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Tensor calculus and anisotropic elasticity for the impatient

C. Tannous
Université de Brest, Lab-STICC, CNRS-UMR 6285, F-29200 Brest, FRANCE

Tensor calculus is introduced to Physics and Mechanical engineering students in 2D and 3D and
applied to anisotropic elasticity such as in condensed matter physics approaching the subject from
the practical tool aspect point of view. It provides powerful mathematical techniques to tackle many
aspects of Vector Calculus, Continuum mechanics, Solid State Physics, Electromagnetism...

PACS numbers: 46.25.-y, 46.35.42,62.20.D-
Keywords: Elasticity in continuum mechanics of solids, mechanical properties of solids
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I. INTRODUCTION

Tensor calculus is usually introduced at the graduate/undergraduate level in Special Relativity or General Rela-

tivity /Gravitation/Cosmology courses. It has been used by Einstein to tackle the daunting mathematical operations
needed in performing many required differential geometry tasks in curved space.

Prior to relativity courses, physics students are typically exposed to Vector calculus [1] in Classical Mechanics,
Electromagnetism or in Mathematics for Physicists since they employ, in these courses, vector differential operators
like the gradient, divergence, curl, Laplacian...



Tensor calculus provides the students a powerful geometrical extension of Vector calculus to arbitrary dimension and
to mathematical objects they were not familiar with to tackle problems in fluids, elasticity, continuum mechanics...

Another field of application of Tensor calculus [2] is Solid State Physics where students become acquainted with
geometry of anisotropic materials and recently with mathematics of Topological materials.

It is natural to suppose that a quantitative description of physical phenomena cannot depend on the coordinate
system in which they are expressed. The argument may be returned: since physical phenomena are independent of
the coordinate system, what are the possible implications on the nature of the quantities describing these phenomena?

Einstein covariance principle (ECP) states that Laws of Physics are same in every Lorentz reference (observer)
frame, implying a geometric view of physical laws and calling for the mathematical formulation of any change in a
physical quantity under a change of reference frame [3].

The study of implications and the resulting classification of physical quantities constitutes the theory of tensor
calculus which was used by Einstein. In this work we introduce some calculation rules used in tensor manipulation
and show how the tensors are transformed by change of axis. We apply these results to the elasticity case.

This work is not only useful to Physics and Mechanical engineering students but also to those endeavoring in Fluid
and Continuum Mechanics. It is organized as follows: In section 2, we introduce tensor fields and coordinate systems
in compliance with ECP and in Section 3 Tensor methods for treating Linear Algebra and Vector Calculus [1, 2] is
described. We treat three distinct cases: Cartesian, orthogonal curvilinear and non-orthogonal curvilinear coordinates.
Section 4 is dedicated to Tensor extension and contraction of physical quantities and Section 5 is dedicated to Elasticity
problems as an application. Section 6 contains a conclusion and perspectives.

Appendix A describes Tensor etymology and its evolution, Appendix B is about covariant derivative needed in
curvilinear coordinates and Appendix C discusses Voigt notation heavily used in Elasticity.

II. PHYSICAL FIELDS AND TENSOR FIELDS IN GENERALIZED COORDINATES

Physical fields are function of position in space thus it is imperative to introduce coordinate systems that will
allow us to express accurately these fields. A field is a quantity that takes values ”instantaneously” at some arbitrary
position in space. It is obvious this can’t be true according to Feynman and Special Relativity since we know that
any change a physical quantity undergoes a signal is needed to transmit the information. As an example, if we have
a charge q at a point considered in R> as the origin » = 0 and if we want know the value of the electric field at any
point 7 # 0, it is necessary that a photon (called "longitudinal”) is transmitted from the origin to the point . Since
the speed of the photon and of light are finite, a certain time for this information to travel.

Let us contemplate some fields at some point r with different nature such as scalar, vector, tensorial.... Temperature
field in a room is a scalar field T'(r) while the speed within a fluid is a vector field V(r). When we consider
the electromagnetic field, we have two vector quantities E(r) and H(r) knowing that the electric field E(r) is
intrinsically related to the magnetic field H (r) via Maxwell’s equations. One relevant question that we answer later
in subsection IV A is: since E(r) H(r) fields are intimately related, is it possible to encapsulate them compactly in
Maxwell’s equations?

A. 2D covariant and contravariant coordinates

ECP being our guide, we start with a general description of coordinates before describing reference (observer) frame
transformation. This word is distinct from the covariant adjective that means ”form invariant” when it concerns
physical laws (pertinent to ECP) or ”transforms as standard basis vectors” when it concerns basis vectors. We use
this notion in order to describe the different ways of expressing a 2D position vector in a given set of basis vectors
ey, ey (cf fig. 1). Covariance principle has been debated extensively and several workers questioned its validity and
pondered about its consequences (see for instance references [4, 5]).

We assume that ey, ey are normalized (||e1]| = ||ez|| = 1) and making an angle 6 (cf fig. 1).

Let us express the components of some arbitrary 2D vector r : r = z'e; + z?es where z* are the ordinary
components (contravariant). Geometrically, the covariant components x; are obtained by perpendicular projection
on to the standard basis axes (cf fig. 1).

Thus z; = 7 - e;,i = 1,2. Substituting » in the latter yields: x; = (z'e; + z2e2) - €;, i.e: 1 = (zvle; + 2%er) - €1 =
!+ 2%ey-e1 = v + 1% cosh, vo = (z'e; + 1%es) ey = 2% + 2ley - ey = xlcosh + a2

Assuming a symmetry principle between covariance and contravariance, let us rewrite r =3, xiel (cf fig. 1).

Taking the scalar product with e; yields: e;-r = >, z;€;-e'. Assuming the covariant coordinate x; is the projection
of r over e; we get: x; =e; -7 =), x;e; e then the scalar product e; - ' = 5;» the Kronecker symbol written in a



FIG. 1: (Color on-line) 2D Covariant and contravariant coordinates of » = OM in the ”standard basis” made of covariant
vectors (e1,es). Ordinary (contravariant) coordinates: OA = z' and OC = 2” are made of projections parallel to basis
axes whereas covariant coordinates OB = x1 and OD = x> are made from perpendicular projections. es3 is a unit vector
perpendicular to the (e1, e2) plane. Contravariant basis vectors el7 e? (in red) are such that ei1le? and es Le'. Note that er
is the projection of e' while e; is the projection of €.

mixed fashion but meaning same as generally known i.e. 5; =0if 4 # j and 6; =1lifi=j.

Thus, the contravariant basis is orthogonal to the covariant and is termed dual basis in Mathematics or Reciprocal
basis in Crystallography [6].

We can express this mathematically by introducing a es unit vector perpendicular to the ej,e; plane. An ex-
plicit expression of the contravariant basis vectors can be derived by exploiting the reciprocal of the standard basis
formula [6]:

1 €y X e3 2 e3 X e

- e’ = (1)

(61,62763)7 (61762763)

The triple product (e, ez, e3) = sin @ confirming the geometrical construct in fig. 1 that e; is the projection of e'
and e, is the projection of €? with the values of the norms ||e!|| = ||€?|| = 1/sin 6.

Let us rewrite the position vector as r = z’e; with Einstein summation rule stating that whenever we have an
index appearing twice as covariant and contravariant, a summation over it is implied.

Using laws relating covariant and contravariant components, we define a ”metric matrix” g;; in the following way

1 0\ . . . . . ;
9ij = (cos 9 COIS ) ,i=1,2. g;; allows us to go between covariant and contravariant coordinates since: z; = g;;27.
gi; makes the indices "move” down implying by symmetry the existence of another contravariant metric matrix g
that makes the indices "move” up. Note that g;; = e; - e; (respectively g7 = e' - €7) relates two vectors e; and e;
(resp. €' and e’) and if the standard basis e; is orthonormal (6 = 7/2), gi; = d;; the 2D unit matrix and 2* = x;
making covariant and contravariant coordinates same. Evaluating ¢* from the scalar products of e’, e’ using the

previous definitions 1 and fig 1 yields: [¢¥] = ﬁ ( cts@ B Cfs 9) ,1=1,2.

l9i;] and [¢%] are inverse of one another as consequence of their respective definitions. We provide an alternate

proof based on their determinants: det[g;;] = sin®# = (e; x e2)? and det[g"/] = (e x e?)? moreover (e; x e2) | e3
1

and (e! x €?) || e3. Thus (e1 x e3)?(e! x €2)? = [(e1 x €2)- (€' x €2)]? yielding det[g;;]det[g"] = [(e1 x e2)- (€' x €?)]2.
Using the dot product of two cross products [7]:

(2)

(axb).(cxd):’a'c “'d‘

b-cb-d



we get:

1 2
e -e e -e
(e1 x e3) - (e* x €?) = |+ e

es-el ey-e

3)

proving once again that [g;;] and [¢g"/] are inverse of one another.
We prove further below that [9i;] and [¢g*7] are rank-2 tensors allowing to write compactly index lowering z; = g;;’
and lifting ' = ¢g"/x; operations.

B. 3D Covariant and contravariant curvilinear coordinates

u= constant

|

X

FIG. 2: 3D covariant and contravariant curvilinear coordinates: contravariant vectors are perpendlcular tou'(x,y, z) = constant
surfaces whereas covariant basis Vectors e; are tangent to u' curves that are intersections of u' surfaces. Position vector
r = (x,y, z) can be expressed with u’ coordinates as r(u', u? u®).

3D Cartesian orthonormal coordinates (x,y, z) are not appropriate to ube in physical problems with special sym-
metry. It is beneficial to move to curvilinear coordinates {z,y,z} — {ut,u? u3} defined by extending the previous
2D case to contravariant basis vectors e’ perpendlcular to u'(z,y, z) = constant surface as displayed in fig. 2 whereas
covariant basis vectors e; are tangent to u® curves lying at the intersection between respective u® surfaces.

Defining e; = a ~and €' = Vu' = (%’5, 88“1, %—“i), where the operator V = (68 , 88 yBe 9 it is possible to show that

Y z z? dy’ 0z
their properties are snnllar to the 2D case and that many results obtained previously can be extended to the 3D case.
Extending the previous 2D case to 3D, we write explicit expressions of the contravariant basis vectors versus the

covariant one {ey, ez, e3} as [6]:

1 ey X e3 2 ez X e 3 e; X ey

= —,e" = ,e = (4)

(e1,ez,e3) (e1,€ez,e3) (e1,ez2,e3)

The orthogonality relations e’ - e; = 0,7 # j can be proven directly from the line-element dr obtained from Taylor

expanding the position vector r(u',u?,u?) in the u’ basis as:

or »
d - e d v 5
" <5ul) Y (5)
Taking the dot product with e/ = Vu/ yields Vu/ - dr = Vu/ - (%) du' and using the gradient definition
Vul - dr = du’, we conclude €' - e; = 0,i # j.



Similarly to the 2D case, a covariant "metric matrix” g;; can be defined from: g;; = e;-e;,i,5 =1,2,3 as well as a
contravariant one g*/ = e’ - e’,4,j = 1,2,3 with the properties of raising/lowering indices z* = g¥z;,z; = g;;2’ and
mutual orthogonality which translates into [gij][gij ] = 1 and indicially as: g;rg" = 7.

Note that ds? = dz? + dy* + dz? in a Cartesian orthonormal frame {z,y, 2} with ¢;; = ¢ = d;;. In a frame
characterized by cylindrical coordinates {p,#,z} the line-element squared is given by: ds? = dp? + p?d¢? + dz>.
Using the correspondence {1,2,3} — {p, ¢, z}, the metric matrix components are: g1 = 1,922 = p®, 933 = 1,9;;
0 if 4i#3j, 4,7=1,2,3. In spherical coordinates {r,0, ¢} the line-element squared is given by: ds? = dr?
r2d6? 412 sin? d¢?. Using the correspondence {r, 6, ¢} — {1,2,3}, the metric matrix components are: gi; = 1, gao
12, g33 =r?sin®0,g,;, =0 if i#j,  i,j=1,23.

In general (non-orthogonal) curvilinear coordinates, the line-element squared is given by ds? = dr-dr = 9ij duldu’
g% du;du; yielding non-diagonal ”metric matrices”.

=+

C. Einstein covariance principle and tensor transformation

Another aspect of ECP is that a physical quantity when it undergoes a change of reference frame transforms in a
fashion revealing its true nature. Thus, it suffices to study the mathematics of reference frame change in order to
understand the underlying nature of any physical quantity.

Using the classical (contravariant) coordinates of a vector x! in a reference frame R, we call its transform z° in the
new reference R. Note that z* can be considered as a function of Z7 the new coordinates and mathematically express
it as 2° = 2%(77).

Performing a Taylor expansion in n dimensions allow us to find a small displacement as:

do' =3 gx dzi (6)

)
Jj=1

It is expressed with Einstein summation rule as:

oz’

v’ = 5

dz’ (7)

This shows that we have a ”Jacobian” factor of the style % which expresses the laws of transformation.
If we start from a scalar field (such as temperature or electric scalar potential), we obviously have:

¢a') = ¢(z7) (8)

meaning that for a scalar field, there is no ” Jacobian” factor while that for a vector field like z?, we have only one
factor. Generalizing, we might say a ”Jacobian” factor indicates the rank of the tensor.

Let us take the derivatives of the two members of the equation 8 using the compound derivative since we can
consider z¢ = z¢(z7) just like 27 = 77 (z*):

op 09 o0z’ )
ozt 0z Oxt
. . . - . . .
We infer an ”inverse Jacobian” factor ‘?;Zi appears in the gradient transformation. We conclude that there are two
ossibilities during a coordinate transformation: a ”direct Jacobian” 2Z- is present in the contravariant case whereas
p g oz p
. . - . . i 9z ;
an ”inverse Jacobian” ‘gi appears in the covariant case. Thus %g% = 0;.

For a scalar field (rank-0) there is no Jacobian factor, whereas for a vector field (rank-1) there is a single factor and
SO on.

It is important to note that for rank-2 tensors, we have a matrix representation by letting its coefficients depend
on position r. However one should recall that a matrix and a tensor are different mathematical objects.

We summarize below the various transformations of a rank-1 and rank-2 tensors:

e Transformation law for a contravariant field:

:AJ‘ (10)




e Transformation law for a covariant field:

oI
e Transformation law for a twice contravariant tensor:
o 0xt 0ad -
Al — — kl (]_2)
Tk 0z
e Transformation law for a twice covariant tensor:
ozk ozt
A = Gt g ¥ (13)
e Transformation law for a mixed singly covariant, singly contravariant tensor:
Oz™ 9k
= A (14)
ozt ozt~ ™

D. Tensor construction

After reckoning the 2D metric matrix is built from two basis vectors, a mechanical question arises concerning the
pressure involving also two vectors (force and area). Thus, what is the underlying nature of the pressure field?

In fact, pressure is a tensor field of rank-2 since it connects two vector fields as described in the elasticity section V.
Essentially, there are several methods to build a tensor:

e From association of several vector (rank-1) components:

The "metric tensor” we called previously ”metric matrix” is obtained from a scalar product operation between
two vectors (rank-1 tensors): g;; = e; - €; or g = e' - e, which are both rank-2 tensors. Since ds? the squared
line-element is a scalar, it can be expressed invariantly in two different coordinate systems {z} — {#'} where
the set {z'} is orthonormal and {z'} is not. ds® = §;;dz'dx’ = ¢;;dz'dz’. Performing a change of reference
frame gives: dz® = %diﬂj . Thus ds? = 5ijdmidxj = 5M%dfkg—’;dil = gudz¥dz!. Covariant metric tensor
components are given by: gp; = (5@%% where coordinates Z’ are e.g. curvilinear. The contravariant metric
tensor g7 = e’ - e’ is the inverse of the covariant gij as proven previously in subsection IIB. Another proof is
that e’ being the dual (contravariant, reciprocal) basis, the two ”matrices” are inverse of one another [6].

e From direct multiplication of vector components (outer product):
As an example, take two vector fields A° and B’ and make the component product by component to obtain a
tensor of rank-2: T% = A*BJ which can be formally written like T = A ® B. This is of course generalizable to
any dimension. For example with three vector fields A, B,C on can do: T = A® B ® C so T"* = A*BIC*k
(cf fig. 3). This implies that a tensor of rank- r is constructed from vector fields in D dimensions, we have D"
components.

e From spatial derivation [9] of a scalar field:
The gradient of a scalar field ¢(r) is in fact a means to transform a rank-0 field into a vector field (rank-1):
[grade]; = gﬁ . Note however that the gradient behaves as a covariant vector field (It is shown further below
that there are contravariant and covariant varieties of the gradient). As a consequence, derivation (respectively
integration) of another tensor field allow to change the rank by 1 (resp. -1).

e From contraction of another tensor:

Contraction is an operation consisting of equating two indices (say ¢ = j) in a tensorial expression and summing
over (say 7). One example is the scalar product of two covariant vectors: a - b = a;b; that transforms a rank-2
tensor a;b; after a contraction into a scalar (rank-0). Another example drawn from linear algebra is to apply a
matrix M with coefficients M;; to a vector @ = (a1, az, a3) resulting into another vector b such that b = Ma,
meaning indicially b; = Z?:l M;ja;. Using Einstein summation rule, we write b; = M;j;a; which in fact might
be viewed as a contraction (j = k) from a rank-3 tensor M;;a; to a (rank-1) vector b;. Rephrasing in Tensor
language writes: Suppose 15, i, ,is,.i,, transforms as a tensor of rank- m then Tj ; transforms as a tensor of
rank- (m — 2). This operation corresponds to a general contraction of a tensor.

135:tm

e By combining all previous operations
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FIG. 3: Pictorial representation of tensor components T%* = A*BYC* 4,7,k = 1,2,3 at nodes of a 3D lattice. Adapted from
ref. [8]

IIT. VECTOR ALGEBRA AND CALCULUS WITH TENSORS
A. Linear algebra with tensors in Cartesian coordinates

In Cartesian (Affine) coordinates, the basis vectors are same independent of position. Moreover we do not make any
distinction, in this paragraph between contravariant and covariant components since basis vectors are also orthonormal
e; - ej = 0;;. This implies the Kroenecker symbol [10] is in fact a rank-2 tensor built from the scalar product of two
vectors.

Let us introduce rank-3 Levi-Civita antisymmetric tensor: €;;, = e; - (e; X ex) = (e;, e;,ex),1, 7,k = 1..3 with the
following properties: €;;;, = 0 for i = j,j = k,7 = k whereas €;;; = £1 depending on whether ¢, j, k is an even or odd
permutation of 1,2,3.

Levi-Civita €;;;, is in fact a pseudo-tensor [11], since built from a triple-product of vectors (rank-1 tensors). The
product of two Levi-Civita tensors is found from a Linear Algebra theorem stating that the determinant of the product
of two triple products is the determinant of scalar products: €;;x€mn = (€;, €5, €x)(€r, em, €y).

Since a triple product is a determinant we use det(A)det(B) = det(AB), thus:

€ € €;-€En €€y 0it Oim Oin
€ijk€lmn = |€5 "€ €5 €y €5 €En| = 6jl (Sj (Sj
€L -€ € €y €f - €En 5kl 5k'm 5kn
The contraction of two Levi-Civita product:
€ijk€klm = gll glm = 010 jm — 6j10im
il Ojm

Using the former identity yields €;jr€;5 = 20,;. Contracting over all indices yields: €;;r€;j1 = 20k = 6

Let us apply to the scalar product, vector product and double vector product.

e Scalar product:
Given two vectors A = A;e; and B = B;e;, we write: A- B = A;e; - Bje; = A;Bje; - e; = A;B;d;; = A;B;

e Vector product:
A x B = Aje; x Bje; = A;Bje; x e;. Taking the scalar product with a basis vector: (A x B) - e, =
A;Bj(e; x ;) - e, = (ei, ej,er)A;Bj = €1, A B;

e Double vector product:
A x (B x C). Taking the i-th component we get: €;;5A;(B x C) = €;jxAj€umBiCn,
This yields: (5il5jm - 5jl6im)AjBlCm = AJBZC] - Aij i = (A . C)Bl - (A . B)Cl
Thus: Ax (BxC)=(A-C)B—-(A-B)C



B. Differential vector calculus with tensors in Cartesian coordinates

Differential vector calculus is based on the use of the nabla vector operator V yielding the gradient, divergence,
curl and Laplacian. In (Affine) Cartesian coordinates, we do not make any distinction between contravariant and
covariant components (A = A;) since we have e; - e; = 0;5. Moreover, the e; are independent of coordinates giving:
V = eia%i = €iai = (9161

e Scalar field gradient:

Given a scalar field ¢(r), the i-th component of the gradient is [grad¢(r)]; = V;é(r) = 6(5;(:) = 0;¢.

e Vector field gradient:
For a vector field A(r), the i-th component of the gradient of j-th component of A is [V(A);]; = V;A; = 0,A;

e Vector field divergence:
Given a vector field A(r), its divergence is: V- A(’I”) = eiai . Ajej = 81'Ajei c€j = 81'14]'51‘]' = &AL

e Vector field curl:
Given a vector field A(r), its curl is: V x A(r) = €;0; x Aje; = 0;Aj(e; x e;). The i-th component is
[C’U/PlA]i = EijkajAk.

e Scalar field Laplacian:
The Laplacian of a scalar field ¢(r) is Ag(r) =V - Vo(r) = 0;0;¢.
e Curl divergence:
div C’ll,TlA(’I’) = Gieijk.é'jAk = eijk&@jAk =0.
This stems from the fact a contraction of two tensors with one symmetric (9;0;) [12] and the other antisymmetric
€ijk GlVes zero.

e Gradient curl:
[curl gradd(r)]; = €;;,0;0p = 0.
This originates as before from the contraction of a symmetric (0;0;) and antisymmetric €;; tensors.

e curl of curl:
[curl curl A(r)]; = €;;50;[curl A(r)], =
€ijk0j€kimOlAm = €ijk€rim0;01 Ay =
(0310m — 0510im ) 001 Ay = 0;0m Ay — 00;A; =
0;(divA) — [AA], (15)
We end up with: curl curlA = grad(divA) — AA

e Vector field Laplacian:
In case of a vector field A(r) we apply the Laplacian operator on every component: [AA]; = 9;0;A,. Note that
this is not true for curvilinear coordinates case as seen further below.

C. Differential operators in orthogonal curvilinear coordinates

The gradient of a scalar field ¢(r(u?)) is evaluated by comparing its differential d¢ = gﬁ du'® to the corresponding
gradient expression d¢ = grade¢ - dr. The line-element expression: dr = h;e;du’ uses h; coefficients that are scale
factors [13] rendering e; normalized. An important difference between this case and the Cartesian is that e; depend
on coordinates u?. Moreover any vector is expressed with the scale factors as: A = h;A’e;.

The V operator in orthogonal curvilinear coordinates is defined by: V = eiﬁ. Note that we keep using

the contravariant notation (such as A% u‘...) despite the fact they are same in orthogonal curvilinear coordinates.
The expressions for the gradient, div, curl and Laplacian are obtained from the V operator as done in Cartesian



coordinates. Thus:

0
do = e; :
grado e hiau’(b
9] 9] - 1 0
divA = e . A=e¢—— - (hjAlej) = —— hihAYY ), ik =1,2,
a € h,ﬁu’ ¢ hi8u1 ( J 6]) hlhghg (8U1( F )> bJ 3
9 ) 1 h161 h2362 h3363
curl A = ¢,——x A=¢€e"— X hAe 2
h,ﬁu’ hiaul ( j) h1h2h3 h Al h2A2 h?;ﬁg

Il
<
4
o
i)

9 d 1 o (hihy 06 o
A Ve TG aw 9= A 4 k=12
¢ h;0u? € hj8u1¢ hihshs |:auz < h; auz)] y U, ,2,3

In order to evaluate the Laplacian of a vector field [14, 15] (called the Beltrami operator) in coordinates other than
Cartesian, one resorts to the double curl formula derived above: AA=V(V-A) -V x (V x A).

D. Differential operators in non-orthogonal curvilinear coordinates

In non-orthogonal curvilinear coordinates, one distinguishes covariant from contravariant quantities as well as
dependence of e’, e; on v/, u;. The line-element squared versus metric tensor is expressed as:

ds? = dr - dr = (38: > du; - (g: ) duj = g¥ du;du; (16)
i J

The V operator in curvilinear coordinates is written as: V = e’ a(zi without using any scale factors [13] and
consequently possessing un-normalized e’, e;.

The gradient [16] of a scalar field ¢(r) is V¢ = €’ gfi corresponding to the same expression as in the orthogonal
case (with the scale factors h; = 1). This is not true for the divergence, curl and Laplacian where the covariant
derivative intervenes because of the appearance of the Jacobian terms (cf Appendix B).

The divergence of a vector field A is written as: V-A=¢éljp 9. (Ale;) = € - [(gfj e;) + ATE er]. The term

[(g‘;‘7 i) + AT} e;] is transformed into (24

[(aAf) + AkI’kj]. Thus the divergence of a vector field A is e/ - D;A’e; is similar to the Cartesian case with the

oud
covariant derivative replacing the ordinary one. This can be further expressed compactly using Fﬁj = ég”“ %gulf (cf

Appendix B) as: %%([Ak) where g = det[g;;].

Similarly, the curl of a vector field A is defined by: V x A = e! 6 = (%ﬁl + ATk, )(er x ej). Again it is
similar to the Cartesian case, the covariant derivative replacing the ordlnary one.

The scalar Laplacian is obtained from a double application of the covariant derivative following the Cartesian case:
A¢p = 0;0;¢. Starting from A¢ = D, D¢, we introduce the metric tensor [7] such that:

ij a(g" D ij ik O

A¢ = Di(g9 D;0) = 22219 4 (g3 D;g)Tl) = L 59((/ggt 24,

In order to evaluate the vector Laplacian (Beltrami operator) we follow Hirota et al. [15] work who have explicitly
shown that the operators A = V-V and V(V-) — V x (Vx ) are same, since the equivalence taken for granted from

the Cartesian case is not acceptable. Thus we have: AA=V -VA = ¢’ 8 el LA = gl (L — F’?,i) A.

) + AkTY ;lei (cf Appendlx B) containing A covariant derivative D; A" =

dud Outoud iJ Quk

IV. TENSOR EXTENSION AND REDUCTION OF PHYSICAL QUANTITIES
A. Tensor extension of physical quantities

Many possibilities exist to extend the attributes [17-19] of any physical quantity initially attached to isotropic
media (non-crystalline) to some corresponding anisotropic medium (crystalline).

For example, in electrostatics of isotropic media, the relation: D = eE with D || E when extended to crystals
becomes D, = ¢;; E; with D }f E.

Similarly, in magnetostatics: B = pH translates to B; = ;. H;.
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Electric conduction in materials is described by Ohm’s law J = ¢ E that translates into J; = 0;; E; in the anisotropic
case. The resistivity tensor p;; inverse of the conductivity tensor o;; allows us to rewrite Ohm’s law in the following
form: Ez = Piij-

In magnetic (anisotropic) crystals, the susceptibility defined by M; = x;;H; where M is the magnetization induced
by a magnetic field H is extended from the simple case where M = yH with M || H and x a scalar.

In metallic, semiconducting and insulating crystals, anisotropic effective mass that originated from ordinary mass
of Newton’s law F' = m~y would be translated into F; = m;;y; where ~ is acceleration.

In piezoelectric crystals [20-22], a stress o creates a polarization P such that P = do with d the piezoelectric
modulus. In the anisotropic case, a stress oj;, creates a polarization P; such that P; = d;j,05; with d;;; a rank-3
tensor of piezoelectric moduli since it relates a rank-2 (stress) and a rank-1 (polarization) tensors.

When a magnetic field H is applied to a metal or a semiconductor traversed by an electric current density J, the
Hall effect arises as a voltage, transverse to J, described by an electric field F; = p;jiJ; Hi, where p;j, is a rank-3
tensor relating three vectors E,J and H.

It is tempting to generalize Ohm and Hall results by introducing [17] an ordered field expansion:

E;, = p(q)Jj +pE]1»])CJij +p5]2.,)€leHkHl... where p(q) is zero order (no field present) resistivity (Ohm), p

i 2]
(field present) Hall effect, pg,)d is second-order (field present) Hall effect... Note that only pgg) has dimension of

resistivity whereas higher order tensors pE?,ﬂ, n > 1 do not, because of the presence of magnetic field powers.
Maxwell equations can be rewritten in a tensorial covariant fashion by encapsulating the scalar ® and vector A
potentials into a single 4-potential A% = (®, A) where o = 0,1,2,3. Time corresponds to « = 0 whereas 3D spatial
degrees of freedom are represented by a = 1,2,3. This leads to write the charge continuity equation % +V.J=0
as 0, J* = 0 with J* = (¢p, J) where c is light velocity.
The antisymmetric rank-2 electromagnetic tensor given by F®8 = 9*A# — 95 A~ allows to encapsulate the inhomo-

geneous Maxwell equations: V- E =47p, V x B — %%—? = %’TJ into a covariant form given [23] by: 0, F*# = %Jﬁ.

1

ik 1S first-order

B. Reduction to a scalar by projection along a single or two orthogonal directions

A physical property written by a rank-2 tensor like ?, for example, associated with the dielectric constant appearing
in D; = €;;E;, can be estimated according to a direction given by the unit vector m like ¢, in the following way:
€n = €M

We contract the tensor €;; with the components n;,n; direction n to make it a representative scalar €,. To prove
this, let D,, be the projection of D following a field E parallel to n. This gives D,, = D - E/|E| with D,, = ¢,|E|.
We then obtain €,|E| = D - E/|E|.

We get: €,|E| =€ E-E/|E| and ¢, =€ E - E/(|E||E|) =€ (E/|E|)- (E/|E|). Now n = E/|E| and therefore:
€n = €T T 5.

A physical property expressed as a rank-2 tensor like the dielectric constant €;; or Shear elastic modulus G(n, q)
can be probed along two different directions (generally orthogonal) carried by two unit vectors n and q. Projecting
along those two directions, we obtain: €, q = €;;1;q;.

C. Symmetry reduction

Starting from the fact that a component tensor T;; . ~ x;z;x... according to Fumi rule [24], we can easily simplify
tensors by exploiting crystal symmetry.
Let us consider a rank-2 tensor in 3D and carry on simplification of its components as we we go along triclinic to
monoclinic to orthorhombic, tetragonal and finally cubic symmetry.

e In the triclinic case (no symmetry):
Tww Twy Twz
We have 3x3=9 components: | Ty, Tyy T
Tzz sz Tzz
For any physical tensor (conductivity, permittivity, etc...) the symmetry T;; = Tj; is true in general since
corresponding energy is akin to a quadratic form (for example, electric energy is 0, E; E; with o;; the conductivity
tensor and F; the electric field). This symmetry leads to only six non-zero components.

e Monoclinic symmetry:
We have a mirror plane perpendicular to the elementary mesh: z — —z, which causes all components containing
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Tow Tpy O
z once to be removed by symmetry. There are four components left: | T, T,, 0
0 0 T..

e Orthorhombic symmetry:
We have 3 possible mirror planes: * — —z,y — —y, 2 — —z. The non-zero components of the tensor are those

T.. 0 O
containing even combinations of x,y, z. We then have three components: 0 T,y O
0 0 T,
e Tetragonal symmetry:
T.,. 0 O
We have the equivalence z < y : 0 T, O
0 0 T,
e Cubic symmetry:
T.. 0 0
We have the equivalence x S y & 2 ¢ 0 Ty 0 | =T,.1 with 1 the unit matrix.
0 0 T,

NB: All matrix representations of the tensors mentioned above are made in the orthonormal basis {zyz}.

V. APPLICATION TO ANISOTROPIC ELASTICITY

Pressure possesses a tensor character since it involves a force dF' and a surface dS = ndS that are both represented
mathematically by vectors. Pression is therefore a rank-2 tensor since it associates two vectors (rank-1 tensors). It
is represented by the stress tensor o;; that originates from force ¢ component ¢ "divided” by surface m component j.
Mathematically it is written to bypass division operation as dF; = 0;;dS;.

Stress can be applied to an object in various fashions:

1. Uniaxial stress: 0;; = on;n; with o applied along n orthogonal to a surface element.
2. Hydrostatic stress: o;; = —0d;; with o applied equally along three directions.

3. Simple shear stress: 0;; = o(n;q; + n;¢;) where o is applied along direction n belonging to a surface element
orthogonal to q.

dF

X

FIG. 4: (Color online) Applied pressure with non collinear force F' and normal n to (blue) surface element. When o = 0, we

get the ordinary scalar pressure P = ‘;—F. Moving on to arbitrary a # 0 yields the stress tensor: o;; ~ A igorously written

S dSn;
as sz = Ji]-dSn]-
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A. Elasticity tensors

A displacement field §(r) represents local geometrical alterations of a continuum (isotropic or anisotropic), when
subjected to internal or external mechanical efforts.

Adopting the same notation as in ECP we consider 2’ in a reference frame and call its correspondent Z° in the
deformed reference (cf fig.5). Deformation alters basis vectors in a way such that they are €; in the deformed object
whereas they are given by e; in the undeformed one (cf fig. 5).

xe %
. | ; |
& - =¥ 3

FIG. 5: (Color online) Applying stress to an object results in displacement. This 1D diagram shows an undeformed spring (at
left) with a given red marker at ze, displaced to a new position xé, after applying stretch. The value = does not change since
we are defining positions with respect to corresponding basis vectors e, (initial) and €, (stretched) yielding the 1D displacement
field as 6(x) = z(€; — e;). One may assume that €, = Fe, where F is the stretching coefficient.

Extending the deformation picture illustrated in fig. 5 from 1D to 3D we define the i-th component of the dis-
placement field as [6(r)]" = 2'(&; — e;) (no summation involved). Thus it suffices to define a deformation matrix
Eij,4,5 = 1,2, 3 transforming the basis vectors e; into €; such that €; = E;;e;, allowing us to define the displacement
vector field as: §(r) = x'(€; — e;) (with summation).

Stress efforts are represented by rank-2 tensor ¢;;(r) and displacement ;; a rank-2 tensor is defined by ~;; = % =
E;;. It is decomposable, like any tensor, into a symmetric ¢;; (strain/deformation tensor) and an antisymmetric part
wi; (small rotations tensor):

1,98 097 1,08 0§
=50 T ou) =5 g Tty (17)
In linear elasticity the extension of Hooke’s law F' = —kx yields a linear relation between o and €, 0;; = Cjj pi€n

obtained from the correspondence: F' <+ 0, —k <+ Cjj 11, * <> €. For a general solid, the 1D spring elastic constant k
transforms into a rank-4 tensor Cj; i containing elastic constants linking o and ¢ that are both rank-2 tensors.

. N . 1 . N oy _ 1 2 . _ oU
Elastic energy writes: Ug = gcij,kleijekl extending the 1D spring energy definition Ug = skx=. Thus: oy = 66—?
. . . . . . 2
and since € is symmetric (¢;; = €;;) we infer o is as well (0;; = 0j;). Hooke’s law is extended to: Cj; x = 8‘3 %fkl.
ij

Instead of using Hooke’s law, we might use the relationship €;; = S;j rior with Sj; i the compliance tensor inverse
of Cyj k1. Sij ki possesses the same symmetry properties as Cjj k-

B. Elastic moduli

Elastic moduli [25] (Young, shear G, bulk K) and Poisson ratio are given generally along a single direction n or a
pair of orthogonal directions n, g with the following operations:

e Strain represented by €;; tensor along single direction n :
(Al/l)n = €p = €;;N;T; (18)
with [ the initial and Al its stress induced extra lengths.

e Strain represented by €;; tensor along two orthogonal directions m,q :
(A1), = €nq = €ijiG; (19)

with [ the initial and Al its stress induced extra lengths.
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1. Young modulus (see for instance example [26]) along a given direction F(n)
Applying a stress o, i.e. a pressure p along direction n induces a strain ¢, along same direction yielding Young
modulus E(n) :

O 20

En) o, (20)
Relating €, to o, is done using 0,5 = Cjj ki€, €5 = SijkiOki:

On = 045MT5, €n = €5TiN; (21)

Introducing o;; = pn;n; with p the pressure into o, = o;;n;n;, we get Young modulus as:

1 €n  PSijriningngmny

—— = — = —————— = Snn;ngn 22

E(’I’l) on » ijklTbgTLg LT ( )

Using Voigt notation (see Appendix) we get the expression of E(n) in the triclinic case for any orientation [27]
as:

4 4 4 2.2
81117 + S22M5 + 83315 + (S44 + 2823)n505

(855 —+ 2831)71%71% —+ (566 + 2812)71%71%

2nan3[(814 + S56)1T + S24m3 + S347m3)
2n3n1[515n§ + (525 =+ 846)713 + 835%%]

2n1n2[516n% + 826713 + (536 + 845)715]

+ o+ + +

(23)

Note that we have 15 terms instead of 21 due to the mixed coefficient terms such as (s44+2523) and (s55+2s31)...

In the cubic case [27], using the conversion rules from triclinic to cubic (see Appendix C):
822 = 833 = 511, 855 = S66 = 544,513 = 523 = 512,
S14 = S15 = S16 = S24 = S25 = S26 = S34 = S35 = 836 = S45 = S46 = S56 = 0, we get:

1 1
= = su(n] +ny + n3) + 2(s12 + 5544) (003 + n3n3 + n3nd) (24)
E(n) 2
The example of Silver is displayed in Fig. 6.

2. Poisson ratio
Applying a pressure p along n and measuring deformation along g perpendicularly to n yields Poisson coefficient
(see for instance example [26]) from deformation ratio along directions q and n :

Al/l
g - .

n
Uniaxial pressure p is related to stress tensor by: o = pngn; whereas strains are given by:
(AlJ1),, = €ijning, (Al/l)q = €i¢:q;j (26)
Using compliance tensor relations:
€ij = SijkiOkl, Tkl = PN, (27)

we obtain: €;; = S;jripnin.
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[001]

[100]

FIG. 6: Inverse Young modulus ﬁ of Silver versus direction n. Silver compliances [28] are s11 = 2.29, s12 = —0.983, s44 = 2.17

n)

in 1/[100GPa]. Calculated [29] values along all directions are in 1/[100GPa] units.

Using the above relations, the Poisson ratio is given by:
_ €ijdig;
€N

 Sijkl 45T

v(n,q)

28)
Sijkl MMMy (
In the triclinic case we get for the numerator (21 terms):
Sijrl G@inEny = Sun%Q% + 822n§qg + 83371%%%
+ 544M213G2G3 + S55M113G1G3 + Se67011241G2
+ $12n7G5 + 5131705 + $14m7 4243 + S1577¢143
+ S16N7q1G2 + 523N3G5 + S24M502G3
+ S25M3q1G3 + 526150102
+ 534n302q3 + S35N31G3 + S36130142
T 845M2M3¢1G3 + S46M2N3¢1G2 + S5671113G1G2
(29)
whereas the denominator is E(n) (see eq. 23).
In the cubic case [30], the Poisson ratio is (using the conversion rules in Appendix C):
s12 + (511 — s12 — 3544) (N34 + n3q3 + n3q3)
v(n,q) = — 2 (30)

s11 — 2((s11 — s12 — 3544) (0303 + n3n3 + nind)
The v(n, q) example of Silver with n in a plane orthogonal to g = [001] is displayed in Fig. 7.

3. Shear modulus
Shear stress

It is defined by G = -

Angular shear strain
and g with n_lq as required by shear stress. Like Poisson ratio it is a symmetric function of n and q given by
G(n, q) defined as inverse ratio of angular shear deformation over shear stress:

el o

This is a generalization of formula 18 to the (ng) symmetric case to express stress and strain in a symmetric
fashion. (ng) symmetrized angular shear strain is given by:

(see for instance example [31]) with two efforts are applied along n

[2€5],,, = 2€ijnid5 = 28110 KiM44; (32)
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0.3

[010]

[100]

FIG. 7: Calculated [29] Poisson ratio v(n,q) of Silver versus n angle in [100], [010] plane orthogonal to g = [001]. Silver
compliances [28] are s11 = 2.29, s12 = —0.983, s44 = 2.17 in 1/[100GPa].

We get the symmetrized stress as:

[045] g = o310 = 0(NiG5 + njGi)nig; = o (33)
Shear modulus is given by:
1 _ 261']' niq;
G(n,q) i Niq;
_ 285k10k1 i G5
g
= 2S5k (Neq + Mqr) nig; (34)
Using Tensor symmetry Sijx = Sijik, we finally obtain:
. (35)
[ ~ S,
4(;(’”7 q) ijkl Mgk q]
Using Voigt notation (cf. Appendix B) we get the expression of m in the triclinic case for any orientation [27]
as:
= af2s— (su + |
T~ = s12 — (811 + S22 — Se6)|N1q1M2¢2
G(n,q)

Jn2gan3q3

[2531 — (833 4 511 — 555)|n3g3M1G1
4(n1g2 + n2q1)[(s16 — 536)n1q1 + (526 — S36)N2G2)
4(n2q3 + n3q2)[(s24 — 514)n2q2 + (534 — S14)N343]
4(nzq1 + n1q3)[(s35 — S25)n3q3 + (515 — S25)N1q1]
s14(n2qs — n3q2)” + s55(n3q1 — n1gs)”
s66(n1q2 — n2q1)” + 245 (n2gs + n3q2) (n3q1 + n1qs)
2556(n3q1 +n1q3)(n1g2 + n2q1)
2564(n1q2 + n2q1)(n2gs + n3q2)

=~

)
42593 — (S22 + S33 — Sa4)
)

++ 4+ A+ o+ A+

(36)

Note that we used above the orthogonality of n, g translating indicially into n;q; = 0. We have 15 terms again like
in the Young modulus case because of the mixed terms such as [2s12 — (S11+ S22 — Sg6)] Or [2523 — (S22 + 533 — S44)]
when considered as a single elastic coefficient ... In the cubic case, we get (using conversion rules of Appendix

C):

1
= 544+ 4(s11 — 512 — Z544)(Nq] + 1505 + n3q3) (37)

G(n,q) 2
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o P, N W A~ O
— T

[010]

FIG. 8: Calculated [29] inverse shear modulus ﬁ of Silver versus n angle in [100],[010] plane orthogonal to g = [001].
Silver compliances [28] are s11 = 2.29, s12 = —0.983, 544 = 2.17 in 1/[100GPa]. Values along all directions are in 1/[100GPa]
units.

The G(}L o) example of Silver versus n in a plane orthogonal to g = [100] is displayed in Fig. 8.

4. Bulk modulus

The definition K75 = — ( %)T ¢ for isothermal or adiabatic bulk modulus implies a change of volume for an
applied hydrostatic pressure.
Writing: K = —% (%) and using €;; = AV—V, we get K ~ —35. Using €;; = Sijruom with op = —APdy, we

finally get: K = Sy -

Thus the most general expression for the bulk modulus exploiting symmetry and Voigt notation (see Appendix
B) contains 9 terms since ¢,j = 1,2, 3 :

K = Syj; = s11+ 812+ 813 + 821 + 522
+ S23 + 831 + S32 + S33
811 + S22 + S33 + 2(512 + S93 + 813) (38)

VI. CONCLUSION AND PERSPECTIVES

Tensor calculus is powerful and very useful for Physics students since it provides them not only with elegant
procedures to simplify complicated algebraic, vectorial expressions but also to describe anisotropic materials by
extending simple scalar physical properties to more general appropriate mathematical expressions.

Appendix A: Tensor etymology and its evolution

The word tensor originally pertains to muscular taxonomy (extensor is a type of muscle implicated in stretch effort
as opposed to flexor implicated in angular effort) then moved to differential geometry and more recently to computer
science and neural networks. Recently Google built TPU (Tensor Processing Units) for dealing with deep learning
problems of Artificial Intelligence deals with cognitive problems such as chess and go games, face recognition, speaker
recognition... TPU-based processors are fast because of the massive parallelism of their architecture specially tailored
for tackling stacked layers in deep neural network problems. They are faster that traditional CPU (Von Neumann
architecture or with some modifications for speedup) and GPU (Graphic Processing Units) dedicated to graphic
(Video) operations possessing a Harvard architecture like DSP (Digital signal processor) chips targeted for real-time
applications.

Google TPU are made of parallel (systolic) arrays that contain each 65,536 (256 x 256) circuits called ” Tensor
Processing Elements (TPE)” that perform matrix multiplication with 8-bit based multiply-and-accumulate (MAC)
operations in a single clock cycle. The TPU runs at 700 MHz, thus it can compute 65,536x7x10 & = 46x10 2 MAC
per second [32].
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From data compute element point of view, a CPU processes (1 x 1) data units (such as product of two scalars), a
GPU a (1 x N) data unit (such as the scalar product of two N dimensional vectors) whereas TPU processes (N x N)
data units (such as the product of two N x N matrices). A CPU may perform tens of instructions per cycle (IPS), a
GPU ~ 10* IPS whereas a TPU may crunch several ~ 10° IPS.

Appendix B: Covariant derivative

In general, the derivative of a tensor (with rank # 0) is not a tensor, since the derivative of the Jacobian terms
intervene violating the tensor character as prescribed by ECP. As an example let us take the derivative [33, 34] of a
a contravariant vector field (eq. 10) and examine its transformation according to ECP:

QA 0*ut . Out QAI

- = A + e

Ouk  Qukdus dul duk
The first term in the RHS breaks ECP since we were expecting a single term with Jacobian factors. Thus we have to
introduce a special derivative (called covariant derivative) that absorbs the derivative terms of the Jacobian factors.
This mathematical problem disappears in the Cartesian case since the basis vectors do not depend on local coordinates.

Let us define the derivative of the covariant basis vector gz; = Fk e such that the vector differential dA =

d(Ale;) = (ZT“‘;duj)ei + AtSedud = [( ‘33] i) + AT}, ex]du’. Note that the coefficients I'}; that are called Christoffel
symbols are not tensors.

The covariant derivative [(?9 - el) + AT ek] can be rewritten by exchanging the dummy indices i, k in the second

term to yield: [($4; )—l—Akl"’ Je;. This allows us to rewrite dA = d(A’e;) = (D;A")e;du? where the covariant derivative

(B1)

DAl = [(g’;lj) + Akl"kj} is a rank-2 tensor containing the Jacobian factor derivative.

The evaluation of the Christoffel symbol consists of taking the scalar product with e! of gz; Fk er. Thus
el . g¢ =Thel e, =TFo, =T, using the orthogonality of e’ and ey.

The relation I‘ﬁ- =el- ge; 1mpheb symmetry of the Christoffel symbol Fl = Fl since Fl-- =é- 85 5.7 after using
the definition e; = gul and allows to relate I‘l to the metric tensor by takmg its spatial derivative: (’;g# = %

. lk

e;- g:’i. +ej- ‘951 Combining the spatial derivatives we finally get: T}, = %~ (%gdf + %i’? - giﬁﬁ).

Contracting I‘ij yields: I‘gj = ; g %ﬂf since the last two terms cancel by symmetry and index transformation.
Using the derivative of determinant g = det[g;;] formula [35] given by (,% gg™* %"J]’“, the contracted Christoffel
symbol is rewritten as: T'}; = % %\ﬁ.

Appendix C: Voigt notation

e Symmetry of elastic constants
Elastic energy Ugp = C” kl€ij€xt is invariant under ¢ <» j and k <« [ interchange. Moreover it is invariant
under {ij} + {kl} 1nterchange Thus we infer Cjj 11 = Cji i = Cijue = Chriij- Thus we may replace a couple
of indices ¢j with a single index I and replace rank-4 tensor Cj; 5 = with its matrix representation Cr; with
I,J=1...6.

The index replacement is done according to the recipe:
11—1,22— 2,33 — 3,23 -4, 13 = 5, 12 — 6. This can be written in a more compact way as:
i — 1,1 - 9—(i+j) when i # j

The 6 x 6 matrix (36 components) represents completely C;; i with its 3* = 81 components taking account
of symmetry. This matrix is in fact symmetric Cj; 11 = Cp4; originating from the property of elastic energy
%C’ij7kleijekl providing another justification for practicality of Voigt notation. We end up with 21 components
(since [36-6]/2 +6, i.e. 154+6=21) for the triclinic crystal.

e Application to the cubic crystal case
The number of components in the cubic case can be done along the same lines we treated rank-2 tensors
previously.
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Contrary to simple intuition (like in the rank-2 case) leading to a single elastic constant in a cubic solid,
three elastic constants Ci1,C12 and C4q (using Voigt notation explained in Appendix B) are needed in this
case yielding: C11 = Cipze = yyyy sz,z27012 = Cmc,yy = Cx:c,zz = yy,zz;c44 = Cmy,acy = sz,:cz =
Cyzyzy Coyzz = Cayyr = Crzy. = 0. This means one has to distinguish between geometrical symmetry and
mechanical symmetry.

Consequently we have a hierarchy of symmetries:

1. Cubic symmetry (3 constants: Cy1,C1o and Cyy).

2. Tsotropic elasticity with rotational symmetry about some reference direction (2 constants: Lamé {\, u}
coefficients or Young and Poisson {E,v}).

3. Full isotropy in all directions like in a Newtonian fluid (1 constant).

Taking x,y, 2 along cubic axes, we write Cyy = Cyq and C, = %(Cu — (C12). Consequently, the elastic constant
tensor writes:

Cii Ci2 Ci2 0 0
Ci2 Ci1 Ci2 0 0
Ci2 Ci2 Ci1 0 0
0 0 0 Cu O
0 0 0 0 Cy O
0 0 0 0 0 Cu

SO o OO

C= (C1)

Stresses in the cubic case are: 0., = Ci1€z0 + Cro€yy + Cr2€22,0yy = Cra€zr + Cri€yy + Ci2€,,0,, = Cro€gy +
Cl2eyy + Cllezzazy = 2C44€my; Oxz = 2C44EIZ) Oyz = 20446yz

Particular case: In the isotropic elastic case we have only two elastic constants with Cy, = C.., leading to a
couple of Lamé coefficients A = C2 and pp = Cpy = C.; yielding: 0;; = Aegrds; + 2pe€;5. This means a stress 011
induces a longitudinal strain €17 and transverse identical values €so = €33 resulting in: o152 = 2ue12 and G = p.

e Compliance tensor
Given the symmetry with respect to pairs of indices Sij k1 = Sji ki, Sij et = Sijik-.., We can proceed to a matrix
representation sy j of Sjj i with I,J = 1...6 with the same rules as in the elastic tensor case. Hence the
full matrix sy ; with its 6 x 6 (36 components) represents S;;x; tensor with its 81 components. Since sy ; is
symmetric the number of components is only 21.

Thus the symmetric compliance matrix in the triclinic case can be written as:

S11 S12 S13 S14 S15 S16

$22 823 S24 S25 526
833 S34 S35 S36 (02)

S44 S45 S46

S55 S56

566

In the cubic case we have:

s$11 s12 s12 0 0 O
S11 S12 0 0 0
S11 0 0 0

Sq4 0 0 (CS)
S44 0
S44

This allows us to find a quick set of rules to convert from triclinic to cubic:
8§22 = 833 = S11, 855 = S66 = S44, 513 = S23 = 512,
$14 = 815 = S16 = S24 = S25 = S26 = S34 = S35 = S36 = S45 = S46 = S56 = 0.
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