

AS3020: Aerospace Structures Module 4: Bending of Beam-Like Structures

Instructor: Nidish Narayanaa Balaji

Dept. of Aerospace Engg., IIT-Madras, Chennai

September 13, 2024

Table of Contents

¹ [Unsymmetrical Bending](#page-2-0) [Shear Stress and Flow in](#page-3-0) [Sections](#page-3-0)

- [Shear Center](#page-19-0)
- [Closed Sections](#page-21-0)
- [Shear Lag](#page-22-0)
- ³ [Stringer-Web Idealization](#page-23-0) Chapters 4-5 in Sun

 $[1]$

Chapters 16-20 in Megson [\[2\]](#page-24-2)

Balaji, N. N. (AE, IITM) [AS3020*](#page-0-0) September 13, 2024 2 / 14

1. [Unsymmetrical Bending](#page-2-0)

Displacement Field

$$
u_1=-X_2\theta_3+X_3\theta_2,\quad u_2=v,\quad u_3=w.
$$

• Zero shear
$$
\implies \theta_3 = v\prime, \quad \theta_2 = -w\prime
$$

• Direct stress

$$
\sigma_{11} = E_y \begin{bmatrix} X_3 & -X_2 \end{bmatrix} \begin{bmatrix} \theta_2' \\ \theta_3' \end{bmatrix}
$$

$$
= \frac{X_3 - X_2}{I_{22}I_{33} - I_{23}^2} \begin{bmatrix} I_{33}M_2 + I_{23}M_3 \\ I_{23}M_2 + I_{22}M_3 \end{bmatrix}
$$

Equilibrium Considerations:

$$
M_{2,1} = V_3, \t V_{2,1} + F_2 = 0
$$

$$
M_{3,1} = -V_2, \t V_{3,1} + F_3 = 0.
$$

- • If shear strain is assumed zero, can we still have shear stress?
- We posit: $\gamma_{12} = 0$, $\gamma_{13} = 0$, $\gamma_{23} = 0$. As point quantities, the shear stresses may still be small $(\tau_{12} = G \sigma_{12}).$
- But the **integral quantities** are taken to be finite:

$$
\int \sigma_{12} dA = V_2, \qquad \int \sigma_{13} dA = V_3,
$$

$$
\int \sigma_{12} dX_3 = q_2, \qquad \int \sigma_{13} dX_2 = q_3.
$$

Invoking plane stress assumption at the section, the governing equation is,

$$
\sigma_{11,1} + \sigma_{1s,s} = 0.
$$

• Integrating the above from $s = 0$ to s, we get the **Shear flow formula**:

$$
q(s) - q_0 = -\frac{\left[\int_0^s tX_3 ds - \int_0^s tX_2 ds\right]}{I_{22}I_{33} - I_{23}^2} \begin{bmatrix} I_{33}V_3 - I_{23}V_2 \ I_{23}V_3 - I_{22}V_2 \end{bmatrix}
$$

 \leftarrow \Box \rightarrow

Thin Section: Plane Stress Assumption

We define the above section-local coordinate system and transform the elasticity equations to $\sigma_{11,1} + \sigma_{1n,n} + \sigma_{1s,s} = 0$. Applying **plane stress** assumption (for thin sections) drops the σ_{1n} term, leading to:

$$
\sigma_{11,1} + \sigma_{1s,s} = 0 \implies t\sigma_{11,1} + q_{,s} = 0,
$$

where we have integrated along the e_n direction once.

Following through with the integral along \underline{e}_s , this leads to the **shear flow** formula

$$
q(s) - q_0 = -\frac{\left[\int_0^s tX_3 ds - \int_0^s tX_2 ds\right]}{I_{22}I_{33} - I_{23}^2} \begin{bmatrix} I_{33}V_3 - I_{23}V_2 \ I_{23}V_3 - I_{22}V_2 \end{bmatrix}
$$

Balaji, N. N. (AE, IITM) AS3020^{*} AS3020^{*} September 13, 2024 5/14

• Consider the rectangular section with height h and thickness t :

- \bullet Remember that V_3 is NOT any externally **applied force**. It is merely the resultant of all the shear stresses in the section.
- \bullet So V_3 and $q(s)$ point in the same direction in this example. It is incorrect to think that $q(s)$ is balancing out V_3 .

 \leftarrow \Box \rightarrow

The "I" section

- Consider the shear distribution through an I-section as shown here
- The shear distribution looks like it is "flowing", with more "flow" occurring in the thin vertical web and less in the flanges.
- The second moment of area I_{22} sums up as,

$$
I_{22} = \overbrace{\frac{h^3t}{12}}^{web} + 2 \times \overbrace{\left(\frac{2bt^3}{12} + 2bt \times \frac{h^2}{4}\right)}^{flange} \approx (\frac{h^3}{12} + bh^2)
$$

 I_{33} sums up as,

$$
I_{33} = \underbrace{\frac{ht^3}{12}}_{web} + 2 \times \underbrace{\left(\frac{2b^3t}{3}\right)}_{\approx 0 \text{ for small b}} \approx \underbrace{\frac{4b^3t}{3}}_{\approx 0 \text{ for small b}}.
$$

flange

.

The "I" section

Idealization

- \bullet Both I_{22} and I_{33} are dominated by flange contributions, implying that **bending** is supported primarily by the flanges.
- \bullet This motivates the following idealization for the I-section:

$$
A = 2bt
$$

$$
I_{22} = bh2t, I_{33} = 0.
$$

$$
A = 2bt
$$

- $\bullet\,$ The lumped area elements denoted $\bullet\,$ are section. sometimes referred to as "**Booms**" in the 3 3
	- $\sum_{i=1}^{n}$ $\frac{1}{100}$ for $\frac{1}{100}$ f Thickness in the web (denoted \qquad) is taken

The "I" section

- Let us consider the case with $V_2 = 0, V_3 \neq 0$.
- The segments $A \to B$, $C \to B$, $D \to E$, and $F \to E$ are exposed in their free ends, simplifying the shear flow integral $(q = 0$ at free ends).

The "I" section

- Let us consider the case with $V_2 = 0, V_3 \neq 0$.
- The segments $A \to B$, $C \to B$, $D \to E$, and $F \to E$ are exposed in their free ends, $AB: s = b + X_2$ simplifying the shear flow integral $(q = 0$ at free ends). $\mathbf{A} \to \mathbf{B}$: $s \in (0, 1)$ $\mathbf{C} \to \mathbf{B} : s \in (0, b)$ $\mathbf{A} \rightarrow \mathbf{B} : q_{AB}(s) \equiv q_{AB}(X_2) =$ $X_2: -b \to 0, X_3 = \frac{1}{2}$ $X_2: b \to 0, X_3 = \frac{1}{2}$ $-\frac{tV_3}{I_{22}}\int_0^s X_3\overline{ds} = -\frac{htV_3}{2I_{22}}$ V_3 $\frac{2I_{22}}{2I_{22}}(b+X_2)$ \boldsymbol{h} $\mathbf{D} \to \mathbf{E}$: $s \in (0, b)$ $\mathbf{F} \rightarrow \mathbf{E} \cdot \mathbf{s} \in (0, b]$ $\sum X_2 : -b \to 0, X_3 = -\frac{n}{2}$ h

The "I" section

- Let us consider the case with $V_2 = 0, V_3 \neq 0$.
- The segments $A \to B$, $C \to B$, $D \to E$, and \underline{e}_3 $F \to E$ are exposed in their free ends, $BC : s = b - X_2$ simplifying the shear flow integral $(q = 0$ at free ends). $\mathbf{A} \rightarrow \mathbf{B}$: $s \in (0, 1)$ $C \rightarrow B : s \in (0, b)$ $\mathbf{A} \to \mathbf{B}$: $q_{AB}(s) \equiv q_{AB}(X_2)$ $X_2: -b \to 0, X_3 = \frac{1}{2}$ $X_2: b \to 0, X_3 = \frac{1}{2}$ $-\frac{tV_3}{I_{22}}\int_0^s X_3\overline{ds} = -\frac{htV_3}{2I_{22}}$ V_3 $\frac{2I_{22}}{2I_{22}}(b+X_2)$ \boldsymbol{h} $\mathbf{C} \rightarrow \mathbf{B} : q_{CB}(X_2) = -\frac{htV_3}{2I}$ $\frac{2I_{22}}{2I_{22}}(b-X_2)$ $\mathbf{D} \to \mathbf{E}$: $s \in (0, b)$ $\mathbf{F} \rightarrow \mathbf{E} \cdot \mathbf{s} \in (0, b]$ $\sum X_2 : -b \to 0, X_3 = -\frac{n}{2}$ h

The "I" section

- Let us consider the case with $V_2 = 0, V_3 \neq 0$.
- The segments $A \to B$, $C \to B$, $D \to E$, and \mathfrak{e}_3 $F \to E$ are exposed in their free ends, simplifying the shear flow integral $(q = 0$ at free ends). $\mathbf{A} \to \mathbf{B} : s \in (0,$ $\mathbf{C} \to \mathbf{B} : s \in (0, b)$ $\mathbf{A} \to \mathbf{B}$: $q_{AB}(s) \equiv q_{AB}(X_2)$ $X_2: -b \to 0, X_3 = \frac{1}{2}$ $X_2: b \to 0, X_3 = \frac{1}{2}$ $-\frac{tV_3}{I_{22}}\int_0^s X_3\overline{ds} = -\frac{htV_3}{2I_{22}}$ $\frac{2I_{22}}{2I_{22}}(b+X_2)$ \boldsymbol{h} $\mathbf{C} \rightarrow \mathbf{B} : q_{CB}(X_2) = -\frac{htV_3}{2I}$ $\frac{2I_{22}}{2I_{22}}(b-X_2)$ $\mathbf{D} \to \mathbf{E} : s \in (0, b)$ $\mathbf{F} \rightarrow \mathbf{E} \cdot \mathbf{s} \in (0, h)$ $\mathbf{D} \to \mathbf{E}$: $q_{DE}(X_2) = \frac{htV_3}{2I_{22}}(b+X_2)$ $DE: s = b + X_2$

The "I" section

- Let us consider the case with $V_2 = 0, V_3 \neq 0$.
- The segments $A \to B$, $C \to B$, $D \to E$, and \mathfrak{e}_3 $F \to E$ are exposed in their free ends, simplifying the shear flow integral $(q = 0$ at free ends). $\mathbf{A} \rightarrow \mathbf{B}$: $s \in (0, 1)$ $\mathbf{C} \to \mathbf{B} : s \in (0, b)$ $\mathbf{A} \to \mathbf{B}$: $q_{AB}(s) \equiv q_{AB}(X_2)$ $X_2: -b \to 0, X_3 = \frac{1}{2}$ $X_2: b \to 0, X_3 = \frac{1}{2}$ $-\frac{tV_3}{I_{22}}\int_0^s X_3\overline{ds} = -\frac{htV_3}{2I_{22}}$ $\frac{2I_{22}}{2I_{22}}(b+X_2)$ \hbar $\mathbf{C} \rightarrow \mathbf{B} : q_{CB}(X_2) = -\frac{htV_3}{2I}$ $\frac{2I_{22}}{2I_{22}}(b-X_2)$ $\mathbf{D} \to \mathbf{E}$: $s \in (0, b)$ $\mathbf{F} \rightarrow \mathbf{E} \cdot \mathbf{s} \in (0, b)$ $\mathbf{D} \to \mathbf{E}$: $q_{DE}(X_2) = \frac{htV_3}{2I_{22}}(b+X_2)$ $D X_2 : -b \rightarrow 0, X_3 = -\frac{h}{2}$ $X_2 : b \rightarrow 0$. $X_2 = -\frac{16}{3}$ $E\,BC: s=b-X_2$ $\mathbf{F} \to \mathbf{E}$: $q_{FE}(X_2) = \frac{htV_3}{2I_{22}}(b - X_2)$ \overline{h}

The "I" section

- Let us consider the case with $V_2 = 0, V_3 \neq 0$.
- The segments $A \to B$, $C \to B$, $D \to E$, and $F \to E$ are exposed in their free ends, simplifying the shear flow integral $(q = 0$ at free ends).
- In summary we have linear relationships at the flanges.

The "I" section

- Let us consider the case with $V_2 = 0, V_3 \neq 0$.
- The segments $A \to B$, $C \to B$, $D \to E$, and $F \to E$ are exposed in their free ends, simplifying the shear flow integral $(q = 0$ at free ends).
- In summary we have linear relationships at the flanges.
- Before looking at the web $(B \to E)$, we have to observe the balance at the "T" junction.

The "I" section

- Let us consider the case with $V_2 = 0, V_3 \neq 0$.
- The segments $A \to B$, $C \to B$, $D \to E$, and $F \to E$ are exposed in their free ends, simplifying the shear flow integral $(q = 0$ at free ends).
- On $B \to E$, we have $q_{BE}(0) = q_{AB}(b) + q_{CB}(b) = -\frac{b\hbar tV_3}{I_{22}}.$
- The integration evaluates as,

$$
q_{BE}(X_3) = -\frac{bhtV_3}{I_{22}} + \frac{tV_3}{2I_{22}}(X_3^2 - \frac{h^2}{4})
$$

=
$$
-\frac{htV_3}{I_{22}}(b + \frac{h}{8}) + \frac{tV_3}{2I_{22}}X_3^2.
$$

The "I" section

- Let us consider the case with $V_2 = 0, V_3 \neq 0$.
- The segments $A \to B$, $C \to B$, $D \to E$, and $F \to E$ are exposed in their free ends, simplifying the shear flow integral $(q = 0$ at free ends).
- On $B \to E$, we have $q_{BE}(0) = q_{AB}(b) + q_{CB}(b) = -\frac{b\hbar tV_3}{I_{22}}.$
- The integration evaluates as,

$$
q_{BE}(X_3) = -\frac{bhtV_3}{I_{22}} + \frac{tV_3}{2I_{22}}(X_3^2 - \frac{h^2}{4})
$$

=
$$
-\frac{htV_3}{I_{22}}(b + \frac{h}{8}) + \frac{tV_3}{2I_{22}}X_3^2.
$$

We now have the complete shear flow in the section.

The "I" section: Order of Magnitude Analysis

- Let us consider the "total" shear forces experienced by each member.
- Flange AB

$$
V_{AB} = -\frac{htV_3}{2I_{22}} \int_{-b}^{0} (b + X_2) dX_2 = -\frac{b^2 ht}{4I_{22}}
$$

Web BE

$$
V_{BE} = \frac{h^2(h + 12b)tV_3}{12I_{22}} = V_3
$$

• For
$$
b = \frac{h}{2}
$$
, we have,

$$
V_{AB} = -\frac{h^3 t V_3}{16I_{22}} \approx -\frac{V_3}{8}
$$

$$
V_{BE} = V_3
$$

The "I" section: Order of Magnitude Analysis

- Let us consider the "total" shear forces experienced by each member.
- Flange AB

$$
V_{AB} = -\frac{htV_3}{2I_{22}} \int_{-b}^{0} (b + X_2) dX_2 = -
$$

Web BE

$$
V_{BE} = \frac{h^2(h + 12b)tV_3}{12I_{22}} = V_3
$$

For $b = \frac{h}{2}$, we have,

$$
V_{AB} = -\frac{h^3 t V_3}{16 I_{22}} \approx -\frac{V_3}{8}
$$

$$
V_{BE} = V_3
$$

 $\mathbf{A} \rightarrow \mathbf{B}$: $s \in (0,b)$ $\,$ C $\mathbf{B}: s \in (0, b]$ b^2htV_3 $X_2: -b \rightarrow 0$, $X_3 = \frac{h}{a}$ $4I_{21}$ Idealization

> Since $V_{AB} \ll V_{BE}$, we understand that the web is primarily responsible for restoring shear loads, with negligible contributions from the flanges.

- • Shear Center is the point of shear load such that $\sum m_1 = 0$. Although in a lot of symmetric sections this is coincident with the centroid, this is NOT always the case.
- Consider the "C" section beam:

- Shear Center is the point of shear load such that $\sum m_1 = 0$. Although in a lot of symmetric sections this is coincident with the centroid, this is NOT always the case.
- Consider the "C" section beam:

[Shear Stress and Flow in Sections](#page-3-0) [Closed Sections](#page-21-0)

2. [Shear Stress and Flow in Sections](#page-3-0)

\bullet Choose constant of integration q_0 to exclude torsional effects.

If loads at boundary are self equilibrated to begin with, what is the distribution of loads in the member?

3. [Stringer-Web Idealization](#page-23-0)

 \bullet Jump in shear flow across boom with area A_r :

$$
q_2 - q_1 = -\sigma_{11,1} A_r
$$

References I

- [1] C. T. Sun. Mechanics of Aircraft Structures, 2nd edition. Hoboken, N.J: Wiley, June 2006. isbn: 978-0-471-69966-8 (cit. on p. [2\)](#page-1-0).
- [2] T. H. G. Megson. Aircraft Structures for Engineering Students, Elsevier, 2013. isbn: 978-0-08-096905-3 (cit. on p. [2\)](#page-1-0).