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Mathematical Rudiments Indicial Notation

1.1. Indicial Notation I
1. Mathematical Rudiments

Einstein’s Summation Convention: Dummy Indices

s = a1x1 + a2x2 + · · · =
n∑

i=1

aixi → aixi = akxk = amxm

Consider α = aijxixj , v = viêi, T = Tij êiêj

Free Indices

y1 = a11x1 + a12x2 + a13x3

y2 = a21x1 + a22x2 + a23x3

y3 = a31x1 + a32x2 + a33x3

 =⇒ yi = aijxj

Consider Tij = AimAjm.
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Mathematical Rudiments Indicial Notation

1.1. Indicial Notation II
1. Mathematical Rudiments

The Kronecker Delta

δij := êi · êj =

{
1 i = j

0 i ̸= j

Consider Cijkl = δikδjl, Cijkl = δilδjk.

The Levi-Civita Symbol

ϵijk := êi · (êj × êk)︸ ︷︷ ︸
ϵijk êi

=


1 if {(i, j, k)} ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}
−1 if {(i, j, k)} ∈ {(3, 2, 1), (2, 1, 3), (1, 3, 2)}
0 otherwise

Consider a · (b× c) ,∆F .
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Mathematical Rudiments Indicial Notation

1.1. Indicial Notation III
1. Mathematical Rudiments

Property: ϵijkϵmnk = δimδjn − δinδjm

ϵijkϵmnk = (ϵijkêk) · (ϵmnkêk) = (êi × êj) · (êm × ên)

(êi × êj) · (êm × ên) =


1, êi × êj = êm × ên

−1, êi × êj = −êm × ên = ên × êm

0, otherwise

= δimδjn − δinδjm

Consider a× (b× c)
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Mathematical Rudiments Indicial Notation

1.1. Indicial Notation IV
1. Mathematical Rudiments

Derivative Notation

∂ui

∂xj
:= ui,j

Consider ∇u, ∇ · u, ∇× u, ∇×Q

Exercise

∇u,∇ · (∇u)︸ ︷︷ ︸
∇2u

,∇ · (∇× u),∇×∇× u,∇ · σ
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Mathematical Rudiments Indicial Notation

1.1. Indicial Notation V
1. Mathematical Rudiments

Vectors, Tensors

u = uiêi, T = T ij êiêj

Consider:

Order of a tensor

Vector-components as first order
tensors

The tensor product and 2nd order
tensors

Tensors as defining an operation

Identity tensors

Coordinate transformation

“Notational abuse”

Symmetric, antisymmetric tensors

Antisymmetry as a cross product

Representation of
Eigen-decomposition

Calculus: Gradient, Divergence,
Laplacian, Curl, curvilinear
coordinates
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Mathematical Rudiments Some Multi-Variate Calculus

1.2. Some Multi-Variate Calculus
1. Mathematical Rudiments

Differential Calculus

Scalar, vector fields

Gradients, directional derivative

Divergence, Curl

Curvilinear coordinates: The
divergence has to be
coordinate-independent

Integral Calculus

The line integral:
∫
F · dx

Potential theory:∫
∂D Fidxi = 0 =⇒

Fi = ϕ,i and ϵijkFk,j |D = 0
F = ∇ϕ and ∇× F = 0

Gauss Divergence Theorem∫
D Pijk...,idD =

∫
∂D Pijk...dAi

Stoke’s Law:∫
A
(∇× F ) · dA =

∫
∂A

F · dx

Determinant of a Tensor
ϵIJK∆F = ϵijkFiIFjJFkK

Related to volume change
through transformation

Curvilinear Coordinates

Scalar field ϕ gradient:

δϕ =
∂ϕ

∂x1
δx1 +

∂ϕ

∂x2
δx2

=
∂ϕ

∂r
δr +

∂ϕ

∂θ
δθ

Polar bases

er = Cθe1 + Sθe2 =⇒ δer = δθeθ

eθ = −Sθe1 + Cθe2 =⇒ δeθ = −δθer

Position vector

δr = δrer + rδer

= δrer + rδθeθ

For δϕ = ∇ϕ · δr,

∇ϕ =
∂ϕ

∂r
er +

1

r

∂ϕ

∂θ
eθ

Stoke’s Law as a Special Case of Gauss
Divergence in 2D

∫
S
(∇× v) · dS =

∫
S
ϵijkvk,j n̂id|S|

=

∫
S
(ϵijkn̂ivk),j d|S|

=

∫
∂S

ϵijkn̂ivk b̂jd|ℓ|

=

∫
∂S

(
ϵijkn̂ib̂j

)
︸ ︷︷ ︸

n̂×b̂

vkd|ℓ|

=

∫
∂S

vktkd|ℓ| =
∫
∂S

v · dℓ
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Deformations and Strain The Basic Premise

2. Deformations and Strain
2.1. The Basic Premise

How to describe the change in shape independently of rigid body motions?

The deformations are mapped as

Lagrangian xi = xi(X)
Eulerian Xi = Xi(x)

Under the Lagrangian description we
have,

dxi =

FiI︷ ︸︸ ︷
∂xi

∂XI
dXI

Length ds2 = dxidxi =

dXI

[
∂xi

∂XI

∂xi

∂XJ

]
dXJ

Angle ds1ds2 cos θ = dxidxj =

dXI

[
∂xi

∂XI

∂xj

∂XJ

]
dXJ

dX

{EI}I=1,2,3

X

dx

{e i}i
=1,2

,3

x

X = XIEI

x = xiei

How does dX
transform into dx?

x = X + u
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Deformations and Strain Coordinate Transformation

2.2. Coordinate Transformation
2. Deformations and Strain

A vector v is written as
v = viei,

and is defined as a linear combination of the bases of its
vector-space.

Suppose I have another coordinate system spanning the same
vector-space, this comes with its own set of basis vectors {bi}i=1,...,n.

If the vector represents a physical/geometrical measurement, it can not
change based on coordinate system, i.e., it is coordinate invariant.

So, the following equality must hold:

v = viei = vibi,

with vi and vi being the components of the vector under the different
coordinate systems.
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Deformations and Strain Coordinate Transformation

2.2. Coordinate Transformation
2. Deformations and Strain

Assuming that both {ei} and {bi} represent orthogonal coordinate
systems (inner products ⟨ei, ej⟩ ≡ ⟨bi, bj⟩ = δij), we write down:

vi = ⟨v, ei⟩; vi = ⟨v, bi⟩.

Evaluating vi we obtain,

vi = ⟨vjej , bi⟩ = ⟨bi, ej⟩vj .

Denoting ⟨bi, ej⟩ = Qij , we get our component tranformation law for
a vector:

vi = Qijvj

What about the basis vectors themselves?

How can I combine the ei’s to obtain the bi’s ?

How should I combine them so that my vector is invariant?
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Deformations and Strain Coordinate Transformation

2.2. Coordinate Transformation
2. Deformations and Strain

Given the vi = Qijvj , and the requirement viei = vjbj , we write (after
swapping i ↔ j in LHS),

Qjivibj = viei =⇒ Qjibj = ei (multiply both sides by (Q−1)ik)

δjk︷ ︸︸ ︷
Qji(Q−1)ik bj = (Q−1)ikei

=⇒ bi = (Q−1)jiej

Comparing the two, we have

vi = Qijvj bi = (Q−1)jiej

This is a necessary requirement so that the vector remains
invariant.
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Deformations and Strain Coordinate Transformation

2.2. Coordinate Transformation: Array Notation
2. Deformations and Strain

Now we introduce the Array Notation for vectors. Let v be a vector.
The array of its components with respect to the basis {ei} is written as,

˜
v =

⟨v, e1⟩⟨v, e2⟩
...

 (similarly for
˜
v).

We also define the array of coordinate vectors as

˜
e =

e1e2
...

 ;
˜
b =

b1b2
...

 .

Under this notation we have,

˜
v = Q

˜
v and

˜
b = Q−T

˜
e .

˜
v “contra-varies”

w.r.t.
˜
v, in

comparison with
how

˜
b and

˜
e are

related.
=⇒

˜
v are the

contravariant
components of v.

Balaji, N. N. (AE, IITM) AS3020* November 5, 2024 14 / 52



Deformations and Strain Coordinate Transformation

2.2. Coordinate Transformation: Tensors
2. Deformations and Strain

We will define a (2nd order) tensor as a linear combination of
basis-dyads:

T = Tijeiej = T ijbibj ,

where we have required T to be invariant under coordinate change.

Using a double-contraction operation, we write down the components
of T ij as,

T ij = Tmn ⟨bi, em⟩︸ ︷︷ ︸
Qim

Qjn︷ ︸︸ ︷
⟨bj , en⟩

= QimTmnQjn.

In array notation we write the components as,

T = QTQT .

For a tensor to be
invariant, its

components have to
transform in this

fashion.
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Deformations and Strain Coordinate Transformation

2.2. Coordinate Transformation: Summary
2. Deformations and Strain

Supposing I specify a basis change by

˜
b = Q−T

˜
e,

for a vector v =
˜
vT

˜
e to be invariant, its components have to transform as

˜
v = Q

˜
v.

for a tensor T = T
˜
e⊗

˜
e to be invariant, its components have to transform

as
T = QTQT

If it transforms in any other fashion, then invariance is not
guaranteed, or in other words, the quantity is not objective.
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Deformations and Strain Coordinate Transformation

2.2. Coordinate Transformation: Relationship to
Gradients
2. Deformations and Strain

We will now establish a relationship between coordinate transformation and
component-gradients.

Consider an infinitesimal line vector dx = dxiei = dxibi.
It is obvious that the components

˜
dx have to be related to the

components
˜
dx. So we write

dxi =
∂xi

∂xj
dxj (1)

By invariance requirements, we have

dxi = Qijdxj . (2)

Comparing eq. (1) and eq. (2) we obtain,

Qij =
∂xi

∂xj
or Q = grad (

˜
x)

grad(·) operator
=⇒ gradient
operation
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Deformations and Strain Coordinate Transformation

2.2. Coordinate Transformation: The Deformation
Gradient
2. Deformations and Strain

The components of the deformation gradient are written as

FiI =
∂xi

∂XI
.

Under coordinate change we have,

F iI =
∂xi

∂xj

∂xj

∂XJ

∂XJ

∂XI

= Q
(x)
ij FjJ(Q(X)−1

)JI =⇒ F = Q(x)FQ(X)−1
.

This is transforming quite unlike a tensor for 2 reasons

1 Q(x) and Q(X) need not necessarily be the same (we are free to
choose measurement coordinates at each instant)

2 Q−1 = QT only for orthonormal coordinate systems (cartesian, for eg.).
For non-orthonormal bases, this is not so.

Balaji, N. N. (AE, IITM) AS3020* November 5, 2024 18 / 52



Deformations and Strain Coordinate Transformation

2.2. Coordinate Transformation: The Cauchy
Deformation Tensor
2. Deformations and Strain

Now we consider C = FTF. Under coordinate change this becomes,

C = FTF =
(
Q(x)FQ(X)−1

)T (
Q(x)FQ(X)−1

)
= Q(X)−T

FTQ(x)TQ(x)FQ(X)−1

Suppose we choose to stick with coordinate systems with
orthonormal bases, Q−1 = QT (for both (x) and (X)). Hereby the
components matrix C reduces to

C = Q(X)FTFQ(X)T

Unlike the deformation gradient...

...this is transforming like a tensor’s components!
So I can define the Cauchy deformation tensor as: C = CIJEIEJ
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Deformations and Strain The Strain Tensor

2.3. The Strain Tensor
2. Deformations and Strain

We are now ready to define the strain tensor based on length change. We
wrote,

ds2 − dS2 = dXI (FiIFjJ − δIJ) dXJ

= d
˜
XT

[
FTF− I

]
d
˜
X = d

˜
XT [C− I] d

˜
X.

For small changes in length,
ds2 − dS2 = (ds+ dS)(ds− dS) ≈ 2dS(ds− dS).

Representing the elongation as a fraction of the total length we write
(ds− dS) = ϵdS. Using this we have,

2dS2ϵ = d
˜
XT [C− I]d

˜
X =⇒ 2d

˜
XT d

˜
Xϵ = d

˜
XT [C− I]d

˜
X.

Here the single factor ϵ represents what the matrix E = 1
2 [C− I] is doing

in the bi-linear form d
˜
XTEd

˜
X.

The matrix E represents the components of the Strain Tensor.
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Deformations and Strain The Strain Tensor

2.3. The Strain Tensor: Infinitesimal Case
2. Deformations and Strain

Consider the operation E
˜
u. Say,

˜
v = E

˜
u.

˜
v represents the components of a vector which can be arbitrarily
oriented w.r.t.

˜
u.

Consider some unit vector
˜
ϕ such that E

˜
ϕ = λ

˜
ϕ.

The operation of the matrix E leads to perfect stretching by a factor of λ.

The pair (λ,
˜
ϕ) are known as an eigenpair of E

˜
ϕ represents a principal

direction.

For 3D mechanics, we have 3 prinicpal directions.
Consider the 2D case below:

ϕ1

ϕ2

λ1

λ2

ϕ1

ϕ2

α1

α2

ϵ1α1

ϵ2α2

ϕ1

ϕ2
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Deformations and Strain The Strain Tensor

2.3. The Strain Tensor: Infinitesimal Case
2. Deformations and Strain

d
˜
XTEd

˜
X represents elongation/shortening of length without regard to

orientation changes.

For considering orientation change, it is not enough just to look at a
single line-segment.

Let us consider 2 line-vectors dX(1), dX(2) that are perpendicular in

the undeformed condition =⇒ ⟨dX(1), dX(2)⟩ = d
˜
X(1)T d

˜
X(2) = 0.

In the deformed condition, the inner product is

⟨dx(1), dx(2)⟩ = d
˜
X(1)TCd

˜
X(2) = d

˜
X(1)T 2Ed

˜
X(2).

For small angle changes, the LHS simplifies as,

⟨dx(1), dx(2)⟩ = |dx(1)||dx(2)| cos θ ≈ |dx(1)||dx(2)|
(
0 + (θ − π

2
)(−1) + . . .

)
= |dx(1)||dx(2)| (π

2
− θ)︸ ︷︷ ︸
γ

dX(2)

dX(1)

dx(2)

dx(1)
θ
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Deformations and Strain The Strain Tensor

2.3. The Strain Tensor: Shear Strain
2. Deformations and Strain

Consider dX(1) = |dX(1)|e1, dX
(2) = |dX(2)|e2.

Then we have,

d
˜
X(1)TEd

˜
X(2) = |dX(1)||dX(2)|E12,

— i.e., the off-diagonal component E12.

So the complete equality is written as,

|dx(1)||dx(2)|γ = |dX(1)||dX(2)|2E12.

Under the condition of no elongation (pure shear), the off-diagonal
components measure the angle-change.

We will interpret it as being under the condition of small elongation.
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Deformations and Strain The Strain Tensor

2.3. The Strain Tensor: In terms of displacement
2. Deformations and Strain

Let us now express strain in terms of the displacement field u(X).

We have xi = Xi + ui. So the deformation gradient is written as,

FiI =
∂xi

∂XI
= δiI + ui,I .

Cauchy deformation tensor is written as (with components C = FTF),

CIJ = FiIFiJ = δIJ + uI,J + uJ,I + ui,Iui,J .

From this, the strain tensor is written as (with components E = 1
2 (C− I))

EIJ =
1

2

 ∂uI

∂XJ
+

∂uJ

∂XI
+

∂ui

∂XI

∂ui

∂XJ︸ ︷︷ ︸
ignored for small strain


Infinitesimal Strain Tensor: EIJ = 1

2 (uI,J + uJ,I).
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Deformations and Strain The Strain Tensor

2.3. The Strain Tensor: Volume Change
2. Deformations and Strain

Consider three arbitrarily oriented vectors dX(1), dX(2), dX(3) in the
undeformed configuration. The volume that they describe is given by

dV = ϵIJKdX
(1)
I dX

(2)
J dX

(3)
K .

Upon deformation, using the same notation as above, the volume
becomes

dv = ϵijkdx
(1)
i dx

(2)
j dx

(3)
k .

Using the deformation gradient to write this out (d
˜
x = Fd

˜
X), we have

dv = ϵijkFiIFjJFkK︸ ︷︷ ︸ dX(1)
I dX

(2)
J dX

(3)
K

We have previously seen that ϵijkFiIFjJFkK = ϵIJKdet(F). Substituting
this in the above we get,

dv = ϵIJKdet(F)dX(1)
I dX

(2)
J dX

(3)
K = det(F)dV .

J := det(F) is known as the Jacobi determinant. dv = JdV
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Deformations and Strain The Strain Tensor

2.3. The Strain Tensor: Infinitesimal Volume Change
2. Deformations and Strain

For the infinitesimal case, the deformation gradient component matrix is
expressed as

F = I+ ϵ∇u,

where ϵ > 0 is some small number (ϵ ≪ 1).
Since ϵ is small, we will try to expand out J as a Taylor series in ϵ about
ϵ = 0:

J(ϵ) = J(ϵ = 0) + ϵ
dJ

dϵ

∣∣∣∣
ϵ=0

+O(ϵ2).

Derivative of Determinant

d

dp
(det(M)) = trace

(
Adj(M)

dM
dp

)
For invertible M, Adj(M) = JM−1.

This simplifies as,

J(ϵ) = det(I) + ϵ
(
J(ϵ = 0)trace

(
I−1∇u

))
+O(ϵ2) ≈ 1 + ϵtr(∇u)
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Deformations and Strain The Strain Tensor

2.3. The Strain Tensor: Infinitesimal Volume Change
2. Deformations and Strain

Undeformed volume is dV , deformed volume is dv = JdV . So relative
change in volume is

dv − dV

dV
= J − 1.

For the infinitesmial case J ≈ 1 + tr(∇u) (we have set u → ϵu here).
Substituting, we get

dv − dV

dV
= tr(∇u) = uI,I = EII = tr(E).

So the trace of the strain tensor is the relative volume change.

In Summary we have, for the strain tensor,

Each diagonal element corresponds to stretching/compressing,

Off-diagonal elements correspond to shearing,

Trace (sum of diagonal elements) corresponds to volume change.
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Deformations and Strain The Strain Tensor

Summary
2. Deformations and Strain

We have defined the deformation gradient F and the strain tensor E .

Notice: Under no deformation, if you just changed the coordinate frame
of observation, F will change, but E will not.

Rigid Body Motion

˜
x =

˜
c+ R(

˜
X −

˜
X0)

What is the deformation gradient here?

What is the infinitesimal strain tensor here?

What is the finite strain tensor here?

What should the material respond to? What is the quantity that the
material wants to resist?
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Deformations and Strain Strain Compatibility

2.4. Strain Compatibility
2. Deformations and Strain

Necessary Reading

Read Section 1.10 in Megson [3]

Since strains are defined based on the displacement field, the
different strain components are related.

For the infinitesimal case we have: 2Eij = ui,j + uj,i.
We want to manipulate this such that we get an equality fully
expressed in the strains alone.

Differentiating by Xk and premultiplying by ϵjkm we have,

2ϵjkmEij,m =�����:0
ϵjkmui,jk + ϵjkmuj,ik → free indices: i,m

We differentiate thisa by Xl and premultiply by ϵiln to get:

2ϵilnϵjkmEij,mn = ϵjkm�����:0
ϵilnuj,ikl → free indices: k, l
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Deformations and Strain Strain Compatibility

2.4. Strain Compatibility
2. Deformations and Strain

The compatibility equation ϵmjkϵnilEij,mn = 0 represents a 3× 3 system

of 9 equations.

We have two symmetries: Eij = Eji (strain tensor symmetry), and
Eij,kl = Eij,lk (strain continuously differentiable).
Applying this can convince us that the equation is also symmetric. So we

have 3(3+1)
2 = 6 unique equations.

In component notation, these can be written out as,

E22,33 + E33,22 = 2E23,23, E22,13 + E13,22 = E12,23 + E23,12

E33,11 + E11,33 = 2E13,13, E33,12 + E12,33 = E13,23 + E23,13

E11,22 + E22,11 = 2E12,12, E11,23 + E23,11 = E12,13 + E13,12

The strains have to satisfy these conditions for them to “have been generated” by a
continuously differentiable displacement field.

(k, l) = (1, 1)

(k, l) = (2, 2)

(k, l) = (3, 3)

(k, l) = (1, 3)

(k, l) = (1, 2)

(k, l) = (2, 3)
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Stress and Equilibrium

3. Stress and Equilibrium

Force is a vector. Area is a vector. What is pressure (F/A)?

Consider a small area ∆A in a cut-section of an elastic body as shown.
The traction vector t is the limiting force

t = lim
∆A→0

∆F

∆A
.

By basic force-balance arguments, we can argue that the relationship
between the traction vector and the normal vector to the chosen area has
to be linear.

ti = σijnj .

Figure from [1]
Figure from [1]

Cauchy Stress Tensor: σijeiej
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Stress and Equilibrium

Force Equilibrium
3. Stress and Equilibrium

Consider the forces on a small volume dv in the deformed
configuration (denoted Ωd):

Body loads
∫
Ωd

fi(x)dv

Surface tractions
∫
∂Ωd

tid|a|
Static equilibrium is written as∫

∂Ωd

σijdaj +

∫
Ωd

fidv = 0.

Applying Gauss divergence, this simplifies to,∫
Ωd

σij,j + fidv = 0 =⇒ σij,j + fi = 0 .

This is the static equilibrium equation.
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Stress and Equilibrium

Moment Equilibrium
3. Stress and Equilibrium

We next consider the balance of the moments of forces on the same
differential element.∫

∂Ωd

ϵijkxjσkldal︸ ︷︷ ︸
x×td|a|

+

∫
Ωd

ϵijkxjfkdv = 0.

Applying Gauss divergence again we get,∫
Ωd

ϵijk((xjσkl),l + xjfk)dv =

∫
Ωd

ϵijk
(
δjlσkl + xj�����

(σkl,l + fk)
)
dv = 0

=⇒ ϵijkσjk = 0

which is an assertion of symmetry of the stress tensor.

Note that we have assumed the absense of body moments here.
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Stress and Equilibrium Stress Work Done

3.1. Stress Work Done
3. Stress and Equilibrium

Let us now consider the work done by the stress. For convenience, we
start with the rate of work done: force×velocity .
On the infinitesimal element we have,

dU

dt
=

∫
∂Ωd

σij u̇idaj +

∫
Ωd

fiu̇idv.

Application of Gauss divergence leads to,

dU

dt
=

∫
Ωd

(σij u̇i),j + fiu̇idv =

∫
Ωd

σij u̇i,j + u̇i�����
(σij,j + fi)dv

=⇒ dU

dt
=

∫
Ωd

σij
∂u̇i

∂XI︸ ︷︷ ︸
ḞiI

∂XI

∂xj︸ ︷︷ ︸
(F−1)Ij

dv

The power density is written as,

dU
dt

= σij(F−1)IjḞiI .
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Stress and Equilibrium Stress Work Done

3.1. Stress Work Done: Non-Dissipative Solid
3. Stress and Equilibrium

For a general non-dissipative solid, the work done must be
path-independent, i.e., the contents of the energy integral must be an
exact differential of the conserved quantity (stress/strain energy).

Here we have,∫
Ωd

dU
dt

dv =

∫
Ωd

∂U
∂FiI

ḞiIdv =

∫
Ωd

σij(F−1)IjḞiIdv.

It must be noted that the domain of integration, Ωd is also deformation
dependent, making this inconvenient. So we map everything back to
the undeformed reference (denoted Ω):∫

Ω

∂U
∂FiI

ḞiI det(F)dV︸ ︷︷ ︸
dv

=

∫
Ω

σij(F−1)IjḞiIdet(F)dV

=⇒ σij =
1

det(F)
∂U
∂FiI

FjI ,
≈
σ =

1

det(F)
∂U
∂F

FT .
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Stress and Equilibrium Stress Work Done

3.1. Stress Work Done: Non-Dissipative Solid under
infinitesimal strain
3. Stress and Equilibrium

For the infinitesimal strain case, it can be shown that the above
expression simplifies to,

σIJ =
∂U
∂EIJ

.

Intuitively, under this condition, the deformed and undeformed
coordinates are almost the same. Mathematically, this can be worked
out by using a perturbative formalism by setting u → ϵu.
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Constitutive Relationships

4. Constitutive Relationships

We have developed tensor-representations of both the stress, σ = σijeiej
and strain, E = Eijeiej . We are now interested in relating the
components of the two.

The most general linear relationship that one can assume is

σij = CijklEkl.

If the system is non-dissipative, then the stress must be expressible as
σij =

∂U
∂Eij

. So,

∂2U
∂Eij∂Ekl

= Cijkl.

Since we expect a smooth energy density, the indices (i, j) and (k, l) must
be swappable. This represents the first symmetry property of Cijkl

(i, j ↔ k, l).

Since stress and strain are also symmetric, the following index-swaps
must be permissible: i ↔ j, k ↔ l.
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Constitutive Relationships

Simplification Arguments
4. Constitutive Relationships

In summary we have the following roadmap for simplification:

General Case Cijkl 3× 3× 3× 3 = 81 terms

Stress-Strain Symmetry i ↔ j, k ↔ l 3(3+1)
2 × 3(3+1)

2 = 36 terms

Non-dissipativity, smoothness (i, j) ↔ (k, l) 6(6+1)
2 = 21 terms

Suppose the material is isotropic, then the components Cijkl are
invariant under coordinate transformations. This means that it must be
composed of δ·· symbols.

Under symmetry, we have 3 unique combinations:

δijδkl, δikδjl, δilδjk,

and we write:
Cijkl = α1δijδkl + α2δikδjl + α3δilδjk.

Applying this to the stress-strain relationship, we get:

σij = α1δijEkk + α2Eij + α3Eji =⇒ σij = λδijEkk + 2µEij .
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Constitutive Relationships Mohr’s Circles

4.1. Mohr’s Circles
4. Constitutive Relationships

Consider a 2D case with
≈
σ =

[
σ11 σ12

σ12 σ22

]
.

Consider a plane section with normal
˜
n̂ =

[
cos θ sin θ

]T
. The

perpendicular is denoted
˜
ŝ =

[
− sin θ cos θ

]T
.

The traction vector is given by
˜
t =

≈
σ
˜
n̂:

˜
t =

[
σ11 cos θ + σ12 sin θ
σ12 cos θ + σ22 sin θ

]
.

This is resolved along the (n̂, ŝ) directions by the coordinate
transformation,[

σn

τs

]
=

[
˜
n̂T

˜
ŝT

]
˜
t =

[
σ11+σ22

2 + σ11−σ22

2 cos 2θ + σ12 sin 2θ
−σ11−σ22

2 sin 2θ + σ12 cos 2θ

]
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Constitutive Relationships Mohr’s Circles

4.1. Mohr’s Circles
4. Constitutive Relationships

Now we consider two infinitesimal lines initially oriented along n̂ and t̂
(dSn̂, dSt̂).

dSn̂ experiences the elongation,

ds− dS

dS
=

˜
n̂TE

˜
n̂ = ϵℓ.

The shear strain between them is,

γs = 2
˜
t̂TE

˜
n̂.

Simplifying, we get[
ϵℓ
γs

]
=

[
E11+E22

2 + E11−E22

2 cos 2θ + E12 sin 2θ
−(E11 − E22) sin 2θ + 2E12 cos 2θ

]

Balaji, N. N. (AE, IITM) AS3020* November 5, 2024 40 / 52



Constitutive Relationships Mohr’s Circles

4.1. Mohr’s Circles
4. Constitutive Relationships

When no shear load/response is observed, these reduce to,[
σn

τs

]
=

[
σ11+σ22

2 + σ11−σ22

2 cos 2θ
−σ11−σ22

2 sin 2θ

]
,

[
ϵℓ
γs

]
=

[
E11+E22

2 + E11−E22

2 cos 2θ
−(E11 − E22) sin 2θ

]
.

For a linear-elastic material, causal links may be made between σn ↔ ϵℓ
and τs ↔ γs.
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Constitutive Relationships Linear Isotropic Elasticity

4.2. Linear Isotropic Elasticity
4. Constitutive Relationships

From basic arguments one can motivate

E11 =
1

E
σ11 −

ν

E
(σ22 + σ33).

For the 2D case under pure tension,

E11 =
1

E
σ11 −

ν

E
σ22, E22 = − ν

E
σ11 +

1

E
σ22.

For some section oriented by angle θ we have,

γs(θ) = −(E11 − E22) sin 2θ = −1 + ν

E
(σ11 − σ22) sin 2θ︸ ︷︷ ︸

2τs

,

which implies, γs(θ) = 2
1 + ν

E
τs .

E: Young’s Modulus, ν: Poisson’s Ratio, and G = E
2(1+ν) : Shear Modulus.

Balaji, N. N. (AE, IITM) AS3020* November 5, 2024 42 / 52



Constitutive Relationships Linear Isotropic Elasticity

4.2. Linear Isotropic Elasticity
4. Constitutive Relationships

We have also spoken about volume change. In terms of strains this is,

dv − dV

dv
= E11 + E22 + E33

=
1− 2ν

E
(σ11 + σ22 + σ33).

In other words we have Eii = κσii, where κ =
1− 2ν

E
, the bulk modulus.

From physical arguments, it is clear that κ > 0, which implies ν < 0.5,
which presents an upper bound for the Poisson’s ratio.

The shear modulus must also be positive. So we have E
2(1+ν) > 0, which

implies ν > −1 , which presents a lower bound for the Poisson’s
ratio.

In summary we have, ν ∈ (−1, 0.5) , E > 0 .
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Constitutive Relationships Linear Isotropic Elasticity

4.2. Linear Isotropic Elasticity
4. Constitutive Relationships

In tensor notation, this can be written as,

Eij =
1

E
[(1 + ν)σij − νσkkδij ] .
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2D Problems

5. 2D Problems

In 2D, the governing equations can be written as,

σ11,1 + σ12,2 + f1 = 0

σ12,1 + σ22,2 + f2 = 0.

Differentiation the first by X1 and the second by X2 leads to

σ11,11 + σ22,22 + 2σ12,12 + f1,1 + f2,2 = 0.

Strain Compatibility equations in 2D reads:

2E12,12 = E11,22 + E22,11

We, however, need compatibility in terms of stresses, not strains. Now we
formalize the notion of two dimensions:

Plane Stress σ33 = 0
Plane Strain E33 = 0
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2D Problems

The “Plane Stress” Case
5. 2D Problems

Here, we assume σ33 = 0 (but E33 ̸= 0 in general). So the stress-strain
relationships are,

E11 =
1

E
σ11 −

ν

E
σ22, E22 =

1

E
σ22 −

ν

E
σ11

2E12 = 2
1 + ν

E
σ12, E33 = − ν

E
(σ11 + σ22)

Substituting this into the compatibility equations we get,

=⇒ 2(1 + ν)

E
σ12,12 =

1

E

(
(σ11 − νσ22),22 + (−νσ11 + σ22),11

)
=

1

E
((σ11,22 + σ22,11)− ν(σ11,11 + σ22,22))

Combining the two we get,

σ11,11 + σ11,22 + σ22,11 + σ22,22

1 + ν
+f1,1+f2,2 = 0 => σii,jj + (1 + ν)fi,i = 0 .
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2D Problems

The “Plane Strain” Case
5. 2D Problems

Here, we assume E33 = 0 (σ33 ̸= 0 in general). So the stress-strain
relationships are simplified as,

E33 =
σ33 − ν(σ11 + σ22)

E
= 0 =⇒ σ33 = ν(σ11 + σ22),

=⇒ E11 =
σ11

E
− ν

E
(σ22 + σ33) =

1− ν2

E
σ11 −

ν(1 + ν)

E
σ22

=⇒ E22 =
σ22

E
− ν

E
(σ11 + σ33) =

1− ν2

E
σ22 −

ν(1 + ν)

E
σ11

Substituting this into the compatibility equations we get,

=⇒ 2(1 + ν)

E
σ12,12 =

1 + ν

E

(
((1− ν)σ11 − νσ22),22 + (−νσ11 + (1− ν)σ22),11

)
=

1 + ν

E
((1− ν)(σ11,22 + σ22,11)− ν(σ11,11 + σ22,22))

Combining the two we get,

(1−ν)(σ11,11+σ11,22+σ22,11+σ22,22)+f1,1+f2,2 = 0 => σii,jj +
1

1− ν
fi,i = 0 .
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2D Problems The Airy’s Stress Function

5.1. The Airy’s Stress Function
5. 2D Problems

We can now combine both the governing equations and the
compatibility equations, so we can write out the solution fully in
terms of stress only.
For the homogeneous case (fi = 0), we have (for both plane stress and
plane strain), (

∂2

∂X2
1

+
∂2

∂X2
2

)
(σ11 + σ22) = 0. (3)

We introduce the Airy’s Stress function ϕ that simplifies the system of
two PDE’s into a scalar PDE by the substitutions:

σ11 :=
∂2ϕ

∂X2
2

, σ22 :=
∂2ϕ

∂X2
1

, σ12 := − ∂ϕ

∂X1∂X2
.

(it is easily verified that this satisfies the governing equations σij,j = 0 by definition)

Substitution into eq. (3) leads to

ϕ,1111 + 2ϕ,1122 + ϕ,2222 =

(
∂2

∂X2
1

+
∂2

∂X2
2

)2

ϕ = 0, ∇4ϕ = 0 ,

sometimes known as the Biharmonic Equation.
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2D Problems The Airy’s Stress Function

5.1. The Airy’s Stress Function: Tutorial
5. 2D Problems

The Airy stress function can be used to solve problems with boundary
loads. Consider this simple example from your textbook:

Airy Stress Function: ϕ = Ax2 +Bxy + Cy2
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2D Problems The Airy’s Stress Function

5.1. The Airy’s Stress Function: Tutorial
5. 2D Problems

Consider this second example from your text book (example 2.3):

with a candidate Airy stress function
ϕ(x, y) = Ax2 +Bx2y + Cy3 +D(5x2y3 − y5).

Boundary Conditions

σ11 = σ22 = σ12 = 0, y = h

σ11 = σ12 = 0, y = h

σ22 = −q, y = −h

σ11 = σ22 = σ12 = 0, x = 0∫ h

−h

yσ11dy = 0, x = 0
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2D Problems The Airy’s Stress Function

5.1. The Airy’s Stress Function
5. 2D Problems

It may be the case that the Airy stress function doesn’t meet all the
boundary conditions. In this case we find a stress function that
approximately satisfies the BCs in some sense.

So is this completely useless? No.

St. Venant’s Principle (rephrased as in [1])

If some distribution of forces acting on a portion of the surface of a body is
replaced by a different distribution of forces acting on the same portion of the
body, then the effects of the two different distributions on the parts of the body
sufficiently far removed from the region of application of the forces are
essentially the same, provided that the two distribution of forces have the
same resultant force and the same resultant couple.

Figure from [3]
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2D Problems The Airy’s Stress Function

5.1. The Airy’s Stress Function
5. 2D Problems

It may be the case that the Airy stress function doesn’t meet all the
boundary conditions. In this case we find a stress function that
approximately satisfies the BCs in some sense.

So is this completely useless? No.

St. Venant’s Principle (rephrased as in [1])

If some distribution of forces acting on a portion of the surface of a body is
replaced by a different distribution of forces acting on the same portion of the
body, then the effects of the two different distributions on the parts of the body
sufficiently far removed from the region of application of the forces are
essentially the same, provided that the two distribution of forces have the
same resultant force and the same resultant couple.

Figure from [3]

Balaji, N. N. (AE, IITM) AS3020* November 5, 2024 51 / 52



2D Problems The Airy’s Stress Function

References I

[1] W. M. Lai, D. Rubin, and E. Krempl. Introduction to Continuum Mechanics,
4th ed. Amsterdam Boston: Butterworth-Heinemann/Elsevier, 2010. isbn:
978-0-7506-8560-3 (cit. on pp. 2, 36, 56, 57).

[2] M. H. Sadd. Elasticity: Theory, Applications, and Numerics, 2nd ed.
Amsterdam ; Boston: Elsevier/AP, 2009. isbn: 978-0-12-374446-3 (cit. on p. 2).

[3] T. H. G. Megson. Aircraft Structures for Engineering Students, Elsevier, 2013.
isbn: 978-0-08-096905-3 (cit. on pp. 2, 34, 56, 57).

Balaji, N. N. (AE, IITM) AS3020* November 5, 2024 52 / 52


	Mathematical Rudiments
	Indicial Notation
	Some Multi-Variate Calculus

	Deformations and Strain
	The Basic Premise
	Coordinate Transformation
	The Strain Tensor
	Strain Compatibility

	Stress and Equilibrium
	Stress Work Done

	Constitutive Relationships
	Mohr's Circles
	Linear Isotropic Elasticity

	2D Problems
	The Airy's Stress Function

	References

