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Mathematical Rudiments Indicial Notation

1.1. Indicial Notation I
1. Mathematical Rudiments

Einstein’s Summation Convention: Dummy Indices

s = a1x1 + a2x2 + · · · =
n∑

i=1

aixi → aixi = akxk = amxm

Consider α = aijxixj , v = viêi, T = Tij êiêj

Free Indices

y1 = a11x1 + a12x2 + a13x3

y2 = a21x1 + a22x2 + a23x3

y3 = a31x1 + a32x2 + a33x3

 =⇒ yi = aijxj

Consider Tij = AimAjm.
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Mathematical Rudiments Indicial Notation

1.1. Indicial Notation II
1. Mathematical Rudiments

The Kronecker Delta

δij := êi · êj =

{
1 i = j

0 i ̸= j

Consider Cijkl = δikδjl, Cijkl = δilδjk.

The Levi-Civita Symbol

ϵijk := êi · (êj × êk)︸ ︷︷ ︸
ϵijk êi

=


1 if {(i, j, k)} ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}
−1 if {(i, j, k)} ∈ {(3, 2, 1), (2, 1, 3), (1, 3, 2)}
0 otherwise

Consider a · (b× c) ,∆F .
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Mathematical Rudiments Indicial Notation

1.1. Indicial Notation III
1. Mathematical Rudiments

Property: ϵijkϵmnk = δimδjn − δinδjm

ϵijkϵmnk = (ϵijkêk) · (ϵmnkêk) = (êi × êj) · (êm × ên)

(êi × êj) · (êm × ên) =


1, êi × êj = êm × ên

−1, êi × êj = −êm × ên = ên × êm

0, otherwise

= δimδjn − δinδjm

Consider a× (b× c)
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Mathematical Rudiments Indicial Notation

1.1. Indicial Notation IV
1. Mathematical Rudiments

Derivative Notation

∂ui

∂xj
:= ui,j

Consider ∇u, ∇ · u, ∇× u, ∇×Q

Exercise

∇u,∇ · (∇u)︸ ︷︷ ︸
∇2u

,∇ · (∇× u),∇×∇× u,∇ · σ
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Mathematical Rudiments Indicial Notation

1.1. Indicial Notation V
1. Mathematical Rudiments

Vectors, Tensors

u = uiêi, T = T ij êiêj

Consider:

Order of a tensor

Vector-components as first order
tensors

The tensor product and 2nd order
tensors

Tensors as defining an operation

Identity tensors

Coordinate transformation

“Notational abuse”

Symmetric, antisymmetric tensors

Antisymmetry as a cross product

Representation of
Eigen-decomposition

Calculus: Gradient, Divergence,
Laplacian, Curl, curvilinear
coordinates
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Mathematical Rudiments Some Multi-Variate Calculus

1.2. Some Multi-Variate Calculus
1. Mathematical Rudiments

Differential Calculus

Scalar, vector fields

Gradients, directional derivative

Divergence, Curl

Curvilinear coordinates: The
divergence has to be
coordinate-independent

Integral Calculus

The line integral:
∫
F · dx

Potential theory:∫
∂D Fidxi = 0 =⇒

Fi = ϕ,i and ϵijkFk,j |D = 0
F = ∇ϕ and ∇× F = 0

Gauss Divergence Theorem∫
D Pijk...,idD =

∫
∂D Pijk...dAi

Stoke’s Law:∫
A
(∇× F ) · dA =

∫
∂A

F · dx

Determinant of a Tensor
ϵIJK∆F = ϵijkFiIFjJFkK

Related to volume change
through transformation

Curvilinear Coordinates

Scalar field ϕ gradient:

δϕ =
∂ϕ

∂x1
δx1 +

∂ϕ

∂x2
δx2

=
∂ϕ

∂r
δr +

∂ϕ

∂θ
δθ

Polar bases

er = Cθe1 + Sθe2 =⇒ δer = δθeθ

eθ = −Sθe1 + Cθe2 =⇒ δeθ = −δθer

Position vector

δr = δrer + rδer

= δrer + rδθeθ

For δϕ = ∇ϕ · δr,

∇ϕ =
∂ϕ

∂r
er +

1

r

∂ϕ

∂θ
eθ

Stoke’s Law as a Special Case of Gauss
Divergence in 2D

∫
S
(∇× v) · dS =

∫
S
ϵijkvk,j n̂id|S|

=

∫
S
(ϵijkn̂ivk),j d|S|

=

∫
∂S

ϵijkn̂ivk b̂jd|ℓ|

=

∫
∂S

(
ϵijkn̂ib̂j

)
︸ ︷︷ ︸

n̂×b̂

vkd|ℓ|

=

∫
∂S

vktkd|ℓ| =
∫
∂S

v · dℓ
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Deformations and Strain The Basic Premise

2. Deformations and Strain
2.1. The Basic Premise

How to describe the change in shape independently of rigid body motions?

The deformations are mapped as

Lagrangian xi = xi(X)
Eulerian Xi = Xi(x)

Under the Lagrangian description we
have,

dxi =

FiI︷ ︸︸ ︷
∂xi

∂XI
dXI

Length ds2 = dxidxi =

dXI

[
∂xi

∂XI

∂xi

∂XJ

]
dXJ

Angle ds1ds2 cos θ = dxidxj =

dXI

[
∂xi

∂XI

∂xj

∂XJ

]
dXJ

dX

{EI}I=1,2,3

X

dx

{e i}i
=1,2

,3

x

X = XIEI

x = xiei

How does dX
transform into dx?

x = X + u
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Deformations and Strain Coordinate Transformation

2.2. Coordinate Transformation
2. Deformations and Strain

A vector v is written as
v = viei,

and is defined as a linear combination of the bases of its
vector-space.

Suppose I have another coordinate system spanning the same
vector-space, this comes with its own set of basis vectors {bi}i=1,...,n.

If the vector represents a physical/geometrical measurement, it can not
change based on coordinate system, i.e., it is coordinate invariant.

So, the following equality must hold:

v = viei = vibi,

with vi and vi being the components of the vector under the different
coordinate systems.
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Deformations and Strain Coordinate Transformation

2.2. Coordinate Transformation
2. Deformations and Strain

Assuming that both {ei} and {bi} represent orthogonal coordinate
systems (inner products ⟨ei, ej⟩ ≡ ⟨bi, bj⟩ = δij), we write down:

vi = ⟨v, ei⟩; vi = ⟨v, bi⟩.

Evaluating vi we obtain,

vi = ⟨vjej , bi⟩ = ⟨bi, ej⟩vj .

Denoting ⟨bi, ej⟩ = Qij , we get our component tranformation law for
a vector:

vi = Qijvj

What about the basis vectors themselves?

How can I combine the ei’s to obtain the bi’s ?

How should I combine them so that my vector is invariant?
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Deformations and Strain Coordinate Transformation

2.2. Coordinate Transformation
2. Deformations and Strain

Given the vi = Qijvj , and the requirement viei = vjbj , we write (after
swapping i ↔ j in LHS),

Qjivibj = viei =⇒ Qjibj = ei (multiply both sides by (Q−1)ik)

δjk︷ ︸︸ ︷
Qji(Q−1)ik bj = (Q−1)ikei

=⇒ bi = (Q−1)jiej

Comparing the two, we have

vi = Qijvj bi = (Q−1)jiej

This is a necessary requirement so that the vector remains
invariant.
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Deformations and Strain Coordinate Transformation

2.2. Coordinate Transformation: Array Notation
2. Deformations and Strain

Now we introduce the Array Notation for vectors. Let v be a vector.
The array of its components with respect to the basis {ei} is written as,

˜
v =

⟨v, e1⟩⟨v, e2⟩
...

 (similarly for
˜
v).

We also define the array of coordinate vectors as

˜
e =

e1e2
...

 ;
˜
b =

b1b2
...

 .

Under this notation we have,

˜
v = Q

˜
v and

˜
b = Q−T

˜
e .

˜
v “contra-varies”

w.r.t.
˜
v, in

comparison with
how

˜
b and

˜
e are

related.
=⇒

˜
v are the

contravariant
components of v.
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Deformations and Strain Coordinate Transformation

2.2. Coordinate Transformation: Tensors
2. Deformations and Strain

We will define a (2nd order) tensor are a linear combination of
basis-dyads:

T = Tijeiej = T ijbibj ,

where we have required T to be invariant under coordinate change.

Using a double-contraction operation, we write down the components
of T ij as,

T ij = Tmn ⟨bi, em⟩︸ ︷︷ ︸
Qim

Qjn︷ ︸︸ ︷
⟨bj , en⟩

= QimTmnQjn.

In array notation we write the components as,

T = QTQT .

For a tensor to be
invariant, its

components have to
transform in this

fashion.

Balaji, N. N. (AE, IITM) AS3020* August 22, 2024 15 / 32



Deformations and Strain Coordinate Transformation

2.2. Coordinate Transformation: Summary
2. Deformations and Strain

Supposing I specify a basis change by

˜
b = Q−T

˜
e,

for a vector v =
˜
vT

˜
e to be invariant, its components have to transform as

˜
v = Q

˜
v.

for a tensor T = T
˜
e⊗

˜
e to be invariant, its components have to transform

as
T = QTQT

If it transforms in any other fashion, then invariance is not
guaranteed.
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Deformations and Strain Coordinate Transformation

2.2. Coordinate Transformation: Relationship to
Gradients
2. Deformations and Strain

We will now establish a relationship between coordinate transformation and
component-gradients.

Consider an infinitesimal line vector dx = dxiei = dxibi.
It is obvious that the components

˜
dx have to be related to the

components
˜
dx. So we write

dxi =
∂xi

∂xj
dxj (1)

By invariance requirements, we have

dxi = Qijdxj . (2)

Comparing eq. (1) and eq. (2) we obtain,

Qij =
∂xi

∂xj
or Q = grad (

˜
x)

grad(·) operator
=⇒ gradient
operation
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Deformations and Strain Coordinate Transformation

2.2. Coordinate Transformation: The Deformation
Gradient
2. Deformations and Strain

The components of the deformation gradient are written as

FiI =
∂xi

∂XI
.

Under coordinate change we have,

F iI =
∂xi

∂xj

∂xj

∂XJ

∂XJ

∂XI

= Q
(x)
ij FjJ(Q(X)−1

)JI =⇒ F = Q(x)FQ(X)−1
.

This is transforming quite unlike a tensor for 2 reasons

1 Q(x) and Q(X) need not necessarily be the same (we are free to
choose measurement coordinates at each instant)

2 Q−1 = QT on for orthonormal coordinate systems (cartesian, for eg.). For
non-orthonormal bases, this is not so.
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Deformations and Strain Coordinate Transformation

2.2. Coordinate Transformation: The Cauchy
Deformation Tensor
2. Deformations and Strain

Now we consider C = FTF. Under coordinate change this becomes,

C = FTF =
(
Q(x)FQ(X)−1

)T (
Q(x)FQ(X)−1

)
= Q(X)−T

FTQ(x)TQ(x)FQ(X)−1

Suppose we choose to stick with coordinate systems with
orthonormal bases, Q−1 = QT (for both (x) and (X)). Hereby the
components matrix C reduces to

C = Q(X)FTFQ(X)T

Unlike the deformation gradient...

...this is transforming like a tensor’s components!
So I can define the Cauchy deformation tensor as: C = CIJEIEJ
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Deformations and Strain The Strain Tensor

2.3. The Strain Tensor
2. Deformations and Strain

We are now ready to define the strain tensor based on length change. We
wrote,

ds2 − dS2 = dXI (FiIFjJ − δIJ) dXJ

= d
˜
XT

[
FTF− I

]
d
˜
X = d

˜
XT [C− I] d

˜
X.

For small changes in length,
ds2 − dS2 = (ds+ dS)(ds− dS) ≈ 2dS(ds− dS).

Representing the elongation as a fraction of the total length we write
(ds− dS) = ϵdS. Using this we have,

2dS2ϵ = d
˜
XT [C− I]d

˜
X =⇒ 2d

˜
XT d

˜
Xϵ = d

˜
XT [C− I]d

˜
X.

Here the single factor ϵ represents what the matrix E = 1
2 [C− I] is doing

in the bi-linear form d
˜
XTEd

˜
X.

The matrix E represents the components of the Strain Tensor.
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Deformations and Strain The Strain Tensor

2.3. The Strain Tensor: Infinitesimal Case
2. Deformations and Strain

Consider the operation E
˜
u. Say,

˜
v = E

˜
u.

˜
v represents the components of a vector which can be arbitrarily
oriented w.r.t.

˜
u.

Consider some unit vector
˜
ϕ such that E

˜
ϕ = λ

˜
ϕ.

The operation of the matrix E leads to perfect stretching by a factor of λ.

The pair (λ,
˜
ϕ) are known as an eigenpair of E

˜
ϕ represents a principal

direction.

For 3D mechanics, we have 3 prinicpal directions.
Consider the 2D case below:

ϕ1

ϕ2

λ1

λ2

ϕ1

ϕ2

α1

α2

ϵ1α1

ϵ2α2

ϕ1

ϕ2
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Deformations and Strain The Strain Tensor

2.3. The Strain Tensor: Infinitesimal Case
2. Deformations and Strain

d
˜
XTEd

˜
X represents elongation/shortening of length without regard to

orientation changes.

For considering orientation change, it is not enough just to look at a
single line-segment.

Let us consider 2 line-vectors dX(1), dX(2) that are perpendicular in

the undeformed condition =⇒ ⟨dX(1), dX(2)⟩ = d
˜
X(1)T d

˜
X(2) = 0.

In the deformed condition, the inner product is

⟨dx(1), dx(2)⟩ = d
˜
X(1)TCd

˜
X(2) = d

˜
X(1)T 2Ed

˜
X(2).

For small angle changes, the LHS simplifies as,

⟨dx(1), dx(2)⟩ = |dx(1)||dx(2)| cos θ ≈ |dx(1)||dx(2)|
(
0 + (θ − π

2
)(−1) + . . .

)
= |dx(1)||dx(2)| (π

2
− θ)︸ ︷︷ ︸
γ

dX(2)

dX(1)

dx(2)

dx(1)
θ
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Deformations and Strain The Strain Tensor

2.3. The Strain Tensor: Shear Strain
2. Deformations and Strain

Consider dX(1) = |dX(1)|e1, dX
(2) = |dX(2)|e2.

Then we have,

d
˜
X(1)TEd

˜
X(2) = |dX(1)||dX(2)|E12,

— i.e., the off-diagonal component E12.

So the complete equality is written as,

|dx(1)||dx(2)|γ = |dX(1)||dX(2)|2E12.

Under the condition of no elongation (pure shear), the off-diagonal
components measure the angle-change.

We will interpret it as being under the condition of small elongation.
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Deformations and Strain The Strain Tensor

2.3. The Strain Tensor: In terms of displacement
2. Deformations and Strain

Let us now express strain in terms of the displacement field u(X).

We have xi = Xi + ui. So the deformation gradient is written as,

FiI =
∂xi

∂XI
= δiI + ui,I .

Cauchy deformation tensor is written as (with components C = FTF),

CIJ = FiIFiJ = δIJ + uI,J + uJ,I + ui,Iui,J .

From this, the strain tensor is written as (with components E = 1
2 (C− I))

EIJ =
1

2

 ∂uI

∂XJ
+

∂uJ

∂XI
+

∂ui

∂XI

∂ui

∂XJ︸ ︷︷ ︸
ignored for small strain


Infinitesimal Strain Tensor: EIJ = 1

2 (uI,J + uJ,I).
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Deformations and Strain The Strain Tensor

2.3. The Strain Tensor: Volume Change
2. Deformations and Strain

Consider three arbitrarily oriented vectors dX(1), dX(2), dX(3) in the
undeformed configuration. The volume that they describe is given by

dV = ϵIJKdX
(1)
I dX

(2)
J dX

(3)
K .

Upon deformation, using the same notation as above, the volume
becomes

dv = ϵijkdx
(1)
i dx

(2)
j dx

(3)
k .

Using the deformation gradient to write this out (d
˜
x = Fd

˜
X), we have

dv = ϵijkFiIFjJFkK︸ ︷︷ ︸ dX(1)
I dX

(2)
J dX

(3)
K

We have previously seen that ϵijkFiIFjJFkK = ϵIJKdet(F). Substituting
this in the above we get,

dv = ϵIJKdet(F)dX(1)
I dX

(2)
J dX

(3)
K = det(F)dV .

J := det(F) is known as the Jacobi determinant. dv = JdV
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Deformations and Strain The Strain Tensor

2.3. The Strain Tensor: Infinitesimal Volume Change
2. Deformations and Strain

For the infinitesimal case, the deformation gradient component matrix is
expressed as

F = I+ ϵ∇u,

where ϵ > 0 is some small number (ϵ ≪ 1).
Since ϵ is small, we will try to expand out J as a Taylor series in ϵ about
ϵ = 0:

J(ϵ) = J(ϵ = 0) + ϵ
dJ

dϵ

∣∣∣∣
ϵ=0

+O(ϵ2).

Derivative of Determinant

d

dp
(det(M)) = trace

(
Adj(M)

dM
dp

)
For invertible M, Adj(M) = JM−1.

This simplifies as,

J(ϵ) = det(I) + ϵ
(
J(ϵ = 0)trace

(
I−1∇u

))
+O(ϵ2) ≈ 1 + ϵtr(∇u)
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Deformations and Strain The Strain Tensor

2.3. The Strain Tensor: Infinitesimal Volume Change
2. Deformations and Strain

Undeformed volume is dV , deformed volume is dv = JdV . So relative
change in volume is

dv − dV

dV
= J − 1.

For the infinitesmial case J ≈ 1 + tr(∇u) (we have set u → ϵu here).
Substituting, we get

dv − dV

dV
= tr(∇u) = uI,I = EII = tr(E).

So the trace of the strain tensor is the relative volume change.

In Summary we have, for the strain tensor,

Each diagonal element corresponds to stretching/compressing,

Off-diagonal elements correspond to shearing,

Trace (sum of diagonal elements) corresponds to volume change.
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Deformations and Strain The Strain Tensor

Summary
2. Deformations and Strain

We have defined the deformation gradient F and the strain tensor E .

Notice: Under no deformation, if you just changed the coordinate frame
of observation, F will change, but E will not.

Rigid Body Motion

˜
x =

˜
c+ R(

˜
X −

˜
X0)

What is the deformation gradient here?

What is the infinitesimal strain tensor here?

What is the finite strain tensor here?

What should the material respond to? What is the quantity that the
material wants to resist?
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2.4. Strain Compatibility
2. Deformations and Strain

Necessary Reading

Read Section 1.10 in Megson [3]

Since strains are defined based on the displacement field, the
different strain components are related.
For the infinitesimal case, this relationship can be summarized as (see
Appendix 3.1 in Lai, Rubin, and Krempl [1]),

EIJ,KM + EKM,IJ − EIK,JM − EJM,IK = 0.

This gives rise to six independent equations,

E11,22 + E22,11 = 2E12,12, E11,23 + E23,11 = E12,13 + E13,12

E22,33 + E33,22 = 2E23,23, E22,13 + E13,22 = E12,23 + E23,12

E33,11 + E11,33 = 2E13,13, E33,12 + E12,33 = E13,23 + E23,13

The strains have to satisfy these conditions for them to “have been generated” by a
continuously differentiable displacement field.
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Stress and Equilibrium

3. Stress and Equilibrium

Force is a vector. Area is a vector. What is pressure (F/A)?
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Constitutive Relationships

4. Constitutive Relationships
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Constitutive Relationships
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