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Université de Brest, Lab-STICC, CNRS-UMR 6285, F-29200 Brest, FRANCE

Tensor calculus is introduced to Physics and Mechanical engineering students in 2D and 3D and
applied to anisotropic elasticity such as in condensed matter physics approaching the subject from
the practical tool aspect point of view. It provides powerful mathematical techniques to tackle many
aspects of Vector Calculus, Continuum mechanics, Solid State Physics, Electromagnetism...
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I. INTRODUCTION

Tensor calculus is usually introduced at the graduate/undergraduate level in Special Relativity or General Rela-
tivity/Gravitation/Cosmology courses. It has been used by Einstein to tackle the daunting mathematical operations
needed in performing many required differential geometry tasks in curved space.

Prior to relativity courses, physics students are typically exposed to Vector calculus [1] in Classical Mechanics,
Electromagnetism or in Mathematics for Physicists since they employ, in these courses, vector differential operators
like the gradient, divergence, curl, Laplacian...
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Tensor calculus provides the students a powerful geometrical extension of Vector calculus to arbitrary dimension and
to mathematical objects they were not familiar with to tackle problems in fluids, elasticity, continuum mechanics...

Another field of application of Tensor calculus [2] is Solid State Physics where students become acquainted with
geometry of anisotropic materials and recently with mathematics of Topological materials.

It is natural to suppose that a quantitative description of physical phenomena cannot depend on the coordinate
system in which they are expressed. The argument may be returned: since physical phenomena are independent of
the coordinate system, what are the possible implications on the nature of the quantities describing these phenomena?

Einstein covariance principle (ECP) states that Laws of Physics are same in every Lorentz reference (observer)
frame, implying a geometric view of physical laws and calling for the mathematical formulation of any change in a
physical quantity under a change of reference frame [3].

The study of implications and the resulting classification of physical quantities constitutes the theory of tensor
calculus which was used by Einstein. In this work we introduce some calculation rules used in tensor manipulation
and show how the tensors are transformed by change of axis. We apply these results to the elasticity case.

This work is not only useful to Physics and Mechanical engineering students but also to those endeavoring in Fluid
and Continuum Mechanics. It is organized as follows: In section 2, we introduce tensor fields and coordinate systems
in compliance with ECP and in Section 3 Tensor methods for treating Linear Algebra and Vector Calculus [1, 2] is
described. We treat three distinct cases: Cartesian, orthogonal curvilinear and non-orthogonal curvilinear coordinates.
Section 4 is dedicated to Tensor extension and contraction of physical quantities and Section 5 is dedicated to Elasticity
problems as an application. Section 6 contains a conclusion and perspectives.

Appendix A describes Tensor etymology and its evolution, Appendix B is about covariant derivative needed in
curvilinear coordinates and Appendix C discusses Voigt notation heavily used in Elasticity.

II. PHYSICAL FIELDS AND TENSOR FIELDS IN GENERALIZED COORDINATES

Physical fields are function of position in space thus it is imperative to introduce coordinate systems that will
allow us to express accurately these fields. A field is a quantity that takes values ”instantaneously” at some arbitrary
position in space. It is obvious this can’t be true according to Feynman and Special Relativity since we know that
any change a physical quantity undergoes a signal is needed to transmit the information. As an example, if we have
a charge q at a point considered in R3 as the origin r = 0 and if we want know the value of the electric field at any
point r 6= 0, it is necessary that a photon (called ”longitudinal”) is transmitted from the origin to the point r. Since
the speed of the photon and of light are finite, a certain time for this information to travel.

Let us contemplate some fields at some point r with different nature such as scalar, vector, tensorial.... Temperature
field in a room is a scalar field T (r) while the speed within a fluid is a vector field V (r). When we consider
the electromagnetic field, we have two vector quantities E(r) and H(r) knowing that the electric field E(r) is
intrinsically related to the magnetic field H(r) via Maxwell’s equations. One relevant question that we answer later
in subsection IV A is: since E(r) H(r) fields are intimately related, is it possible to encapsulate them compactly in
Maxwell’s equations?

A. 2D covariant and contravariant coordinates

ECP being our guide, we start with a general description of coordinates before describing reference (observer) frame
transformation. This word is distinct from the covariant adjective that means ”form invariant” when it concerns
physical laws (pertinent to ECP) or ”transforms as standard basis vectors” when it concerns basis vectors. We use
this notion in order to describe the different ways of expressing a 2D position vector in a given set of basis vectors
e1, e2 (cf fig. 1). Covariance principle has been debated extensively and several workers questioned its validity and
pondered about its consequences (see for instance references [4, 5]).

We assume that e1, e2 are normalized (||e1|| = ||e2|| = 1) and making an angle θ (cf fig. 1).
Let us express the components of some arbitrary 2D vector r : r = x1e1 + x2e2 where xi are the ordinary

components (contravariant). Geometrically, the covariant components xi are obtained by perpendicular projection
on to the standard basis axes (cf fig. 1).
Thus xi = r · ei, i = 1, 2. Substituting r in the latter yields: xi = (x1e1 + x2e2) · ei, i.e: x1 = (x1e1 + x2e2) · e1 =
x1 + x2e2 · e1 = x1 + x2 cos θ, x2 = (x1e1 + x2e2) · e2 = x2 + x1e2 · e1 = x1 cos θ + x2

Assuming a symmetry principle between covariance and contravariance, let us rewrite r =
∑
i xie

i (cf fig. 1).
Taking the scalar product with ej yields: ej ·r =

∑
i xiej ·ei. Assuming the covariant coordinate xj is the projection

of r over ej we get: xj = ej · r =
∑
i xiej · ei then the scalar product ej · ei = δij the Kronecker symbol written in a
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FIG. 1: (Color on-line) 2D Covariant and contravariant coordinates of r = OM in the ”standard basis” made of covariant
vectors (e1, e2). Ordinary (contravariant) coordinates: OA = x1 and OC = x2 are made of projections parallel to basis
axes whereas covariant coordinates OB = x1 and OD = x2 are made from perpendicular projections. e3 is a unit vector
perpendicular to the (e1, e2) plane. Contravariant basis vectors e1, e2 (in red) are such that e1⊥e2 and e2⊥e1. Note that e1
is the projection of e1 while e2 is the projection of e2.

mixed fashion but meaning same as generally known i.e. δij = 0 if i 6= j and δij = 1 if i = j.
Thus, the contravariant basis is orthogonal to the covariant and is termed dual basis in Mathematics or Reciprocal

basis in Crystallography [6].
We can express this mathematically by introducing a e3 unit vector perpendicular to the e1, e2 plane. An ex-

plicit expression of the contravariant basis vectors can be derived by exploiting the reciprocal of the standard basis
formula [6]:

e1 =
e2 × e3

(e1, e2, e3)
, e2 =

e3 × e1

(e1, e2, e3)
(1)

The triple product (e1, e2, e3) = sin θ confirming the geometrical construct in fig. 1 that e1 is the projection of e1

and e2 is the projection of e2 with the values of the norms ||e1|| = ||e2|| = 1/ sin θ.
Let us rewrite the position vector as r = xiei with Einstein summation rule stating that whenever we have an

index appearing twice as covariant and contravariant, a summation over it is implied.
Using laws relating covariant and contravariant components, we define a ”metric matrix” gij in the following way

gij =

(
1 cos θ

cos θ 1

)
, i = 1, 2. gij allows us to go between covariant and contravariant coordinates since: xi = gijx

j .

gij makes the indices ”move” down implying by symmetry the existence of another contravariant metric matrix gij

that makes the indices ”move” up. Note that gij = ei · ej (respectively gij = ei · ej) relates two vectors ei and ej
(resp. ei and ej) and if the standard basis ei is orthonormal (θ = π/2), gij = δij the 2D unit matrix and xi = xi
making covariant and contravariant coordinates same. Evaluating gij from the scalar products of ei, ej using the

previous definitions 1 and fig 1 yields: [gij ] = 1
sin2 θ

(
1 − cos θ

− cos θ 1

)
, i = 1, 2.

[gij ] and [gij ] are inverse of one another as consequence of their respective definitions. We provide an alternate

proof based on their determinants: det[gij ] = sin2 θ = (e1 × e2)2 and det[gij ] = (e1 × e2)2 moreover (e1 × e2) ‖ e3

and (e1 × e2) ‖ e3. Thus (e1×e2)2(e1×e2)2 = [(e1×e2) · (e1×e2)]2 yielding det[gij ]det[g
ij ] = [(e1×e2) · (e1×e2)]2.

Using the dot product of two cross products [7]:

(a× b) · (c× d) =

∣∣∣∣a · c a · db · c b · d

∣∣∣∣ (2)
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we get:

(e1 × e2) · (e1 × e2) =

∣∣∣∣e1 · e1 e1 · e2

e2 · e1 e2 · e2

∣∣∣∣ =

∣∣∣∣1 0
0 1

∣∣∣∣ (3)

proving once again that [gij ] and [gij ] are inverse of one another.
We prove further below that [gij ] and [gij ] are rank-2 tensors allowing to write compactly index lowering xi = gijx

j

and lifting xi = gijxj operations.

B. 3D Covariant and contravariant curvilinear coordinates
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FIG. 2: 3D covariant and contravariant curvilinear coordinates: contravariant vectors are perpendicular to ui(x, y, z) = constant
surfaces whereas covariant basis vectors ei are tangent to ui curves that are intersections of ui surfaces. Position vector
r = (x, y, z) can be expressed with ui coordinates as r(u1, u2, u3).

3D Cartesian orthonormal coordinates (x, y, z) are not appropriate to use in physical problems with special sym-
metry. It is beneficial to move to curvilinear coordinates {x, y, z} → {u1, u2, u3} defined by extending the previous
2D case to contravariant basis vectors ei perpendicular to ui(x, y, z) = constant surface as displayed in fig. 2 whereas
covariant basis vectors ei are tangent to ui curves lying at the intersection between respective ui surfaces.

Defining ei = ∂r
∂ui and ei = ∇ui = (∂u

i

∂x ,
∂ui

∂y ,
∂ui

∂z ), where the operator ∇ = ( ∂
∂x ,

∂
∂y ,

∂
∂z ), it is possible to show that

their properties are similar to the 2D case and that many results obtained previously can be extended to the 3D case.
Extending the previous 2D case to 3D, we write explicit expressions of the contravariant basis vectors versus the

covariant one {e1, e2, e3} as [6]:

e1 =
e2 × e3

(e1, e2, e3)
, e2 =

e3 × e1

(e1, e2, e3)
, e3 =

e1 × e2

(e1, e2, e3)
(4)

The orthogonality relations ei · ej = 0, i 6= j can be proven directly from the line-element dr obtained from Taylor
expanding the position vector r(u1, u2, u3) in the ui basis as:

dr =

(
∂r

∂ui

)
dui (5)

Taking the dot product with ej = ∇uj yields ∇uj · dr = ∇uj ·
(
∂r
∂ui

)
dui and using the gradient definition

∇uj · dr ≡ duj , we conclude ei · ej = 0, i 6= j.



5

Similarly to the 2D case, a covariant ”metric matrix” gij can be defined from: gij = ei · ej , i, j = 1, 2, 3 as well as a
contravariant one gij = ei · ej , i, j = 1, 2, 3 with the properties of raising/lowering indices xi = gijxj , xi = gijx

j and

mutual orthogonality which translates into [gij ][g
ij ] = 11 and indicially as: gikg

kj = δji .
Note that ds2 = dx2 + dy2 + dz2 in a Cartesian orthonormal frame {x, y, z} with gij = gij = δij . In a frame

characterized by cylindrical coordinates {ρ, φ, z} the line-element squared is given by: ds2 = dρ2 + ρ2dφ2 + dz2.
Using the correspondence {1, 2, 3} → {ρ, φ, z}, the metric matrix components are: g11 = 1, g22 = ρ2, g33 = 1, gij =
0 if i 6= j, i, j = 1, 2, 3. In spherical coordinates {r, θ, φ} the line-element squared is given by: ds2 = dr2 +
r2dθ2 + r2 sin2 θdφ2. Using the correspondence {r, θ, φ} → {1, 2, 3}, the metric matrix components are: g11 = 1, g22 =
r2, g33 = r2 sin2 θ, gij = 0 if i 6= j, i, j = 1, 2, 3.

In general (non-orthogonal) curvilinear coordinates, the line-element squared is given by ds2 = dr ·dr = gijdu
iduj =

gijduiduj yielding non-diagonal ”metric matrices”.

C. Einstein covariance principle and tensor transformation

Another aspect of ECP is that a physical quantity when it undergoes a change of reference frame transforms in a
fashion revealing its true nature. Thus, it suffices to study the mathematics of reference frame change in order to
understand the underlying nature of any physical quantity.

Using the classical (contravariant) coordinates of a vector xi in a reference frame R, we call its transform x̄i in the
new reference R̄. Note that xi can be considered as a function of x̄j the new coordinates and mathematically express
it as xi = xi(x̄j).

Performing a Taylor expansion in n dimensions allow us to find a small displacement as:

dxi =

n∑
j=1

∂xi

∂x̄j
dx̄j (6)

It is expressed with Einstein summation rule as:

dxi =
∂xi

∂x̄j
dx̄j (7)

This shows that we have a ”Jacobian” factor of the style ∂xi

∂x̄j which expresses the laws of transformation.
If we start from a scalar field (such as temperature or electric scalar potential), we obviously have:

φ(xi) = φ̄(x̄j) (8)

meaning that for a scalar field, there is no ”Jacobian” factor while that for a vector field like xi, we have only one
factor. Generalizing, we might say a ”Jacobian” factor indicates the rank of the tensor.

Let us take the derivatives of the two members of the equation 8 using the compound derivative since we can
consider xi = xi(x̄j) just like x̄j = x̄j(xi):

∂φ

∂xi
=

∂φ̄

∂x̄j
∂x̄j

∂xi
(9)

We infer an ”inverse Jacobian” factor ∂x̄j

∂xi appears in the gradient transformation. We conclude that there are two

possibilities during a coordinate transformation: a ”direct Jacobian” ∂xi

∂x̄j is present in the contravariant case whereas

an ”inverse Jacobian” ∂x̄j

∂xi appears in the covariant case. Thus ∂xi

∂x̄j
∂x̄j

∂xk = δik.
For a scalar field (rank-0) there is no Jacobian factor, whereas for a vector field (rank-1) there is a single factor and

so on.
It is important to note that for rank-2 tensors, we have a matrix representation by letting its coefficients depend

on position r. However one should recall that a matrix and a tensor are different mathematical objects.
We summarize below the various transformations of a rank-1 and rank-2 tensors:

• Transformation law for a contravariant field:

Ai =
∂xi

∂x̄j
Āj (10)
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• Transformation law for a covariant field:

Ai =
∂x̄j

∂xi
Āj (11)

• Transformation law for a twice contravariant tensor:

Aij =
∂xi

∂x̄k
∂xj

∂x̄l
Ākl (12)

• Transformation law for a twice covariant tensor:

Aij =
∂x̄k

∂xi
∂x̄l

∂xj
Ākl (13)

• Transformation law for a mixed singly covariant, singly contravariant tensor:

Aki =
∂x̄m

∂xi
∂xk

∂x̄l
Ālm (14)

D. Tensor construction

After reckoning the 2D metric matrix is built from two basis vectors, a mechanical question arises concerning the
pressure involving also two vectors (force and area). Thus, what is the underlying nature of the pressure field?

In fact, pressure is a tensor field of rank-2 since it connects two vector fields as described in the elasticity section V.
Essentially, there are several methods to build a tensor:

• From association of several vector (rank-1) components:
The ”metric tensor” we called previously ”metric matrix” is obtained from a scalar product operation between
two vectors (rank-1 tensors): gij = ei · ej or gij = ei · ej , which are both rank-2 tensors. Since ds2 the squared
line-element is a scalar, it can be expressed invariantly in two different coordinate systems {xi} → {x̄i} where
the set {xi} is orthonormal and {x̄i} is not. ds2 = δijdx

idxj = gijdx̄
idx̄j . Performing a change of reference

frame gives: dxi = ∂xi

∂x̄j dx̄
j . Thus ds2 = δijdx

idxj = δij
∂xi

∂x̄k dx̄
k ∂xj

∂x̄l dx̄
l = gkldx̄

kdx̄l. Covariant metric tensor

components are given by: gkl = δij
∂xi

∂x̄k
∂xj

∂x̄l where coordinates x̄i are e.g. curvilinear. The contravariant metric

tensor gij = ei · ej is the inverse of the covariant gij as proven previously in subsection II B. Another proof is
that ei being the dual (contravariant, reciprocal) basis, the two ”matrices” are inverse of one another [6].

• From direct multiplication of vector components (outer product):
As an example, take two vector fields Ai and Bj and make the component product by component to obtain a
tensor of rank-2: T ij = AiBj which can be formally written like T = A⊗B. This is of course generalizable to
any dimension. For example with three vector fields A,B,C on can do: T = A ⊗B ⊗ C so T ijk = AiBjCk

(cf fig. 3). This implies that a tensor of rank- r is constructed from vector fields in D dimensions, we have Dr

components.

• From spatial derivation [9] of a scalar field:
The gradient of a scalar field φ(r) is in fact a means to transform a rank-0 field into a vector field (rank-1):

[gradφ]i = ∂φ
∂xi . Note however that the gradient behaves as a covariant vector field (It is shown further below

that there are contravariant and covariant varieties of the gradient). As a consequence, derivation (respectively
integration) of another tensor field allow to change the rank by 1 (resp. -1).

• From contraction of another tensor:
Contraction is an operation consisting of equating two indices (say i = j) in a tensorial expression and summing
over (say i). One example is the scalar product of two covariant vectors: a · b = aibi that transforms a rank-2
tensor aibj after a contraction into a scalar (rank-0). Another example drawn from linear algebra is to apply a
matrix M with coefficients Mij to a vector a = (a1, a2, a3) resulting into another vector b such that b = Ma,

meaning indicially bi =
∑3
j=1Mijaj . Using Einstein summation rule, we write bi = Mijaj which in fact might

be viewed as a contraction (j = k) from a rank-3 tensor Mijak to a (rank-1) vector bi. Rephrasing in Tensor
language writes: Suppose Ti1,i2,i3,,im transforms as a tensor of rank- m then Tj,j,i3,,im transforms as a tensor of
rank- (m− 2). This operation corresponds to a general contraction of a tensor.

• By combining all previous operations
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FIG. 3: Pictorial representation of tensor components T ijk = AiBjCk, i, j, k = 1, 2, 3 at nodes of a 3D lattice. Adapted from
ref. [8]

III. VECTOR ALGEBRA AND CALCULUS WITH TENSORS

A. Linear algebra with tensors in Cartesian coordinates

In Cartesian (Affine) coordinates, the basis vectors are same independent of position. Moreover we do not make any
distinction, in this paragraph between contravariant and covariant components since basis vectors are also orthonormal
ei · ej = δij . This implies the Kroenecker symbol [10] is in fact a rank-2 tensor built from the scalar product of two
vectors.

Let us introduce rank-3 Levi-Civita antisymmetric tensor: εijk = ei · (ej × ek) = (ei, ej , ek), i, j, k = 1..3 with the
following properties: εijk = 0 for i = j, j = k, i = k whereas εijk = ±1 depending on whether i, j, k is an even or odd
permutation of 1,2,3.

Levi-Civita εijk is in fact a pseudo-tensor [11], since built from a triple-product of vectors (rank-1 tensors). The
product of two Levi-Civita tensors is found from a Linear Algebra theorem stating that the determinant of the product
of two triple products is the determinant of scalar products: εijkεlmn = (ei, ej , ek)(el, em, en).

Since a triple product is a determinant we use det(A)det(B) = det(AB), thus:

εijkεlmn =

∣∣∣∣∣∣
ei · el ei · em ei · en
ej · el ej · em ej · en
ek · el ek · em ek · en

∣∣∣∣∣∣ =

∣∣∣∣∣∣
δil δim δin
δjl δjm δjn
δkl δkm δkn

∣∣∣∣∣∣
The contraction of two Levi-Civita product:

εijkεklm =

∣∣∣∣δil δim
δjl δjm

∣∣∣∣ = δilδjm − δjlδim

Using the former identity yields εijkεijl = 2δkl. Contracting over all indices yields: εijkεijk = 2δkk = 6

Let us apply to the scalar product, vector product and double vector product.

• Scalar product:
Given two vectors A = Aiei and B = Biei, we write: A ·B = Aiei ·Bjej = AiBjei · ej = AiBjδij = AiBi

• Vector product:
A × B = Aiei × Bjej = AiBjei × ej . Taking the scalar product with a basis vector: (A × B) · ek =
AiBj(ei × ej) · ek = (ei, ej , ek)AiBj = εijkAiBj

• Double vector product:
A× (B ×C). Taking the i-th component we get: εijkAj(B ×C)k = εijkAjεklmBlCm
This yields: (δilδjm − δjlδim)AjBlCm = AjBiCj −AjBjCi = (A ·C)Bi − (A ·B)Ci
Thus: A× (B ×C) = (A ·C)B − (A ·B)C
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B. Differential vector calculus with tensors in Cartesian coordinates

Differential vector calculus is based on the use of the nabla vector operator ∇ yielding the gradient, divergence,
curl and Laplacian. In (Affine) Cartesian coordinates, we do not make any distinction between contravariant and
covariant components (Ai = Ai) since we have ei · ej = δij . Moreover, the ei are independent of coordinates giving:

∇ = ei
∂
∂xi

= ei∂i = ∂iei.

• Scalar field gradient:

Given a scalar field φ(r), the i-th component of the gradient is [gradφ(r)]i = ∇iφ(r) = ∂φ(r)
∂xi

= ∂iφ.

• Vector field gradient:
For a vector field A(r), the i-th component of the gradient of j-th component of A is [∇(A)j ]i = ∇iAj = ∂iAj

• Vector field divergence:
Given a vector field A(r), its divergence is: ∇ ·A(r) = ei∂i ·Ajej = ∂iAjei · ej = ∂iAjδij = ∂iAi.

• Vector field curl:
Given a vector field A(r), its curl is: ∇ × A(r) = ei∂i × Ajej = ∂iAj(ei × ej). The i-th component is
[curlA]i = εijk∂jAk.

• Scalar field Laplacian:
The Laplacian of a scalar field φ(r) is ∆φ(r) = ∇ ·∇φ(r) = ∂i∂iφ.

• Curl divergence:
div curlA(r) = ∂iεijk∂jAk = εijk∂i∂jAk = 0.
This stems from the fact a contraction of two tensors with one symmetric (∂i∂j) [12] and the other antisymmetric
εijk gives zero.

• Gradient curl:
[curl gradφ(r)]i = εijk∂j∂kφ = 0.
This originates as before from the contraction of a symmetric (∂j∂k) and antisymmetric εijk tensors.

• curl of curl:

[curl curlA(r)]i = εijk∂j [curlA(r)]k =

εijk∂jεklm∂lAm = εijkεklm∂j∂lAm =

(δilδjm − δjlδim)∂j∂lAm = ∂i∂mAm − ∂j∂jAi =

∂i(divA)− [∆A]i (15)

We end up with: curl curlA = grad(divA)−∆A

• Vector field Laplacian:
In case of a vector field A(r) we apply the Laplacian operator on every component: [∆A]i = ∂j∂jAi. Note that
this is not true for curvilinear coordinates case as seen further below.

C. Differential operators in orthogonal curvilinear coordinates

The gradient of a scalar field φ(r(ui)) is evaluated by comparing its differential dφ = ∂φ
∂ui du

i to the corresponding

gradient expression dφ = gradφ · dr. The line-element expression: dr = hieidu
i uses hi coefficients that are scale

factors [13] rendering ei normalized. An important difference between this case and the Cartesian is that ei depend
on coordinates uj . Moreover any vector is expressed with the scale factors as: A = hiA

iei.
The ∇ operator in orthogonal curvilinear coordinates is defined by: ∇ = ei

∂
hi∂ui . Note that we keep using

the contravariant notation (such as Ai, ui...) despite the fact they are same in orthogonal curvilinear coordinates.
The expressions for the gradient, div, curl and Laplacian are obtained from the ∇ operator as done in Cartesian



9

coordinates. Thus:

gradφ = ei
∂

hi∂ui
φ

div A = ei
∂

hi∂ui
·A = ei

∂

hi∂ui
· (hjAjej) =

1

h1h2h3

(
∂

∂ui
(hjhkA

i)

)
, i, j, k = 1, 2, 3

curl A = ei
∂

hi∂ui
×A = ei

∂

hi∂ui
× (hjA

jej) =
1

h1h2h3

∣∣∣∣∣∣
h1e1 h2e2 h3e3
∂
∂u1

∂
∂u2

∂
∂u3

h1A
1 h2A

2 h3A
3

∣∣∣∣∣∣
∆φ = ∇ ·∇φ = ei

∂

hi∂ui
· ej

∂

hj∂uj
φ =

1

h1h2h3

[
∂

∂ui

(
hjhk
hi

∂φ

∂ui

)]
, i, j, k = 1, 2, 3

In order to evaluate the Laplacian of a vector field [14, 15] (called the Beltrami operator) in coordinates other than
Cartesian, one resorts to the double curl formula derived above: ∆A = ∇(∇ ·A)−∇× (∇×A).

D. Differential operators in non-orthogonal curvilinear coordinates

In non-orthogonal curvilinear coordinates, one distinguishes covariant from contravariant quantities as well as
dependence of ei, ei on uj , uj . The line-element squared versus metric tensor is expressed as:

ds2 = dr · dr =

(
∂r

∂ui

)
dui ·

(
∂r

∂uj

)
duj ≡ gijduiduj (16)

The ∇ operator in curvilinear coordinates is written as: ∇ = ei ∂
∂ui without using any scale factors [13] and

consequently possessing un-normalized ei, ei.
The gradient [16] of a scalar field φ(r) is ∇φ = ei ∂φ∂ui corresponding to the same expression as in the orthogonal

case (with the scale factors hi = 1). This is not true for the divergence, curl and Laplacian where the covariant
derivative intervenes because of the appearance of the Jacobian terms (cf Appendix B).

The divergence of a vector field A is written as: ∇ · A = ej ∂
∂uj · (Aiei) = ej · [(∂A

i

∂uj ei) + AiΓkijek]. The term

[(∂A
i

∂uj ei) +AiΓkijek] is transformed into [(∂A
i

∂uj ) +AkΓikj ]ei (cf Appendix B) containing A covariant derivative DjA
i =

[(∂A
i

∂uj ) + AkΓikj ]. Thus the divergence of a vector field A is ej · DjA
iei is similar to the Cartesian case with the

covariant derivative replacing the ordinary one. This can be further expressed compactly using Γiij = 1
2g
lk ∂glk
∂uj (cf

Appendix B) as: 1√
g

∂
∂uk (
√
gAk) where g = det[gij ].

Similarly, the curl of a vector field A is defined by: ∇×A = ei ∂
∂ui × Ajej = (∂A

k

∂ui + AiΓkij)(ek × ej). Again it is
similar to the Cartesian case, the covariant derivative replacing the ordinary one.

The scalar Laplacian is obtained from a double application of the covariant derivative following the Cartesian case:
∆φ = ∂i∂iφ. Starting from ∆φ = DiD

iφ, we introduce the metric tensor [7] such that:

∆φ = Di(g
ijDjφ) = [

∂(gijDjφ)
∂ui + (gijDjφ)Γkij ] = 1√

g
∂
∂uj (
√
ggjk ∂φ

∂uk ).

In order to evaluate the vector Laplacian (Beltrami operator) we follow Hirota et al. [15] work who have explicitly
shown that the operators ∆ = ∇ ·∇ and ∇(∇· )−∇× (∇× ) are same, since the equivalence taken for granted from

the Cartesian case is not acceptable. Thus we have: ∆A = ∇ ·∇A = ei ∂
∂ui · ej ∂

∂ujA = gij
(

∂2

∂ui∂uj − Γkij
∂
∂uk

)
A.

IV. TENSOR EXTENSION AND REDUCTION OF PHYSICAL QUANTITIES

A. Tensor extension of physical quantities

Many possibilities exist to extend the attributes [17–19] of any physical quantity initially attached to isotropic
media (non-crystalline) to some corresponding anisotropic medium (crystalline).

For example, in electrostatics of isotropic media, the relation: D = εE with D ‖ E when extended to crystals
becomes Di = εijEj with D ∦ E.

Similarly, in magnetostatics: B = µH translates to Bi = µijHj .



10

Electric conduction in materials is described by Ohm’s law J = σE that translates into Ji = σijEj in the anisotropic
case. The resistivity tensor ρij inverse of the conductivity tensor σij allows us to rewrite Ohm’s law in the following
form: Ei = ρijJj .

In magnetic (anisotropic) crystals, the susceptibility defined by Mi = χijHj where M is the magnetization induced
by a magnetic field H is extended from the simple case where M = χH with M ‖ H and χ a scalar.

In metallic, semiconducting and insulating crystals, anisotropic effective mass that originated from ordinary mass
of Newton’s law F = mγ would be translated into Fi = mijγj where γ is acceleration.

In piezoelectric crystals [20–22], a stress σ creates a polarization P such that P = dσ with d the piezoelectric
modulus. In the anisotropic case, a stress σjk creates a polarization Pi such that Pi = dijkσjk with dijk a rank-3
tensor of piezoelectric moduli since it relates a rank-2 (stress) and a rank-1 (polarization) tensors.

When a magnetic field H is applied to a metal or a semiconductor traversed by an electric current density J , the
Hall effect arises as a voltage, transverse to J , described by an electric field Ei = ρijkJjHk where ρijk is a rank-3
tensor relating three vectors E,J and H.

It is tempting to generalize Ohm and Hall results by introducing [17] an ordered field expansion:

Ei = ρ
(0)
ij Jj +ρ

(1)
ijkJjHk +ρ

(2)
ijklJjHkHl... where ρ

(0)
ij is zero order (no field present) resistivity (Ohm), ρ

(1)
ijk is first-order

(field present) Hall effect, ρ
(2)
ijkl is second-order (field present) Hall effect... Note that only ρ

(0)
ij has dimension of

resistivity whereas higher order tensors ρ
(n)
ijk..., n ≥ 1 do not, because of the presence of magnetic field powers.

Maxwell equations can be rewritten in a tensorial covariant fashion by encapsulating the scalar Φ and vector A
potentials into a single 4-potential Aα = (Φ,A) where α = 0, 1, 2, 3. Time corresponds to α = 0 whereas 3D spatial

degrees of freedom are represented by α = 1, 2, 3. This leads to write the charge continuity equation ∂ρ
∂t + ∇ · J = 0

as ∂αJ
α = 0 with Jα = (cρ,J) where c is light velocity.

The antisymmetric rank-2 electromagnetic tensor given by Fα,β = ∂αAβ−∂βAα allows to encapsulate the inhomo-
geneous Maxwell equations: ∇ ·E = 4πρ,∇×B − 1

c
∂E
∂t = 4π

c J into a covariant form given [23] by: ∂αF
α,β = 4π

c J
β .

B. Reduction to a scalar by projection along a single or two orthogonal directions

A physical property written by a rank-2 tensor like
↔
ε , for example, associated with the dielectric constant appearing

in Di = εijEj , can be estimated according to a direction given by the unit vector n like εn in the following way:
εn = εijninj .

We contract the tensor εij with the components ni,nj direction n to make it a representative scalar εn. To prove
this, let Dn be the projection of D following a field E parallel to n. This gives Dn = D · E/|E| with Dn = εn|E|.
We then obtain εn|E| = D ·E/|E|.

We get: εn|E| =
↔
ε E · E/|E| and εn =

↔
ε E · E/(|E||E|) =

↔
ε (E/|E|) · (E/|E|). Now n = E/|E| and therefore:

εn = εijninj .
A physical property expressed as a rank-2 tensor like the dielectric constant εij or Shear elastic modulus G(n, q)

can be probed along two different directions (generally orthogonal) carried by two unit vectors n and q. Projecting
along those two directions, we obtain: εn,q = εijniqj .

C. Symmetry reduction

Starting from the fact that a component tensor Tij... ∼ xixjxk... according to Fumi rule [24], we can easily simplify
tensors by exploiting crystal symmetry.
Let us consider a rank-2 tensor in 3D and carry on simplification of its components as we we go along triclinic to
monoclinic to orthorhombic, tetragonal and finally cubic symmetry.

• In the triclinic case (no symmetry):

We have 3x3=9 components:

Txx Txy Txz
Tyx Tyy Tyz
Tzx Tzy Tzz

.

For any physical tensor (conductivity, permittivity, etc...) the symmetry Tij = Tji is true in general since
corresponding energy is akin to a quadratic form (for example, electric energy is σijEiEj with σij the conductivity
tensor and Ei the electric field). This symmetry leads to only six non-zero components.

• Monoclinic symmetry:
We have a mirror plane perpendicular to the elementary mesh: z → −z, which causes all components containing
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z once to be removed by symmetry. There are four components left:

Txx Txy 0
Tyx Tyy 0
0 0 Tzz


• Orthorhombic symmetry:

We have 3 possible mirror planes: x→ −x, y → −y, z → −z. The non-zero components of the tensor are those

containing even combinations of x, y, z. We then have three components:

Txx 0 0
0 Tyy 0
0 0 Tzz


• Tetragonal symmetry:

We have the equivalence x� y :

Txx 0 0
0 Txx 0
0 0 Tzz


• Cubic symmetry:

We have the equivalence x� y � z :

Txx 0 0
0 Txx 0
0 0 Txx

 = Txx1 with 1 the unit matrix.

NB: All matrix representations of the tensors mentioned above are made in the orthonormal basis {xyz}.

V. APPLICATION TO ANISOTROPIC ELASTICITY

Pressure possesses a tensor character since it involves a force dF and a surface dS = ndS that are both represented
mathematically by vectors. Pression is therefore a rank-2 tensor since it associates two vectors (rank-1 tensors). It
is represented by the stress tensor σij that originates from force i component i ”divided” by surface n component j.
Mathematically it is written to bypass division operation as dFi = σijdSj .

Stress can be applied to an object in various fashions:

1. Uniaxial stress: σij = σninj with σ applied along n orthogonal to a surface element.

2. Hydrostatic stress: σij = −σδij with σ applied equally along three directions.

3. Simple shear stress: σij = σ(niqj + njqi) where σ is applied along direction n belonging to a surface element
orthogonal to q.

α

y

z

dF

n

x

dS

FIG. 4: (Color online) Applied pressure with non collinear force F and normal n to (blue) surface element. When α = 0, we

get the ordinary scalar pressure P = dF
dS

. Moving on to arbitrary α 6= 0 yields the stress tensor: σij ∼ dFi
dSnj

rigorously written

as dFi = σijdSnj
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A. Elasticity tensors

A displacement field δ(r) represents local geometrical alterations of a continuum (isotropic or anisotropic), when
subjected to internal or external mechanical efforts.

Adopting the same notation as in ECP we consider xi in a reference frame and call its correspondent x̄i in the
deformed reference (cf fig.5). Deformation alters basis vectors in a way such that they are ēi in the deformed object
whereas they are given by ei in the undeformed one (cf fig. 5).

x

ex

e

xxex

xe

FIG. 5: (Color online) Applying stress to an object results in displacement. This 1D diagram shows an undeformed spring (at
left) with a given red marker at xex displaced to a new position xēx after applying stretch. The value x does not change since
we are defining positions with respect to corresponding basis vectors ex (initial) and ēx (stretched) yielding the 1D displacement
field as δ(x) = x(ēx − ex). One may assume that ēx = Eex where E is the stretching coefficient.

Extending the deformation picture illustrated in fig. 5 from 1D to 3D we define the i-th component of the dis-
placement field as [δ(r)]i = xi(ēi − ei) (no summation involved). Thus it suffices to define a deformation matrix
Eij , i, j = 1, 2, 3 transforming the basis vectors ej into ēi such that ēi = Eijej , allowing us to define the displacement
vector field as: δ(r) = xi(ēi − ei) (with summation).

Stress efforts are represented by rank-2 tensor σij(r) and displacement γij a rank-2 tensor is defined by γij = ∂δi

∂xj =
Eji. It is decomposable, like any tensor, into a symmetric εij (strain/deformation tensor) and an antisymmetric part
ωij (small rotations tensor):

εij =
1

2
(
∂δi

∂xj
+
∂δj

∂xi
), ωij =

1

2
(
∂δi

∂xj
− ∂δj

∂xi
), γij = εij + ωij (17)

In linear elasticity the extension of Hooke’s law F = −kx yields a linear relation between σ and ε, σij = Cij,klεkl
obtained from the correspondence: F ↔ σ,−k ↔ Cij,kl, x↔ εkl. For a general solid, the 1D spring elastic constant k
transforms into a rank-4 tensor Cij,kl containing elastic constants linking σ and ε that are both rank-2 tensors.

Elastic energy writes: UE = 1
2Cij,klεijεkl extending the 1D spring energy definition UE = 1

2kx
2. Thus: σij = ∂UE

∂εij

and since ε is symmetric (εij = εji) we infer σ is as well (σij = σji). Hooke’s law is extended to: Cij,kl = ∂2UE

∂εij∂εkl
.

Instead of using Hooke’s law, we might use the relationship εij = Sij,klσkl with Sij,kl the compliance tensor inverse
of Cij,kl. Sij,kl possesses the same symmetry properties as Cij,kl.

B. Elastic moduli

Elastic moduli [25] (Young, shear G, bulk K) and Poisson ratio are given generally along a single direction n or a
pair of orthogonal directions n, q with the following operations:

• Strain represented by εij tensor along single direction n :

(∆l/l)n = εn = εijninj (18)

with l the initial and ∆l its stress induced extra lengths.

• Strain represented by εij tensor along two orthogonal directions n, q :

(∆l/l)nq = εnq = εijniqj (19)

with l the initial and ∆lnq its stress induced extra lengths.
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1. Young modulus (see for instance example [26]) along a given direction E(n)
Applying a stress σn i.e. a pressure p along direction n induces a strain εn along same direction yielding Young
modulus E(n) :

1

E(n)
=
εn
σn

(20)

Relating εn to σn is done using σij = Cij,klεkl, εij = Sijklσkl:

σn = σijninj , εn = εijninj (21)

Introducing σij = pninj with p the pressure into σn = σijninj , we get Young modulus as:

1

E(n)
=
εn
σn

=
pSijklninjnknl

p
= Sijklninjnknl (22)

Using Voigt notation (see Appendix) we get the expression of E(n) in the triclinic case for any orientation [27]
as:

1

E(n)
= s11n

4
1 + s22n

4
2 + s33n

4
3 + (s44 + 2s23)n2

2n
2
3

+ (s55 + 2s31)n2
3n

2
1 + (s66 + 2s12)n2

1n
2
2

+ 2n2n3[(s14 + s56)n2
1 + s24n

2
2 + s34n

2
3]

+ 2n3n1[s15n
2
1 + (s25 + s46)n2

2 + s35n
2
3]

+ 2n1n2[s16n
2
1 + s26n

2
2 + (s36 + s45)n2

3]

(23)

Note that we have 15 terms instead of 21 due to the mixed coefficient terms such as (s44+2s23) and (s55+2s31)...

In the cubic case [27], using the conversion rules from triclinic to cubic (see Appendix C):
s22 = s33 = s11, s55 = s66 = s44, s13 = s23 = s12,
s14 = s15 = s16 = s24 = s25 = s26 = s34 = s35 = s36 = s45 = s46 = s56 = 0, we get:

1

E(n)
= s11(n4

1 + n4
2 + n4

3) + 2(s12 +
1

2
s44)(n2

1n
2
2 + n2

2n
2
3 + n2

3n
2
1) (24)

The example of Silver is displayed in Fig. 6.

2. Poisson ratio
Applying a pressure p along n and measuring deformation along q perpendicularly to n yields Poisson coefficient
(see for instance example [26]) from deformation ratio along directions q and n :

ν(n, q) = −
(∆l/l)q
(∆l/l)n

(25)

Uniaxial pressure p is related to stress tensor by: σkl = pnknl whereas strains are given by:

(∆l/l)n = εijninj , (∆l/l)q = εijqiqj (26)

Using compliance tensor relations:

εij = Sijklσkl, σkl = pnknl, (27)

we obtain: εij = Sijklpnknl.
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FIG. 6: Inverse Young modulus 1
E(n)

of Silver versus direction n. Silver compliances [28] are s11 = 2.29, s12 = −0.983, s44 = 2.17

in 1/[100GPa]. Calculated [29] values along all directions are in 1/[100GPa] units.

Using the above relations, the Poisson ratio is given by:

ν(n, q) = − εijqiqj
εijninj

= − Sijkl qiqjnknl
Sijkl ninjnknl

(28)

In the triclinic case we get for the numerator (21 terms):

Sijkl qiqjnknl = s11n
2
1q

2
1 + s22n

2
2q

2
2 + s33n

2
3q

2
3

+ s44n2n3q2q3 + s55n1n3q1q3 + s66n1n2q1q2

+ s12n
2
1q

2
2 + s13n

2
1q

2
3 + s14n

2
1q2q3 + s15n

2
1q1q3

+ s16n
2
1q1q2 + s23n

2
2q

2
3 + s24n

2
2q2q3

+ s25n
2
2q1q3 + s26n

2
2q1q2

+ s34n
2
3q2q3 + s35n

2
3q1q3 + s36n

2
3q1q2

+ s45n2n3q1q3 + s46n2n3q1q2 + s56n1n3q1q2

(29)

whereas the denominator is E(n) (see eq. 23).
In the cubic case [30], the Poisson ratio is (using the conversion rules in Appendix C):

ν(n, q) = −
s12 + (s11 − s12 − 1

2s44)(n2
1q

2
1 + n2

2q
2
2 + n2

3q
2
3)

s11 − 2((s11 − s12 − 1
2s44)(n2

1n
2
2 + n2

2n
2
3 + n2

1n
2
3)

(30)

The ν(n, q) example of Silver with n in a plane orthogonal to q = [001] is displayed in Fig. 7.

3. Shear modulus
It is defined by G = Shear stress

Angular shear strain
(see for instance example [31]) with two efforts are applied along n

and q with n⊥q as required by shear stress. Like Poisson ratio it is a symmetric function of n and q given by
G(n, q) defined as inverse ratio of angular shear deformation over shear stress:

1

G(n, q)
=

[
2εij
σij

]
nq

(31)

This is a generalization of formula 18 to the 〈nq〉 symmetric case to express stress and strain in a symmetric
fashion. 〈nq〉 symmetrized angular shear strain is given by:

[2εij ]nq = 2εijniqj = 2Sijklσklniqj (32)



15

−0.3

−0.1

 0.1

 0.3

−0.3 −0.1  0.1  0.3

[0
10

]

[100]

FIG. 7: Calculated [29] Poisson ratio ν(n, q) of Silver versus n angle in [100], [010] plane orthogonal to q = [001]. Silver
compliances [28] are s11 = 2.29, s12 = −0.983, s44 = 2.17 in 1/[100GPa].

We get the symmetrized stress as:

[σij ]nq = σijniqj = σ(niqj + njqi)niqj = σ (33)

Shear modulus is given by:

1

G(n, q)
=

2εij niqj
σijniqj

=
2Sijklσkl niqj

σ
= 2Sijkl (nkql + nlqk) niqj (34)

Using Tensor symmetry Sijkl = Sijlk, we finally obtain:

1

4G(n, q)
= Sijkl niqjnkql (35)

Using Voigt notation (cf. Appendix B) we get the expression of 1
4G(n,q) in the triclinic case for any orientation [27]

as:

1

G(n, q)
= 4[2s12 − (s11 + s22 − s66)]n1q1n2q2

+ 4[2s23 − (s22 + s33 − s44)]n2q2n3q3

+ 4[2s31 − (s33 + s11 − s55)]n3q3n1q1

+ 4(n1q2 + n2q1)[(s16 − s36)n1q1 + (s26 − s36)n2q2]

+ 4(n2q3 + n3q2)[(s24 − s14)n2q2 + (s34 − s14)n3q3]

+ 4(n3q1 + n1q3)[(s35 − s25)n3q3 + (s15 − s25)n1q1]

+ s44(n2q3 − n3q2)2 + s55(n3q1 − n1q3)2

+ s66(n1q2 − n2q1)2 + 2s45(n2q3 + n3q2)(n3q1 + n1q3)

+ 2s56(n3q1 + n1q3)(n1q2 + n2q1)

+ 2s64(n1q2 + n2q1)(n2q3 + n3q2)

(36)

Note that we used above the orthogonality of n, q translating indicially into niqi = 0. We have 15 terms again like
in the Young modulus case because of the mixed terms such as [2s12−(s11 +s22−s66)] or [2s23−(s22 +s33−s44)]
when considered as a single elastic coefficient ... In the cubic case, we get (using conversion rules of Appendix
C):

1

G(n, q)
= s44 + 4(s11 − s12 −

1

2
s44)(n2

1q
2
1 + n2

2q
2
2 + n2

3q
2
3) (37)
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FIG. 8: Calculated [29] inverse shear modulus 1
G(n,q)

of Silver versus n angle in [100], [010] plane orthogonal to q = [001].

Silver compliances [28] are s11 = 2.29, s12 = −0.983, s44 = 2.17 in 1/[100GPa]. Values along all directions are in 1/[100GPa]
units.

The 1
G(n,q) example of Silver versus n in a plane orthogonal to q = [100] is displayed in Fig. 8.

4. Bulk modulus
The definition KT,S = − 1

V

(
∂V
∂P

)
T,S

for isothermal or adiabatic bulk modulus implies a change of volume for an

applied hydrostatic pressure.

Writing: K ≈ − 1
V

(
∆V
∆P

)
and using εii = ∆V

V , we get K ≈ − εii
∆P . Using εij = Sijklσkl with σkl = −∆Pδkl, we

finally get: K = Siijj .

Thus the most general expression for the bulk modulus exploiting symmetry and Voigt notation (see Appendix
B) contains 9 terms since i, j = 1, 2, 3 :

K = Siijj = s11 + s12 + s13 + s21 + s22

+ s23 + s31 + s32 + s33

= s11 + s22 + s33 + 2(s12 + s23 + s13) (38)

VI. CONCLUSION AND PERSPECTIVES

Tensor calculus is powerful and very useful for Physics students since it provides them not only with elegant
procedures to simplify complicated algebraic, vectorial expressions but also to describe anisotropic materials by
extending simple scalar physical properties to more general appropriate mathematical expressions.

Appendix A: Tensor etymology and its evolution

The word tensor originally pertains to muscular taxonomy (extensor is a type of muscle implicated in stretch effort
as opposed to flexor implicated in angular effort) then moved to differential geometry and more recently to computer
science and neural networks. Recently Google built TPU (Tensor Processing Units) for dealing with deep learning
problems of Artificial Intelligence deals with cognitive problems such as chess and go games, face recognition, speaker
recognition... TPU-based processors are fast because of the massive parallelism of their architecture specially tailored
for tackling stacked layers in deep neural network problems. They are faster that traditional CPU (Von Neumann
architecture or with some modifications for speedup) and GPU (Graphic Processing Units) dedicated to graphic
(Video) operations possessing a Harvard architecture like DSP (Digital signal processor) chips targeted for real-time
applications.

Google TPU are made of parallel (systolic) arrays that contain each 65,536 (256 x 256) circuits called ”Tensor
Processing Elements (TPE)” that perform matrix multiplication with 8-bit based multiply-and-accumulate (MAC)
operations in a single clock cycle. The TPU runs at 700 MHz, thus it can compute 65,536x7x10 8 = 46x10 12 MAC
per second [32].
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From data compute element point of view, a CPU processes (1× 1) data units (such as product of two scalars), a
GPU a (1×N) data unit (such as the scalar product of two N dimensional vectors) whereas TPU processes (N ×N)
data units (such as the product of two N ×N matrices). A CPU may perform tens of instructions per cycle (IPS), a
GPU ∼ 104 IPS whereas a TPU may crunch several ∼ 105 IPS.

Appendix B: Covariant derivative

In general, the derivative of a tensor (with rank 6= 0) is not a tensor, since the derivative of the Jacobian terms
intervene violating the tensor character as prescribed by ECP. As an example let us take the derivative [33, 34] of a
a contravariant vector field (eq. 10) and examine its transformation according to ECP:

∂Ai

∂uk
=

∂2ui

∂uk∂ūj
Āj +

∂ui

∂ūj
∂Āj

∂uk
(B1)

The first term in the RHS breaks ECP since we were expecting a single term with Jacobian factors. Thus we have to
introduce a special derivative (called covariant derivative) that absorbs the derivative terms of the Jacobian factors.
This mathematical problem disappears in the Cartesian case since the basis vectors do not depend on local coordinates.

Let us define the derivative of the covariant basis vector ∂ei

∂uj = Γkijek such that the vector differential dA =

d(Aiei) = (∂A
i

∂uj du
j)ei +Ai ∂ei

∂uj du
j = [(∂A

i

∂uj ei) +AiΓkijek]duj . Note that the coefficients Γkij that are called Christoffel
symbols are not tensors.

The covariant derivative [(∂A
i

∂uj ei) +AiΓkijek] can be rewritten by exchanging the dummy indices i, k in the second

term to yield: [(∂A
i

∂uj )+AkΓikj ]ei. This allows us to rewrite dA = d(Aiei) = (DjA
i)eidu

j where the covariant derivative

DjA
i = [(∂A

i

∂uj ) +AkΓikj ] is a rank-2 tensor containing the Jacobian factor derivative.

The evaluation of the Christoffel symbol consists of taking the scalar product with el of ∂ei

∂uj = Γkijek. Thus

el · ∂ei

∂uj = Γkije
l · ek = Γkijδ

l
k = Γlij using the orthogonality of el and ek.

The relation Γlij = el · ∂ei

∂uj implies symmetry of the Christoffel symbol Γlij = Γlji since Γlij = el · ∂2r
∂ui∂uj after using

the definition ei = ∂r
∂ui and allows to relate Γlij to the metric tensor by taking its spatial derivative:

∂gij
∂uk =

∂(ei·ej)
∂uk =

ei · ∂ej

∂uk + ej · ∂ei

∂uk . Combining the spatial derivatives we finally get: Γlij = glk

2

(
∂gjk
∂ui + ∂gki

∂uj − ∂gij
∂uk

)
.

Contracting Γlij yields: Γiij = 1
2g
lk ∂glk
∂uj since the last two terms cancel by symmetry and index transformation.

Using the derivative of determinant g = det[gij ] formula [35] given by ∂g
∂uj = ggik ∂gik∂uj , the contracted Christoffel

symbol is rewritten as: Γiij = 1√
g

∂
√
g

∂uj .

Appendix C: Voigt notation

• Symmetry of elastic constants
Elastic energy UE = 1

2Cij,klεijεkl is invariant under i ↔ j and k ↔ l interchange. Moreover it is invariant
under {ij} ↔ {kl} interchange. Thus we infer Cij,kl = Cji,kl = Cij,lk = Ckl,ij . Thus we may replace a couple
of indices ij with a single index I and replace rank-4 tensor Cij,kl = with its matrix representation CIJ with
I, J = 1...6.

The index replacement is done according to the recipe:
11→ 1, 22→ 2, 33→ 3, 23→ 4, 13→ 5, 12→ 6. This can be written in a more compact way as:
ii→ i, ij → 9− (i+ j) when i 6= j

The 6 × 6 matrix (36 components) represents completely Cij,kl with its 34 = 81 components taking account
of symmetry. This matrix is in fact symmetric Cij,kl = Ckl,ij originating from the property of elastic energy
1
2Cij,klεijεkl providing another justification for practicality of Voigt notation. We end up with 21 components
(since [36-6]/2 +6, i.e. 15+6=21) for the triclinic crystal.

• Application to the cubic crystal case
The number of components in the cubic case can be done along the same lines we treated rank-2 tensors
previously.
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Contrary to simple intuition (like in the rank-2 case) leading to a single elastic constant in a cubic solid,
three elastic constants C11, C12 and C44 (using Voigt notation explained in Appendix B) are needed in this
case yielding: C11 = Cxx,xx = Cyy,yy = Czz,zz, C12 = Cxx,yy = Cxx,zz = Cyy,zz, C44 = Cxy,xy = Cxz,xz =
Cyz,yz, Cxy,xz = Cxy,yz = Cxz,yz = 0. This means one has to distinguish between geometrical symmetry and
mechanical symmetry.

Consequently we have a hierarchy of symmetries:

1. Cubic symmetry (3 constants: C11, C12 and C44).

2. Isotropic elasticity with rotational symmetry about some reference direction (2 constants: Lamé {λ, µ}
coefficients or Young and Poisson {E, ν}).

3. Full isotropy in all directions like in a Newtonian fluid (1 constant).

Taking x, y, z along cubic axes, we write Cxy = C44 and Czz = 1
2 (C11−C12). Consequently, the elastic constant

tensor writes:

C =


C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

 (C1)

Stresses in the cubic case are: σxx = C11εxx + C12εyy + C12εzz, σyy = C12εxx + C11εyy + C12εzzσzz = C12εxx +
C12εyy + C11εzzσxy = 2C44εxy, σxz = 2C44εxz, σyz = 2C44εyz

Particular case: In the isotropic elastic case we have only two elastic constants with Cxy = Czz, leading to a
couple of Lamé coefficients λ = C12 and µ = Cxy = Czz yielding: σij = λεkkδij + 2µεij . This means a stress σ11

induces a longitudinal strain ε11 and transverse identical values ε22 = ε33 resulting in: σ12 = 2µε12 and G = µ.

• Compliance tensor
Given the symmetry with respect to pairs of indices Sij,kl = Sji,kl, Sij,kl = Sij,lk..., we can proceed to a matrix
representation sI,J of Sij,kl with I, J = 1...6 with the same rules as in the elastic tensor case. Hence the
full matrix sI,J with its 6 × 6 (36 components) represents Sijkl tensor with its 81 components. Since sI,J is
symmetric the number of components is only 21.

Thus the symmetric compliance matrix in the triclinic case can be written as:
s11 s12 s13 s14 s15 s16

s22 s23 s24 s25 s26

s33 s34 s35 s36

s44 s45 s46

s55 s56

s66

 (C2)

In the cubic case we have: 
s11 s12 s12 0 0 0

s11 s12 0 0 0
s11 0 0 0

s44 0 0
s44 0

s44

 (C3)

This allows us to find a quick set of rules to convert from triclinic to cubic:
s22 = s33 = s11, s55 = s66 = s44, s13 = s23 = s12,
s14 = s15 = s16 = s24 = s25 = s26 = s34 = s35 = s36 = s45 = s46 = s56 = 0.
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