

AS3020: Aerospace Structures Module 2: Aircraft Materials

Instructor: Nidish Narayanaa Balaji

Dept. of Aerospace Engg., IIT-Madras, Chennai

August 9, 2024

Balaji, N. N. (AE, IITM) [AS3020*](#page-47-0) August 9, 2024 1/14

Table of Contents

- ¹ [Understanding the](#page-2-0) [Stress-Strain Curve](#page-2-0)
	- [Failure Mechanisms](#page-7-0)
- ² [Materials Used in Aircrafts](#page-22-0)
	- [Metallic Alloys](#page-22-0)
	- [Introduction to Material](#page-30-0)
		- [Science](#page-30-0)
		- **•** [Structure](#page-30-0)
		- [Phase Diagrams](#page-33-0)

WILLIAM D. CALLISTER, JR. . DAVID G. RETHWISCH **Wiley Binder Version** WILEY

Chapters 3, 9, 10 in Jr and Rethwisch [\[2\]](#page-45-1)

V Rajendran

Chapters 2, 9, 11 in Rajendran [\[1\]](#page-45-0)

Chapters 11, 15 in Megson [\[3\]](#page-45-2)

 \leftarrow \Box

1. [Understanding the Stress-Strain Curve](#page-2-0)

1. [Understanding the Stress-Strain Curve](#page-2-0)

Ductile Material Stress-Strain Curve

1. [Understanding the Stress-Strain Curve](#page-2-0)

1. [Understanding the Stress-Strain Curve](#page-2-0)

1. [Understanding the Stress-Strain Curve](#page-2-0)

Ductile Material Stress-Strain Curve

Balaji, N. N. (AE, IITM) [AS3020*](#page-0-0) August 9, 2024 3/14

1. [Understanding the Stress-Strain Curve](#page-2-0)

"Griffith Theory" of brittle fracture

- Theoretical fracture stress $\sim \frac{E}{5} - \frac{E}{30}$ (steel $\sim \frac{E}{1000}$)
- Fracture occurs when $E_{strain} = E_{surface}$
- Crack propagates when $\frac{dE_{strain}}{dL} = \frac{dE_{surface}}{dL}$

 \leftarrow \Box

1. [Understanding the Stress-Strain Curve](#page-2-0)

"Griffith Theory" of brittle fracture

- Theoretical fracture stress $\sim \frac{E}{5} - \frac{E}{30}$ (steel $\sim \frac{E}{1000}$)
- Fracture occurs when $E_{strain} = E_{surface}$
- Crack propagates when $\frac{dE_{strain}}{dL} = \frac{dE_{surface}}{dL}$

 \leftarrow \Box

1. [Understanding the Stress-Strain Curve](#page-2-0)

"Griffith Theory" of brittle fracture

- Theoretical fracture stress $\sim \frac{E}{5} - \frac{E}{30}$ (steel $\sim \frac{E}{1000}$)
- Fracture occurs when $E_{strain} = E_{surface}$
- Crack propagates when $\frac{dE_{strain}}{dL} = \frac{dE_{surface}}{dL}$

Ductile Fracture

Ductile Fracture [\[1\]](#page-45-0)

Ductile vs Brittle Fracture [\[1\]](#page-45-0)

1. [Understanding the Stress-Strain Curve](#page-2-0)

..over 90% of mechanical failures are caused because of metal fatigue [\[6\]](#page-46-0)...

The De Havilland Comet [\[7\]](#page-46-1)

1. [Understanding the Stress-Strain Curve](#page-2-0)

..over 90% of mechanical failures are caused because of metal fatigue [\[6\]](#page-46-0)...

A more recent example (2021 United Airlines Boeing 777) [\[8\]](#page-46-2). [\[video\]](https://fatigue-life.com/fatigue-physics/)

The De Havilland Comet [\[7\]](#page-46-1)

1. [Understanding the Stress-Strain Curve](#page-2-0)

..over 90% of mechanical failures are caused because of metal fatigue [\[6\]](#page-46-0)...

1. [Understanding the Stress-Strain Curve](#page-2-0)

..over 90% of mechanical failures are caused because of metal fatigue [\[6\]](#page-46-0)...

The De Havilland Comet [\[7\]](#page-46-1)

1. [Understanding the Stress-Strain Curve](#page-2-0)

..over 90% of mechanical failures are caused because of metal fatigue [\[6\]](#page-46-0)...

Balaji, N. N. (AE, IITM) $AS3020*$ August 9, 2024 5/14

1. [Understanding the Stress-Strain Curve](#page-2-0)

- Constant stress applied over a long time
- High temperature phenomenon (> \sim 30 − 45\% of melting point)

1. [Understanding the Stress-Strain Curve](#page-2-0)

- Constant stress applied over a long time
- High temperature phenomenon (> \sim 30 − 45\% of melting point)

Examples

Zinc Melts at \sim 420° C $(T_{creen} \sim 145^{\circ} \text{ C})$

1. [Understanding the Stress-Strain Curve](#page-2-0)

- Constant stress applied over a long time
- High temperature phenomenon (> \sim 30 − 45\% of melting point)

Examples

Zinc Melts at \sim 420° C $(T_{creep} \sim 145^{\circ} \text{ C})$ Lead Melts at \sim 320° C $(T_{creen} \sim 114^{\circ} \text{ C})$

 \leftarrow \Box

1. [Understanding the Stress-Strain Curve](#page-2-0)

- Constant stress applied over a long time
- High temperature phenomenon (> \sim 30 − 45\% of melting point)

Examples

Zinc Melts at \sim 420° C $(T_{creep} \sim 145^{\circ} \text{ C})$ Lead Melts at \sim 320° C $(T_{creen} \sim 114^{\circ} \text{ C})$ Tin $T_{creen} \sim 80^{\circ}$ C

1. [Understanding the Stress-Strain Curve](#page-2-0)

- Constant stress applied over a long time
- High temperature phenomenon (> \sim 30 − 45\% of melting point)

Examples

Zinc Melts at \sim 420° C $(T_{creep} \sim 145^{\circ} \text{ C})$ Lead Melts at \sim 320° C $(T_{creen} \sim 114^{\circ} \text{ C})$ Tin $T_{creen} \sim 80^{\circ}$ C Steel, AA $T_{creen} \sim 400^{\circ}$ C

1. [Understanding the Stress-Strain Curve](#page-2-0)

- Constant stress applied over a long time
- High temperature phenomenon (> \sim 30 − 45\% of melting point)

Examples

Zinc Melts at \sim 420° C $(T_{creep} \sim 145^{\circ} \text{ C})$ Lead Melts at \sim 320° C $(T_{creen} \sim 114^{\circ} \text{ C})$ Tin $T_{creen} \sim 80^{\circ}$ C Steel, AA $T_{creen} \sim 400^{\circ}$ C Nickel Melts at ∼ 900◦ C

1. [Understanding the Stress-Strain Curve](#page-2-0)

- Constant stress applied over a long time
- High temperature phenomenon (> \sim 30 − 45\% of melting point)

Examples

Zinc Melts at \sim 420° C $(T_{creen} \sim 145^{\circ} \text{ C})$ Lead Melts at \sim 320° C $(T_{creen} \sim 114^{\circ} \text{ C})$ Tin $T_{creen} \sim 80^{\circ}$ C Steel, AA $T_{creen} \sim 400^{\circ}$ C Nickel Melts at ∼ 900◦ C Super-Alloys

- Fundamentally related to grain dislocation movement
- Single crystal solutions: Super-Alloys

Balaji, N. N. (AE, IITM) $AS3020*$ August 9, 2024 6/14

 $(1 - 1)$

2.1. [Metallic Alloys](#page-22-0) \mathbf{B}

Main Considerations

- Strength-to-weight ratio
- **•** Stiffness
- Toughness
- Fatigue life
- Thermal behavior ("Superalloys")

Pages 353-359 in Megson [\[3\]](#page-45-2).

 \leftarrow \Box

2.1. [Metallic Alloys](#page-22-0) \mathbf{B}

Balaji, N. N. (AE, IITM) [AS3020*](#page-0-0) August 9, 2024 7/14

2. [Materials Used in Aircrafts](#page-22-0) $_{\rm 2.1.~Metallic~Alloy}$ $\rm Aluminum~Alloys~[1]$ $\rm Aluminum~Alloys~[1]$

Balaji, N. N. (AE, IITM) [AS3020*](#page-0-0) August 9, 2024 7/14

2. [Materials Used in Aircrafts](#page-22-0) $_{\rm 2.1.~Metallic~Alloy}$ $\rm Aluminum~Alloys~[1]$ $\rm Aluminum~Alloys~[1]$

3. [Introduction to Material Science](#page-30-0)

3.1. [Introduction to Material Science](#page-30-0)

Types of crystal structures in metals [\[11\]](#page-47-1)

3. [Introduction to Material Science](#page-30-0)

3.1. [Introduction to Material Science](#page-30-0)

Crystal and Grain Structures [\[12\]](#page-47-2). "Polycrystallinity"

 \leftarrow \Box

3. [Introduction to Material Science](#page-30-0)

3.1. [Introduction to Material Science](#page-30-0)

Types of crystal structures in metals [\[11\]](#page-47-1)

3. [Introduction to Material Science](#page-30-0)

Mechanical properties are a direct consequence of microstructures, which are direct consequences of thermal histories.

 \leftarrow \Box

3. [Introduction to Material Science](#page-30-0)

Mechanical properties are a direct consequence of microstructures, which are direct consequences of thermal histories.

3. [Introduction to Material Science](#page-30-0)

Mechanical properties are a direct consequence of microstructures, which are direct consequences of thermal histories.

3. [Introduction to Material Science](#page-30-0)

Mechanical properties are a direct consequence of microstructures, which are direct consequences of thermal histories.

Balaji, N. N. (AE, IITM) [AS3020*](#page-0-0) August 9, 2024 9/14

3. [Introduction to Material Science](#page-30-0)

Mechanical properties are a direct consequence of microstructures, which are direct consequences of thermal histories.

3. [Introduction to Material Science](#page-30-0)

Mechanical properties are a direct consequence of microstructures, which are direct consequences of thermal histories.

3. [Introduction to Material Science](#page-30-0)

The Lead-Tin System [\[2\]](#page-45-1)

Balaji, N. N. (AE, IITM) [AS3020*](#page-0-0) August 9, 2024 10 / 14

3. [Introduction to Material Science](#page-30-0)

The Lead-Tin System [\[2\]](#page-45-1)

4 0 8

3. [Introduction to Material Science](#page-30-0)

The Lead-Tin System [\[2\]](#page-45-1)

 \leftarrow \Box

 θ

 20

3. [Introduction to Material Science](#page-30-0)

Balaji, N. N. (AE, IITM) [AS3020*](#page-0-0) August 9, 2024 10 / 14

100

 $\overline{0}$

 \dot{c}_1

100

 Ω

 (Pb)

Composition (wt% Sn)

Eutectic α

(18.3 wt% Sn)

 $\frac{C_4}{(40)}$

 (18.3 wt)

A(97.8 wt% :

60

4 0 8

50 µm

50 µm

3. [Introduction to Material Science](#page-30-0)

The Iron Carbon System [\[2\]](#page-45-1)

4 0 8

3. [Introduction to Material Science](#page-30-0)

The Al-Cu-Mg System (2024 AA) [\[13\]](#page-47-3)

 \leftarrow \Box

References I

- [1] V Rajendran. Materials Science, Tata McGraw-Hill Education. isbn: 978-1-259-05006-0 (cit. on pp. [2–](#page-1-0)[10,](#page-9-0) [16–](#page-15-0)[30\)](#page-29-0).
- [2] W. D. C. Jr and D. G. Rethwisch. Fundamentals of Materials Science and Engineering: An Integrated Approach, John Wiley & Sons, 2012. ISBN: 978-1-118-06160-2 (cit. on pp. [2,](#page-1-0) [34–](#page-33-0)[45\)](#page-44-0).
- [3] T. H. G. Megson. Aircraft Structures for Engineering Students, Elsevier, 2013. isbn: 978-0-08-096905-3 (cit. on pp. [2–](#page-1-0)[7,](#page-6-0) [11–](#page-10-0)[15,](#page-14-0) [23–](#page-22-0)[30\)](#page-29-0).
- [4] N. Connor. What Is Stress-strain Curve - Stress-strain Diagram - Definition. July 2020. url: [https://material-properties.org/what-is-stress-strain](https://material-properties.org/what-is-stress-strain-curve-stress-strain-diagram-definition/)[curve-stress-strain-diagram-definition/](https://material-properties.org/what-is-stress-strain-curve-stress-strain-diagram-definition/) (visited on 08/07/2024) (cit. on pp. [3–](#page-2-0)[7\)](#page-6-0).
- [5] T. E. Engineer. Understanding Material Strength, Ductility and Toughness. Nov. 2020. url: <https://efficientengineer.com/material-strength-ductility-toughness/> (visited on 08/07/2024) (cit. on pp. [3–](#page-2-0)[7\)](#page-6-0).

4 0 8

References II

- [6] What Is Metal Fatigue? Metal Fatigue Failure Examples. Apr. 2021. URL: <https://yenaengineering.nl/what-is-metal-fatigue-an-overview/> (visited on 08/09/2024) (cit. on pp. [11–](#page-10-0)[15\)](#page-14-0).
- [7] The deHavilland Comet Disaster. July 2019. URL: <https://aerospaceengineeringblog.com/dehavilland-comet-disaster/> (visited on 08/09/2024) (cit. on pp. [11–](#page-10-0)[15\)](#page-14-0).
- [8] DCA21FA085.Aspx. URL: <https://www.ntsb.gov/investigations/Pages/DCA21FA085.aspx> (visited on 08/09/2024) (cit. on pp. [11–](#page-10-0)[15\)](#page-14-0).
- [9] Fatigue Physics. url: <https://fatigue-life.com/fatigue-physics/> (visited on 08/09/2024) (cit. on pp. [11–](#page-10-0)[15\)](#page-14-0).
- [10] What Is a Stress-Strain Curve? | Documentation. URL: [https://www.simscale.com/docs/simwiki/fea-finite-element](https://www.simscale.com/docs/simwiki/fea-finite-element-analysis/what-is-a-stress-strain-curve/)[analysis/what-is-a-stress-strain-curve/](https://www.simscale.com/docs/simwiki/fea-finite-element-analysis/what-is-a-stress-strain-curve/) (visited on 08/09/2024) (cit. on pp. [23](#page-22-0)[–30\)](#page-29-0).

4 0 8

References III

- [11] Sparky. Sparky's Sword Science: Introduction to Crystal Structure. Dec. 2013. url: [https://sparkyswordscience.blogspot.com/2013/12/introduction](https://sparkyswordscience.blogspot.com/2013/12/introduction-to-crystal-structure.html)[to-crystal-structure.html](https://sparkyswordscience.blogspot.com/2013/12/introduction-to-crystal-structure.html) (visited on 08/09/2024) (cit. on pp. [31](#page-30-0)[–33\)](#page-32-0).
- [12] New Technique Provides Detailed Views of Metals' Crystal Structure. July 2016. url: <https://news.mit.edu/2016/metals-crystal-structure-0706> (visited on 08/09/2024) (cit. on pp. [31–](#page-30-0)[33\)](#page-32-0).
- [13] 2024 | Innovation Project Metallographic Atlas. URL: <https://www.ucm.es/metallographicatlas/a2024> (visited on 08/09/2024) (cit. on pp. [44,](#page-43-0) [45\)](#page-44-0).