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Unsymmetrical Bending

1. Unsymmetrical Bending

Displacement Field

u1 = −X2θ3 +X3θ2, u2 = v, u3 = w.

Zero shear =⇒ θ3 = v′, θ2 = −w′
Direct stress

σ11 = Ey

[
X3 −X2

] [θ2′
θ3′

]
=

[
X3 −X2

]
I22I33 − I223

[
I33M2 + I23M3

I23M2 + I22M3

]
Equilibrium Considerations:

M2,1 = V3, V2,1 + F2 = 0

M3,1 = −V2, V3,1 + F3 = 0.
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

If shear strain is assumed zero, can we still have shear stress?

We posit: γ12 = 0, γ13 = 0, γ23 = 0. As point quantities, the shear
stresses may still be small (τ12 = Gσ12).

But the integral quantities are taken to be finite:∫
σ12dA = V2,

∫
σ13dA = V3,∫

σ12dX3 = q2,

∫
σ13dX2 = q3.

Invoking plane stress assumption at the section, the governing equation is,

σ11,1 + σ1s,s = 0.

Integrating the above from s = 0 to s, we get the Shear flow formula:

q(s)− q0 = −
[∫ s

0
tX3ds −

∫ s

0
tX2ds

]
I22I33 − I223

[
I33V3 − I23V2

I23V3 − I22V2

]
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections
Thin Section: Plane Stress Assumption

We define the above section-local coordinate system and transform the
elasticity equations to σ11,1 + σ1n,n + σ1s,s = 0. Applying plane stress
assumption (for thin sections) drops the σ1n term, leading to:

σ11,1 + σ1s,s = 0 =⇒ tσ11,1 + q,s = 0,

where we have integrated along the en direction once.

Following through with the integral along es, this leads to the shear flow
formula

q(s)− q0 = −
[∫ s

0
tX3ds −

∫ s

0
tX2ds

]
I22I33 − I223

[
I33V3 − I23V2

I23V3 − I22V2

]
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections

Consider the rectangular section with height h and thickness t:

q(s) = − V3

I22

s∫
0

tX3ds = − tV3

I22

X3∫
−h

2

X3dX2

= − tV3

2I22
(X2

2 − h2

4
)

Remember that V3 is NOT any externally applied force. It is merely
the resultant of all the shear stresses in the section.

So V3 and q(s) point in the same direction in this example. It is incorrect
to think that q(s) is balancing out V3.
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections
The “I” section

Consider the shear distribution through an
I-section as shown here

The shear distribution looks like it is
“flowing”, with more “flow” occurring in the
thin vertical web and less in the flanges.

The second moment of area I22 sums up as,

I22 =

web︷︸︸︷
h3t

12
+2×

flange︷ ︸︸ ︷(
2bt3

12
+ 2bt× h2

4

)
≈ (

h3

12
+ bh2)t.

I33 sums up as,

I33 =
ht3

12︸︷︷︸
web

+2×

flange︷ ︸︸ ︷(
2b3t

3

)
≈ 4b3t

3︸︷︷︸
≈0 for small b

.

Idealization

Both I22 and I33 are dominated by flange
contributions, implying that bending is
supported primarily by the flanges.

This motivates the following idealization for
the I-section:

A = 2bt

A = 2bt

I22 = bh2t, I33 = 0.

The lumped area elements denoted are
sometimes referred to as “Booms” in the
section.

Thickness in the web (denoted ) is taken
to be zero for bending-stress calculations.

Balaji, N. N. (AE, IITM) AS3020* September 14, 2024 7 / 15



Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections
The “I” section

Consider the shear distribution through an
I-section as shown here

The shear distribution looks like it is
“flowing”, with more “flow” occurring in the
thin vertical web and less in the flanges.

The second moment of area I22 sums up as,

I22 =

web︷︸︸︷
h3t

12
+2×

flange︷ ︸︸ ︷(
2bt3

12
+ 2bt× h2

4

)
≈ (

h3

12
+ bh2)t.

I33 sums up as,

I33 =
ht3

12︸︷︷︸
web

+2×

flange︷ ︸︸ ︷(
2b3t

3

)
≈ 4b3t

3︸︷︷︸
≈0 for small b

.

Idealization

Both I22 and I33 are dominated by flange
contributions, implying that bending is
supported primarily by the flanges.

This motivates the following idealization for
the I-section:

A = 2bt

A = 2bt

I22 = bh2t, I33 = 0.

The lumped area elements denoted are
sometimes referred to as “Booms” in the
section.

Thickness in the web (denoted ) is taken
to be zero for bending-stress calculations.

Balaji, N. N. (AE, IITM) AS3020* September 14, 2024 7 / 15



Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections
The “I” section

Let us consider the case with V2 = 0, V3 ̸= 0.

The segments A → B, C → B, D → E, and
F → E are exposed in their free ends,
simplifying the shear flow integral (q = 0 at
free ends).

On B → E, we have
qBE(0) = qAB(b) + qCB(b) = − bhtV3

I22
.

The integration evaluates as,

qBE(X3) = −bhtV3

I22
+

tV3

2I22
(X2

3 − h2

4
)

= −htV3

I22
(b+

h

8
) +

tV3

2I22
X2

3 .

We now have the complete shear flow in the
section.

Balance at the T-junction
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Shear Stress and Flow in Sections

2. Shear Stress and Flow in Sections
The “I” section: Order of Magnitude Analysis

Let us consider the “total” shear forces
experienced by each member.

Flange AB

VAB = −htV3

2I22

∫ 0

−b

(b+X2)dX2 = −b2htV3

4I22

Web BE

VBE =
h2(h+ 12b)tV3

12I22
= V3

For b = h
2 , we have,

VAB = −h3tV3

16I22
≈ −V3

8

VBE = V3

Idealization

Since VAB ≪ VBE , we
understand that the web is
primarily responsible for
restoring shear loads, with
negligible contributions from the
flanges.
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Shear Stress and Flow in Sections Shear Center

2. Shear Stress and Flow in Sections

Shear Center is the point of shear load such that
∑

m1 = 0. Although in
a lot of symmetric sections this is coincident with the centroid, this is
NOT always the case.

Consider the “C” section beam:
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Shear Stress and Flow in Sections Closed Sections

2.2. Closed Sections
Shear Stress and Flow in Sections

The shear-flow integral formula makes no
reference to whether the section is open or closed.

Considering the generic closed section shown, we
start the integral at some arbitrary point A,
denoting the point right before it as A−. The
integral is then written as,

q(s)− qA− = −
∫ s

0

tσ11,1ds︸ ︷︷ ︸
qb(s)

.

When no twisting is expected at the section, the moment along e1 about
O has to be zero. This is computed as,

A+∫
A−

dM1 =

∮
pq(s)ds = qA−

2A︷ ︸︸ ︷∮
pq(s)ds+

∮
pqb(s)ds =⇒ q

A− = −
1

2A

∮
pqb(s)ds .
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Stringer-Web Idealization

3. Stringer-Web Idealization

A stringer, when looked at from a section, looks
like a feature with a sudden increase in thickness.

Consider the rth “Boom” to be located at
(Xr2 , Xr3), with area Ar.

So the shear flow integral can be generalized to,

q(s)−q(0) = −

[
t

s∫
0

X3ds+
∑

r ArXr3 −t
s∫
0

X2ds−
∑

r ArXr2

]
I22I33 − I223

[
I33V3 − I23V2

I23V3 − I22V2

]
When thickness t is negligible in comparison to the boom sections, this
further simplifies to,

q(s)− q(0) = −
[
∑

r ArXr3 −
∑

r ArXr2 ]

I22I33 − I223

[
I33V3 − I23V2

I23V3 − I22V2

]
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Stringer-Web Idealization

3. Stringer-Web Idealization

Considering the integral right across the boom, we
have,

q+ − q− = −
[
ArXr3 −ArXr2

]
I22I33 − I223

[
I33V3 − I23V2

I23V3 − I22V2

]
.

For the sections without a boom, there is no change
in the shear flow.

Therefore, the shear flow is constant in the webs that
join two booms.

General Design Principle

As a general principle, the stringers/booms are added to support bending.

The web thicknesses are chosen to ensure the shear stresses don’t exceed failure
threshold (we should like to have t = 0 to minimize weight!).
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Shear Lag

4. Shear Lag
Example from Sun [1] (Section 3.1)

We already saw the St. Venant’s principle. Can we say something more
specific about “how fast” the end effects start getting smoothed out in the
stress field? Consider:

The strain relationship leads to:

∂γ

∂x
=

1

a
(ϵtop − ϵmid)

=
P

aEy

(
1

Atop
+

2

Amid

)
.

From the equilibrium equations we have,

τ =
1

t

∂P

∂x
.

Invoking τ = Gγ we get,

G
∂γ

∂x
=

1

t

∂2P

∂x2
=

G

aEy

(
1

Atop
+

2

Amid

)
P.

Axial Stress Decay

This is of the form

P,xx − λ2P = 0,

that is solved by

P (x) = C1e
λx + C2e

−λx.

This shows an exponential decay
of the axial stress P

A
along the

axis.
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Shear Lag
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