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We have to make a choice!

Red Pill Blue Pill
1
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Mathematical Rudiments Indicial Notation

1.1. Indicial Notation I

1. Mathematical Rudiments

Einstein’s Summation Convention: Dummy Indices

n
S =a1x1 + axx2 4+ = E ;T —> A; Ty = ATk = AmTm
i=1

Consider a = a;;zix5, v = vié;, £ =T;;€éé;

V.
Free Indices
Y1 = a11T1 + a12x2 + ai13rs3
Y2 = a2171 + a22T2 + a23T3 p = Yi = AT
Y3 = a31T1 + a32T2 + a33x3
Consider Ti; = Aim Ajm.
y
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Mathematical Rudiments Indicial Notation

1.1. Indicial Notation II

1. Mathematical Rudiments

The Kronecker Delta

1=
=G =0 sy

Consider Cjjx = 8ik0j1, Cijit = 0110k

The Levi-Civita Symbol

1 if {(z,7,k)} € {(1,2,3),(2,3,1),(3,1,2)}
€ije 1= €i - (&5 x &) = ¢ =1 if {(4,5,k)} € {(3,2,1),(2,1,3),(1,3,2)}
~—— .
€ijkéi 0 otherwise

—

Consider a - (b x ¢) ,AF .
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Mathematical Rudiments Indicial Notation

1.1. Indicial Notation III

1. Mathematical Rudiments

Property: €;jk€mnk = dimdjn — dindjm

€ijh€mnk = (€ijk€k) - (€mnk€r) = (& X &) - (ém X én)

1, éiXéj:émXén
(é¢><éj)(ém><én): -1, éiXéj:—émXén:énXém
0, otherwise

Consider a X (b X ¢)
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Mathematical Rudiments Indicial Notation

1.1. Indicial Notation IV

1. Mathematical Rudiments

Derivative Notation

Bui .
8xj '

= Ui

Consider Vu, V- u, V X u, Vx Q

Exercise

Vu,V - (Vu),V-(Vxu),VxVxuyV- o
2u B
v
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Mathematical Rudiments Indicial Notation

1.1. Indicial Notation V

1. Mathematical Rudiments

Vectors, Tensors

Consider:
@ Order of a tensor @ “Notational abuse”
@ Vector-components as first order @ Symmetric, antisymmetric tensors
tensors .
@ Antisymmetry as a cross product
@ The tensor product and 2nd order .
@ Representation of
tensors

Figen-decomposition
@ Tensors as defining an operation . .
& P @ Calculus: Gradient, Divergence,

Laplacian, Curl, curvilinear
@ Coordinate transformation coordinates

@ Identity tensors
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Mathematical Rudiments Some Multi-Variate Calculus

1.2. Some Multi-Variate Calculus

1. Mathematical Rudiments

Differential Calculus
Scalar, vector fields
Gradients, directional derivative

Divergence, Curl

Curvilinear coordinates: The
divergence has to be
coordinate-independent
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Mathematical Rudiments Some Multi-Variate Calculus

1.2. Some Multi-Variate Calculus

1. Mathematical Rudiments
Curvilinear Coordinates

@ Scalar field ¢ gradient:

8
0p = ¢ 5 T+ BT o9 —— 02
8¢ o
——or+ ——40
_ . =" 50
Differential Calculus
@ Scalar, vector fields @ Polar bases
@ Gradients, directional derivative €, = Coey + Spe, = de, = dbe,
@ Divergence, Curl €y = —Soey + Coey = ey = —d0e,
@ Curvilinear coordinates: The o
divergence has to be @ Position vector
coordinate-independent or = dre,. + rée,.

= dre, + robey

@ For 6¢p =V ¢ or,

_9, 109
Vo= GTQTJF r 8929
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Mathematical Rudiments Some Multi-Variate Calculus

1.2. Some Multi-Variate Calculus

1. Mathematical Rudiments

Integral Calculus

@ The line integral: [ F -dz
Potential theory:
fB’D Fidr, =0 —

o F; =¢,; and €iijk,j|D =0

Differential Calculus

@ Scalar, vector fields F=Véand VxF =0
o I' = r =y
° G.radlents7 directional derivative e Gauss Divergence Theorem
@ Divergence, Curl Jp Pijk...idD = faD Piji.. dA;
@ Curvilinear coordinates: The @ Stoke’s Law:
divergence has to be JA(VXE)-dA= [, F-dz

coordinate-independent
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Mathematical Rudiments Some Multi-Variate Calculus

1.2. Some Multi-Variate Calculus

1. Mathematical Rudiments

Stoke’s Law as a Special Case of Gauss

Divergence in 2D Plus
F-dx
/ (V X y) . d§ = / eijkvk’jmd|5|
s S
Differ
o Scalan v = A (eijknwk)yj d|S| ,;FE]LDQ: 0
dient: P

o Gradien :/ €i5kivEb;d| | e Theorem
@ Divergen o8 Piji...dA;
e Curviline :/ (eijkﬁil;j) vkd|(|

divergenc 98 e — F-dx

‘ R pA AL
coordinat nxb
= / vktkd\€| = / v-dl
28 a8 )
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Mathematical Rudiments Some Multi-Variate Calculus

1.2. Some Multi-Variate Calculus

1. Mathematical Rudiments

Integral Calculus

@ The line integral: [ F -dz
Potential theory:
fB’D Fidr; =0 =
o F; =¢,; and €iijk,j|D =0
e F=Vpand VX F =0

@ Gauss Divergence Theorem

Differential Calculus
Scalar, vector fields

°
@ Gradients, directional derivative
°
°

Divergence, Curl Jp Pijk...idD = [, Piji..dA;
Curvilinear coordinates: The @ Stoke’s Law:
divergence has to be JA(VxFE)-dA= [,, F-dz

coordinate-independent
P 4 @ Determinant of a Tensor

ergrk AL = e FirFy g P

o Related to volume change
through transformation
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Deformations and Strain  The Basic Premise

2. Deformations and Strain

2.1. The Basic Premise

How to describe the change in shape independently of rigid body motions?

@ The deformations are mapped as

X = X1E; Lagrangian z; = x;(X)
Eulerian X; = X;(z)
o Under the Lagrangian description we
have,
Fip
8:@-
dx; = dX
Y= ax,
{Er}tr=123

Length ds? = dx;dx; =

How doc-as dX dX; 5% 6XJ} dX;
transform into dx?

Angle dsidss cost = dxidx; =
z=X+u ax; | P | ax,
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Deformations and Strain  Coordinate Transformation

2.2. Coordinate Transformation

2. Deformations and Strain

@ A vector v is written as

and is defined as a linear combination of the bases of its
vector-space.

@ Suppose I have another coordinate system spanning the same
vector-space, this comes with its own set of basis vectors {b; }i=1, .. n-

o If the vector represents a physical/geometrical measurement, it can not
change based on coordinate system, i.e., it is coordinate invariant.

@ So, the following equality must hold:
V= ve; = U0;,
with v; and v; being the components of the vector under the different

coordinate systems.
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Deformations and Strain  Coordinate Transformation

2.2. Coordinate Transformation

2. Deformations and Strain

o Assuming that both {e;} and {b,} represent orthogonal coordinate

systems (inner products (e;,e;) = (b;,b;) = 6;;), we write down:

vi = (v,e;); Vi = (v, b;).
o Evaluating v; we obtain,

7; = (vje;, b;) = (b;, e;)v;

S50 i 21 Zj

Denoting (b;,e;) = Q;j, we get our component tranformation law for

i) =]
a vector:
7 = Qijv;

How can I combine the e;’s to obtain the b;’s ?

e How should I combine them so that my vector is invariant?
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Deformations and Strain  Coordinate Transformation

2.2. Coordinate Transformation

2. Deformations and Strain

e Given the 7; = Q;;v;, and the requirement v;e; = ijj , we write (after
swapping i <> j in LHS),

Qjivib; = vie;, = Qjib; =¢; (multiply both sides by (Q™1);x)

5k
Q;i(Q i b = (Q ke,

- bz = (Qil)jiﬁj
e Comparing the two, we have

=@ T

o This is a necessary requirement so that the vector remains
invariant.
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Deformations and Strain  Coordinate Transformation

2.2. Coordinate Transformation: Array Notation

2. Deformations and Strain

@ Now we introduce the Array Notation for vectors. Let v be a vector.
The array of its components with respect to the basis {¢,} is written as,

(v, €1)

v= (v, €9) (similarly for 7).

@ We also define the array of coordinate vectors as
& by v “contra-varies”
€21 b= by . w.r.t. v, in
: comparison with
how b and e are
@ Under this notation we have, related.
—> v are the
contravariant

components of v.
v

o
I

and

S|
I
(]
IS

il
I
<
?\mq
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Deformations and Strain  Coordinate Transformation

2.2. Coordinate Transformation: Tensors

2. Deformations and Strain

e We will define a (2nd order) tensor are a linear combination of
basis-dyads:
T =Tijee,; =T, ibibj,

where we have required T' to be invariant under coordinate change.

e Using a double-contraction operation, we write down the components
of Tij as,

For a tensor to be
= Qimeann- invariant, its
components have to

transform in this

/ fashion.
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e In array notation we write the components as,




Deformations and Strain  Coordinate Transformation

2.2. Coordinate Transformation: Summary

2. Deformations and Strain

Supposing I specify a basis change by

b=Q "¢,

e for a vector v = yTg to be invariant, its components have to transform as

v=Qu.
o for a tensor T = Te ® e to be invariant, its components have to transform
as -
T = QTQ"
o If it transforms in any other fashion, then invariance is not
guaranteed.
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Deformations and Strain  Coordinate Transformation

2.2. Coordinate Transformation: Relationship to
Gradients

2. Deformations and Strain

We will now establish a relationship between coordinate transformation and
component-gradients. J

e Consider an infinitesimal line vector dz = dx;¢e; = dz;b;.
o It is obvious that the components dx have to be related to the
components dz. So we write

oz,
T; = axl d.’L‘j (1)
J
e By invariance requirements, we have
dfi = Qijdl‘j. (2)
e Comparing eq. (1) and eq. (2) we obtain, grad(:) operator
— gradient
oT; ti
Qij _ i or Q _ g’["ad (@) operation
3xj
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Deformations and Strain  Coordinate Transformation

2.2. Coordinate Transformation: The Deformation
Gradient

2. Deformations and Strain

@ The components of the deformation gradient are written as

aiti
Fir = 5%,
e Under coordinate change we have,
= %Z &vj 8XJ
T 00X, 09X,

T —1 _ 1
= QW F,@QX )y = |[F=Q@WFRQ™ ™|

@ Q@ and Q) need not necessarily be the same (we are free to
choose measurement coordinates at each instant)

Q@ Q' = Q7 on for orthonormal coordinate systems (cartesian, for eg.). For
non-orthonormal bases, this is not so.
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Deformations and Strain  Coordinate Transformation

2.2. Coordinate Transformation: The Cauchy
Deformation Tensor

2. Deformations and Strain

o Now we consider C = FTF. Under coordinate change this becomes,

— —_T— —_\T _
C=FF= <Q(w)FQ(X) 1) (Q(I)FQ(X) 1)
— QX TR T Q@ RQO !

@ Suppose we choose to stick with coordinate systems with
orthonormal bases, Q! = Q7 (for both (z) and (X)). Hereby the
components matrix C reduces to

C = QOFTRQX”

...this is transforming like a tensor’s components!
So I can define the Cauchy deformation tensor as: C = C,;EE;
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Deformations and Strain  The Strain Tensor

2.3. The Strain Tensor

2. Deformations and Strain

@ We are now ready to define the strain tensor based on length change. We
wrote,
ds® —dS? = dX1 (FirFj; — 015)dX;
=dX" [F"F -1]dX = dX" [C - 1] dX.
e For small changes in length,
ds? — dS? = (ds + dS)(ds — dS) ~ 2dS(ds — dS).
e Representing the elongation as a fraction of the total length we write

(ds — dS) = edS. Using this we have,

2dS% = dXT[C - TdX — 2dXTdXe=dX"|[C—TdX

Here the single factor e represents what the matrix E = 1 [C — 1] is doing
in the bi-linear form dX"EdX.

The matrix E represents the components of the Strain Tensor. }
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Deformations and Strain  The Strain Tensor

2.3. The Strain Tensor: Infinitesimal Case

2. Deformations and Strain

o Consider the operation Eu. Say, v = Eu.
v represents the components of a vector which can be arbitrarily
oriented w.r.t. u.
o Consider some unit vector ¢ such that E¢ = A\¢.
The operation of the matrix E leads to perfect stretching by a factor of .
@ The pair (A, ¢) are known as an eigenpair of E ¢ represents a principal
direction. B
@ For 3D mechanics, we have 3 prinicpal directions.
Consider the 2D case below:

103 ey {Q2 @3
Ay < o
—~— (23}
Al
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Deformations and Strain  The Strain Tensor

2.3. The Strain Tensor: Infinitesimal Case

2. Deformations and Strain

o dXTEdX represents elongation/shortening of length without regard to
orientation changes.
e For considering orientation change, it is not enough just to look at a
single line-segment.
@ Let us consider 2 line-vectors dX(l), dX® that are perpendicular in
the undeformed condition —> (dX™,dX®) = axM ax® = 0.
@ In the deformed condition, the inner product is
(dg(l), d§(2)> — dX(l)TCdX(Q) — dX(l)TZEdX(Z).
e For small angle changes, the LHS simplifies as,
(dz®, de®) = |dz®||de® | cos  ~ [dzD||dz®]| (0 ( - g)(fl) +. )
dX® o L dz® _ |d§(1)||dg(2)| (7 _p)
2
p v k
ax™
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Deformations and Strain  The Strain Tensor

2.3. The Strain Tensor: Shear Strain

2. Deformations and Strain

o Consider dX) = |d§<1)|g1, dxX® = |dﬁ(2)\§2.
Then we have,
AXVTEIX® = [axDV||dX?| B,

— i.e., the off-diagonal component F1s.

@ So the complete equality is written as,
|z |dz® |y = [dXD || dX P |25,

e Under the condition of no elongation (pure shear), the off-diagonal
components measure the angle-change.

o We will interpret it as being under the condition of small elongation.
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Deformations and Strain  The Strain Tensor

2.3. The Strain Tensor: In terms of displacement
2. Deformations and Strain
Let us now express strain in terms of the displacement field u(X).

@ We have z; = X; + u;. So the deformation gradient is written as,

- 8:}5,»

= = 0; iI-
X, 1+ uir

Fir
e Cauchy deformation tensor is written as (with components C = FTTF),
Crj=FirFij =015 +urg+uyr +uiru;,g.
e From this, the strain tensor is written as (with components E = (C — 1))
1| Our Ouy ou; Ou;

E = = — 7
1=51ax, Tox, T ax, ox,
—_——

ignored for small strain

o Infinitesimal Strain Tensor: E;; = %(uLJ +ugr).
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Deformations and Strain  The Strain Tensor

2.3. The Strain Tensor: Volume Change

2. Deformations and Strain

@ Consider three arbitrarily oriented vectors dX (1), dX (2), dX ) in the
undeformed configuration. The volume that they describe is given by

AV = eryedXMdxPax®.

e Upon deformation, using the same notation as above, the volume

becomes
dv = eijkdxgl) dxgz) dx,(:)) .

Using the deformation gradient to write this out (dz = FdX), we have
dv = eiijiIFjJFkK pr)dXL(]z)dX;?)
|

e We have previously seen that e, FirFj P = ersidet(F). Substituting
this in the above we get,

dv = €7y det(F)dX M dX Pax ) = det(F)dv.

o J :=det(F) is known as the Jacobi determinant. | dv = JdV
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Deformations and Strain  The Strain Tensor

2.3. The Strain Tensor: Infinitesimal Volume Change

2. Deformations and Strain

e For the infinitesimal case, the deformation gradient component matrix is
expressed as
F =1+ €eVu,

where € > 0 is some small number (¢ < 1).
@ Since € is small, we will try to expand out J as a Taylor series in € about
e=0:
dJ
Je)=J(e=0)+e—

2
I + O(e%).

e=0

Derivative of Determinant

d . dM
a (det(M)) = trace (Adj (M)d—p)

For invertible M, Adj(M) = JM™!.

e This simplifies as,
J(e) = det(I) + € (J(e = 0)trace (I"'Vu)) + O(€%) = 1 + etr(Vu)
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Deformations and Strain  The Strain Tensor

2.3. The Strain Tensor: Infinitesimal Volume Change

2. Deformations and Strain

@ Undeformed volume is , deformed volume is . So relative
change in volume is
dv —dV
av
e For the infinitesmial case J ~ 1 4 tr(Vu) (we have set u — eu here).
Substituting, we get

=J-1

dv —dVv
% = tr(Vu) =ur, = E[[ = tT(E).

@ So the trace of the strain tensor is the relative volume change.

In Summary we have, for the strain tensor,
@ Each diagonal element corresponds to stretching/compressing,
@ Off-diagonal elements correspond to shearing,

@ Trace (sum of diagonal elements) corresponds to volume change.
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Deformations and Strain  The Strain Tensor

Summary

2. Deformations and Strain

We have defined the deformation gradient F and the strain tensor £ .

Notice: Under no deformation, if you just changed the coordinate frame
of observation, F will change, but E will not.

Rigid Body Motion

r = c+R(X — Xo)

What is the deformation gradient here?

What is the infinitesimal strain tensor here?

What is the finite strain tensor here?

What should the material respond to? What is the quantity that the
material wants to resist?
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Deformations and Strain Strain Compatibility

2.4. Strain Compatibility

2. Deformations and Strain

Necessary Reading
Read Section 1.10 in Megson [3] J

@ Since strains are defined based on the displacement field, the
different strain components are related.

e For the infinitesimal case, this relationship can be summarized as (see
Appendix 3.1 in Lai, Rubin, and Krempl [1]),

Errxm +Exmrr— Erxom — Erv g = 0.
e This gives rise to six independent equations,
Ei122 + Eap11 = 2F12,12, Ei123 + E2311 = Ei2,13 + Ei3,12
Eo3 33 + E33.00 = 2E93 23, FEag13 + Ei3.20 = Ei2,03 + Ea3 12
E3311 + E1133 = 2E13)13, E33,12 + E12.33 = E13,23 + E2313

The strains have to satisfy these conditions for them to “have been generated” by a
continuously differentiable displacement field. J
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Stress and Equilibrium

3. Stress and Equilibrium

Force is a vector. Area is a vector. What is pressure (F/A)? )
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Constitutive Relationships

4. Constitutive Relationships
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Constitutive Relationships
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