’
A =B :qaB(s )—qAB(X2) "% A BN
htV Vs
tVs — 3
T Tan fo)/(d - b+X2) B E:se(0,2h) €y
Xv,:ga—,l h
Do E:se(0.b) FoE:se(0,b)
sz:fbaux.(:f’zl Xaibo0, Xe= -2 [
Y d Y
L hg
E
b
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

The “I” section

@ Let us consider the case with V5 =0, V3 # 0.

@ The segments A — B, C' — B, D — E, and

F — E are exposed in their free ends, B & BC:s=b— X,
simplifying the shear flow integral (¢ =0 at  SS————— f———3
free ends) A A Bise(0,b) CoBisc(0b) (f
h h .
A N B : qAB( )_ qAB(X2) Xp:b0.X3=3 Xp:b—0. X3 =3
W i Al
- [2; fo )/(d = - b+ XQ) B E:se(0,2h) €y
Xv,:ﬁa—g h
hth
C—B: qCB(XQ):— (b—XQ)
2199
Do E:se(0.b) F—E:se(0,b)
sz:fbaux.(:f’zl Xa:bos0, Xy = -1 F
Y d Y
L hg
E
b
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

The “I” section

@ Let us consider the case with V5 =0, V3 # 0.

@ The segments A — B, C' — B, D — E, and
' — FE are exposed in their free ends, B &
simplifying the shear flow integral (¢ = 0 at ) }
free ends). A A Bise(0,b) C=Bisc(0h) (7
h h
A =B :qap(s) =qap(X2) = R
W i Al
- [2; fo )/(d = - b+ XQ) B E:se(0,2h) €y
bt
hth
C—B: qCB(XQ):— (b—XQ)
2199
V- DaE:se((l.b,) FoE: »E([)b,)
D—-E: QDE(XQ) 3(b+X2) DXI:f()%UAX‘(=7,§ b0, Xe= -2
2159 ———
DE:s=b+X> ||
b
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

The “I” section

@ Let us consider the case with V5 =0, V3 # 0.

@ The segments A — B, C' — B, D — E, and
' — FE are exposed in their free ends, B &
simplifying the shear flow integral (¢ = 0 at ) }
free ends). A A B:se(0,h) C=Bisc(0h) (7
h h
A 5B qAB( )_ qAB(X2) Xp:b0.X3=3 Xp:b—0, X3 =3
o i, Al
_]2; fo )((d = —57 b+X2) BoE: ’e(nzrl) €y
X3t —a—é h
hth
C—B: qop(X2) =— (b— X2)
2199
V- DoE:se(0,h) FoE:se(0.b)
D—-E: QDE(XQ) 3(b+X2) sz:fbaux.(:f’zl Xz:l?*)U.X-(=*’2l F
215 + --------------------- @--nnnn (—+ X

htv E BC:s
F—-E: qFE(XQ) 3(b Xg) FT"

2199
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

The “I” section

@ Let us consider the case with V5 =0, V3 # 0.

o The segments A — B, C' — B, D — E, and
I — F are exposed in their free ends,
simplifying the shear flow integral (¢ = 0 at
free ends).

o In summary we have linear relationships at
the flanges.
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

The “I” section

@ Let us consider the case with V5 =0, V3 # 0.

o The segments A — B, C' — B, D — E, and
I — FE are exposed in their free ends,
simplifying the shear flow integral (¢ = 0 at
free ends).

Balance at the T-junction

o In summary we have linear relationships at
the flanges.

@ Before looking at the web (B — E), we have
to observe the balance at the “T” junction.

1
‘Z’" A+ B —qC =0=>go = qa +qp
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

The “I” section

o Let us consider the case with V5 = 0, V3 # 0.

@ The segments A — B, C — B, D — E, and es
F — E are exposed in their free ends, B
simplifying the shear flow integral (¢ = 0 at ¢ $
fI‘ee ends) A A B:se(0,b) C—-B:se(0.h) CV
: Xg:—b%().X;;zg x;:hmu.x;,:%’
e On B — E, we have A
(0) = 445(0) + 4o (0) = —24s :
4BE 4dAB qce Too e e
@ The integration evaluates as, Xt
h R
bhth ﬂ/}) ) h2 V BE :s= 7~ X3
qE(X3) = — o - —
( ) 122 2122( 3 4 ) DoE:se(0.h) FoE:se(0.h)
htVs h tVs DXai-bo0, X = -2 Xbo0 X, =t [
=- b+ <)+ ——X3. : 2
I ( 8) 20y " ) ?
E
b
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

The “I” section

o Let us consider the case with V5 = 0, V3 # 0.

@ The segments A — B, C — B, D — E, and S
F — E are exposed in their free ends, B

simplifying the shear flow integral (¢ = 0 at

free ends).

e On B — E, we have

. ___ bhtVi
455(0) = 445(0) + go(0) = ~ 4%,
o The integration evaluates as, %53
bhtVs | tVs , ., h?
X3)=— 57 (X5 — —
QBE( 3) Ioo 2]22( 3 4) D E:se(0.b)

A-B:se(0,)

A

. h
Xp:-b30,X3=3

h

htVS h tV3 DXa:=b=0.X3=—3
Gty T e
122 8 2[22

e We now have the complete shear flow in the b o~

section.
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

The “I” section: Order of Magnitude Analysis

o Let us consider the “total” shear forces
experienced by each member.

€3
e Flange AB B
ht‘/?, 0 tht‘/?) A A—B:se(0.b) C
Vv E—— b+X dXo = — Xot b0, Xs— I
an 215 /—b( 2)dXs 4123 ’
o Web BE B—>E:.«’s(n.2!;)
Xoig -3 h
h2(h + 12b)tV3
Vpp = —— 0y,
BE 1210y 3
D E:se(0,b) s € (0,b)
e For b= %, we have7 DXzz—h—NLX;(:—g Xz :b (l.X;(=—% F
h3t‘/é Vs ! -
Vv = — ~ 2
AB 16[22 8 W
Veg = V3
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

The “I” section: Order of Magnitude Analysis

o Let us consider the “total” shear forces
experienced by each member.

=

€3
e Flange AB B
htV- 0 bzhtv A A—B:se(0.b) C\B:se€ (0.b) CT
Vap = — 3 / (b+ Xg)dX2 — 3 Xz:*’l"()-xzx=[\—'| xz:ko.xﬁf—ﬁ
215 )y 415; Idealization
Since Vap < Vpg, we
o Web BE understand that the web is
h2(h + 12b)tVs primarily responsible for
VeE = T 19, =V3 restoring shear loads, with
22 negligible contributions from the
e For b= %, we have, flanges. . J
S AU e
AB = 61, ) }.W
Vee =V3
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

An “I” section beam subjected to 3-point bending: Finite Element Results

Displacement - Magnifude

CODE aster
R Code_Aster on the Salome Platform
Free and Open Source (FOSS) FE solver that comes
with a fully functional frontend (Salome)! Please Do
Explore!
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections Stress 0xz

An “I” section beam subjected to 3-point bending: Finite Element Results

praen

[

EEE |

Stress oxy P
[=]

o7

-

Eamentary e -5
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections Stress 0xz

An “I” section beam subjected to 3-point bending: Finite Element Results

[

uck
g
|

Stress oxy

B

Eamentary e -5
7
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Shear Stress and Flow in Sections

2.1. Shear Center

Shear Stress and Flow in Sections

Shear Center

e Shear Center is the point of shear load such that ) ms = 0. Although in

a lot of symmetric sections this is coincident with the centroid, this is

NOT always the case.

@ Consider the “C” section beam:

\Q‘i
> _ (W3 +6bR)t 5
YH Igg:T +O(t)
htV
Alvs apa(Xz) = =52 (b= Xa)
htV3 h tVa o
e X3) = -2 (bt~ )+
T .O@_ﬁ qac(Xs) = =5 ( + 4) b
WtV
X Xy) = ——2(h— X
0 c2 qgcp(X2) = 2122( 2)
2 272
b2h2tV:
M, qud =- 3= Vg,
IS ;) 4l
3b?
b £ = — th6b+<9(t)
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Shear Stress and Flow in Sections

2.1. Shear Center

Shear Stress and Flow in Sections

Shear Center

e Shear Center is the point of shear load such that ) ms = 0. Although in

a lot of symmetric sections this is coincident with the centroid, this is

NOT always the case.

@ Consider the “C” section beam:

A

Balaji, N. N. (AE, IITM)

€3
_ (h® +6bR?)t )
yp |2E T |TOW)
htV
apa(Xz) = =52 (b= Xa)
htV3 ( h> Vs
e X3)=—n— b+~ |+
n..(.)@_ﬁ gac(Xs) ]213/2 1) 30,
Xeo gop(Xa) = —TS(b X5)
V2RtV
My = quds iy Va&s
32
&% e OO
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Shear Stress and Flow in Sections

2.1. Shear Center

Shear Stress and Flow in Sections

Shear Center

e Shear Center is the point of shear load such that ) ms = 0. Although in

a lot of symmetric sections this is coincident with the centroid, this is

NOT always the case.
@ Consider the “C” section beam:

= b
1o _hyx2 b
N wmm s XCo = Ty
- i
Q(S) —q(O tVZ /X2
Vs €2
Y Shear Flow
! qpa(X2) = &(Xg(h+2b)2—b2(h+b)2)
5 2 2133 (h+ 2b)2
(X ) _ tb2V2
== oo (X = o)
¢ qop(X2) = —qpa(Xa
|
D
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Shear Stress and Flow in Sections Closed Sections

2.2. Closed Sections

Shear Stress and Flow in Sections

@ The shear-flow integral formula makes no
reference to whether the section is open or closed. s=0 Cs

o Considering the generic closed section shown, we

start the integral at some arbitrary point A, y direction
denoting the point right before it as A~. The
integral is then written as, €s

S
q(s) —qa- = —/ toi1,1ds.

0
an(s)

@ When no twisting is expected at the section, the moment along e; about
O has to be zero. This is computed as,

At 24

. 1
/ dM1 - %pq(s)ds - qA— j{pq(s)ds + qu(s)ds E=4 G - = 75‘%qu(s)d5 .
A-
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Stringer-Web Idealization

3. Stringer-Web Idealization

w0
o)
@ A stringer, when looked at from a section, looks e % ”§ t+6(s— sp)
like a feature with a sudden increase in thickness. = &

o Consider the " “Boom” to be located at
(Xry, Xry), with area A,. \

J

@ So the shear flow integral can be generalized to,

tf Xads+ 3, A Xpy  —t [ Xods =3, A,,X,‘Z]
0 0

I33V3 — I3V
I23V3 — I22 V2

@ When thickness ¢ is negligible in comparison to the boom sections, this
further simplifies to,

(s) — q(0) = — 22, ArXey =30, ArXoy| [I33Vs — InsVa
1 1 I3 Vs — I22Va

Balaji, N. N. (AE, IITM) AS3020* September 19, 2024 13 /19

IngIs3 — 13,



Stringer-Web Idealization

3. Stringer-Web Idealization

e Considering the integral right across the boom, we
have,

profile

t+0(s—sp)

gt —q =— [Ar Xy, —ArXo,] [133‘/3 - 123‘/2}

193V3 — Iza V5

@0
%A
5}
e £
£3 S
-
=

Ino I3 — 13,

e For the sections without a boom, there is no change
in the shear flow.

@ Therefore, the shear flow is constant in the webs that o
join two booms.

General Design Principle
@ As a general principle, the stringers/booms are added to support bending.

@ The web thicknesses are chosen to ensure the shear stresses don’t exceed failure
threshold (we should like to have ¢ = 0 to minimize weight!).
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Stringer-Web Idealization

3. Stringer-Web Idealization

Idealization of the I-Section

e We idealize the I-section by lumping area elements A; and As. A; and A,
are estimated by matching the second area moments:

Original Section Stringer-Web Idealization
€3 &
A B A B
f J Ay A
122 ideal 122,0rig : [ : @ ®
Aqh? Agh? 3 5 5
4% ( Y42 x ( Y= — +bor? ) t+ 0@ bt
4 4 12 A= —
2] Iﬂz;t £
133,ideal ho Ay =—
133 ideal AV 7%
— s avde >
4% (A1b?) = — + O(£?)
3
] @ o)

e ———

@ The total sectional area of the original section is ht + 4bt.

@ The total area of the new section (assuming the web thickness is
drastically reduced) is 44 + 245 = % + 4bt, which is a slight reduction.

e Looking at this from a manufacturing standpoint, this shows that a
web-stringer construction can achieve similar bending stiffness

with lesser material expenditure.
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Stringer-Web Idealization

3. Stringer-Web Idealization

Idealization of the I-Section: Shear Flow Comparisons

o For the idealized section AB, the Original Section Stringer-Web Idealization

shear flow is given by, A Ble
[ ]
[

V3 h V3b 7

SN £ RO O L
122 ideal '2 h? + 12bh

qAB,ideal =

The average flow for the original h
section is,

qAB,avg =

1/ b°htVz) _  3Vab ,
b Al )~ W2+ 12bh ———F
e On BE, the idealized flow is

Vs h Vs

4BE,ideal = 24AB ideal — ———— Ao = ——=,
IQZ,ideal 2 h

which is the same for the original section also.

@ In the stringer-web section, therefore, the flanges carry lesser average
shear than the original section, and the web carries the same shear.
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4. Shear Lag

Example from Sun [1] (Section 3.1)

Shear Lag

e We already saw the St. Venant’s principle. Can we say something more
specific about “how fast” the end effects start getting smoothed out in the

stress field? Consider:

@ The strain relationship leads to:

Section at x

oy 1 _
% = E (Etop - 6mid> D
P 1 2 2R
T B, < + ) . U E
aEy Atop Amid Py
@ From the equilibrium equations we have, L \,\
_10P P P ot
n t 358 ' (1+ €rop)0
L W) D E
o Invoking 7 = G~ we get, n L P =,
0 10%P G 1 2 b= BT
(Rl = + P.
dx  t 022 aBy \ Awop  Amid
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Shear Lag

4. Shear Lag

Example from Sun [1] (Section 3.1)
e We already saw the St. Venant’s principle. Can we say something more
specific about “how fast” the end effects start getting smoothed out in the
strese FA1A? (Nanaidaw.
Axial Stress Decay

@ The s This is of the form
) Section at x
P,zz - )\ P == O7 PU |
that is solved by op, |
)
P(z) = C1e*™ + Coe 7. Py |
o From . . e |
This shows an exponential decay |’ =0 \,\ r=10
of the axial stress £ along the H P
axis. Sr (1t ag)ir
o InNpking 7 = G~ we get, Pl e =

2 5y = Cton = a5
NP G2y, :
Or |t 022  aFEy \Awp Amid
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Shear Lag

4. Shear Lag

Example from Sun [1] (Section 3.1): FE Results

X
@
¢
[
=)
15
3
£
@
]

-100
-1.2e+02
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Shear Lag

4. Shear Lag

Example from Sun [1] (Section 3.1): FE Results

P
@
i3
=
S
c
|3
£
kol
o
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Shear Lag
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