

AS3020: Aerospace Structures Module 2: Aircraft Materials

Instructor: Nidish Narayanaa Balaji

Dept. of Aerospace Engg., IIT-Madras, Chennai

August 15, 2024

Table of Contents

- ¹ [Understanding the](#page-2-0) [Stress-Strain Curve](#page-2-0)
	- [Failure Mechanisms](#page-7-0)
	- ² [Materials Used in Aircrafts](#page-25-0)
		- [Metallic Alloys](#page-25-0)
	- [Introduction to Material](#page-34-0) [Science](#page-34-0)
		- [Metallic Crystal Structure](#page-34-0)
		- [Phase Diagrams](#page-42-0)

Chapters 2, 9, 11 in Rajendran [\[1\]](#page-72-0)

Aircraft **Structures** for Engineering
Students **Fourth Edition**

ELSEVIER AEROSPACE ENGINEERING SERIES

Chapters 11, 15 in Megson [\[3\]](#page-72-2)

Chapters 3, 5, 9-11 in Jr and Rethwisch $[2]$
AS3020* Balaji, N. N. (AE, IITM) AS3020^{*} August 15, 2024 2/20

 \leftarrow \Box

1. [Understanding the Stress-Strain Curve](#page-2-0)

1. [Understanding the Stress-Strain Curve](#page-2-0)

Ductile Material Stress-Strain Curve

1. [Understanding the Stress-Strain Curve](#page-2-0)

Ductile Material Stress-Strain Curve

1. [Understanding the Stress-Strain Curve](#page-2-0)

Ductile Material Stress-Strain Curve

1. [Understanding the Stress-Strain Curve](#page-2-0)

Ductile Material Stress-Strain Curve

Balaji, N. N. (AE, IITM) [AS3020*](#page-0-0) August 15, 2024 3 / 20

1. [Understanding the Stress-Strain Curve](#page-2-0)

"Griffith Theory" of brittle fracture

- Theoretical fracture stress $\sim \frac{E}{5} - \frac{E}{30}$ (steel $\sim \frac{E}{1000}$)
- Fracture occurs when $E_{strain} = E_{surface}$
- Crack propagates when $\frac{dE_{strain}}{dL} = \frac{dE_{surface}}{dL}$

1. [Understanding the Stress-Strain Curve](#page-2-0)

"Griffith Theory" of brittle fracture

- Theoretical fracture stress $\sim \frac{E}{5} - \frac{E}{30}$ (steel $\sim \frac{E}{1000}$)
- Fracture occurs when $E_{strain} = E_{surface}$
- Crack propagates when $\frac{dE_{strain}}{dL} = \frac{dE_{surface}}{dL}$

1. [Understanding the Stress-Strain Curve](#page-2-0)

"Griffith Theory" of brittle fracture

- Theoretical fracture stress $\sim \frac{E}{5} - \frac{E}{30}$ (steel $\sim \frac{E}{1000}$)
- Fracture occurs when $E_{strain} = E_{surface}$
- Crack propagates when $\frac{dE_{strain}}{dL} = \frac{dE_{surface}}{dL}$

Ductile Fracture

Ductile Fracture [\[1\]](#page-72-0)

Ductile vs Brittle Fracture [\[1\]](#page-72-0)

1. [Understanding the Stress-Strain Curve](#page-2-0)

..over 90% of mechanical failures are caused because of metal fatigue [\[6\]](#page-73-0)... S-N Curves for Common Metals [\[2\]](#page-72-1)

The De Havilland Comet [\[7\]](#page-73-1) [\[lecture\]](https://www.youtube.com/watch?v=K5HqEwbp4GA&t=1s)

1. [Understanding the Stress-Strain Curve](#page-2-0)

..over 90% of mechanical failures are caused because of metal fatigue [\[6\]](#page-73-0)... S-N Curves for Common Metals [\[2\]](#page-72-1)

The De Havilland Comet [\[7\]](#page-73-1) [\[lecture\]](https://www.youtube.com/watch?v=K5HqEwbp4GA&t=1s)

1. [Understanding the Stress-Strain Curve](#page-2-0)

..over 90% of mechanical failures are caused because of metal fatigue [\[6\]](#page-73-0)... S-N Curves for Common Metals [\[2\]](#page-72-1)

1. [Understanding the Stress-Strain Curve](#page-2-0)

..over 90% of mechanical failures are caused because of metal fatigue [\[6\]](#page-73-0)...

The De Havilland Comet [\[7\]](#page-73-1) [\[lecture\]](https://www.youtube.com/watch?v=K5HqEwbp4GA&t=1s)

1. [Understanding the Stress-Strain Curve](#page-2-0)

..over 90% of mechanical failures are caused because of metal fatigue [\[6\]](#page-73-0)...

1. [Understanding the Stress-Strain Curve](#page-2-0)

1. [Understanding the Stress-Strain Curve](#page-2-0)

- Constant stress applied over a long time
- High temperature phenomenon (> \sim 30 – 45% of melting point)

Creep curve [\[1\]](#page-72-0)

1. [Understanding the Stress-Strain Curve](#page-2-0)

- Constant stress applied over a long time
- High temperature phenomenon (> \sim 30 – 45\% of melting point)

Examples

Zinc Melts at \sim 420° C $(T_{creen} \sim 145^{\circ} \text{ C})$

DMRL developed this capability in 2021 [\[11\]](#page-74-1)

1. [Understanding the Stress-Strain Curve](#page-2-0)

- Constant stress applied over a long time
- High temperature phenomenon (> \sim 30 – 45\% of melting point)

Examples

Zinc Melts at \sim 420° C $(T_{creen} \sim 145^{\circ} \text{ C})$ Lead $T_{creen} \sim 114^{\circ}$ C

DMRL developed this capability in 2021 [\[11\]](#page-74-1)

1. [Understanding the Stress-Strain Curve](#page-2-0)

- Constant stress applied over a long time
- High temperature phenomenon (> \sim 30 – 45\% of melting point)

Examples

Zinc Melts at \sim 420° C $(T_{creen} \sim 145^{\circ} \text{ C})$ Lead T_{creen} ~ 114° C \textbf{T} itanium $T_{creep} \sim 650^{\circ} \text{ C}$

1. [Understanding the Stress-Strain Curve](#page-2-0)

- Constant stress applied over a long time
- High temperature phenomenon (> \sim 30 – 45\% of melting point)

Examples

Zinc Melts at \sim 420° C $(T_{creen} \sim 145^{\circ} \text{ C})$ Lead $T_{creen} \sim 114^{\circ}$ C \textbf{T} itanium $T_{creep} \sim 650^{\circ} \text{ C}$ Tin $T_{creen} \sim 80^{\circ}$ C

1. [Understanding the Stress-Strain Curve](#page-2-0)

- Constant stress applied over a long time
- High temperature phenomenon (> \sim 30 – 45\% of melting point)

Examples

Zinc Melts at \sim 420° C $(T_{creen} \sim 145^{\circ} \text{ C})$ Lead $T_{creen} \sim 114^{\circ}$ C \textbf{T} itanium $T_{creep} \sim 650^{\circ} \text{ C}$ Tin $T_{creen} \sim 80^{\circ}$ C Steel, AA T_{creep} ∼ 400° C

1. [Understanding the Stress-Strain Curve](#page-2-0)

- Constant stress applied over a long time
- High temperature phenomenon (> \sim 30 – 45\% of melting point)

Examples

Zinc Melts at \sim 420° C $(T_{creen} \sim 145^{\circ} \text{ C})$ Lead $T_{creen} \sim 114^{\circ}$ C \textbf{T} itanium $T_{creep} \sim 650^{\circ} \text{ C}$ Tin $T_{creen} \sim 80^{\circ}$ C Steel, AA T_{creep} ∼ 400° C Nickel Melts at ∼ 900◦ C

1. [Understanding the Stress-Strain Curve](#page-2-0)

- Constant stress applied over a long time
- High temperature phenomenon (> \sim 30 – 45\% of melting point)

Examples

Zinc Melts at \sim 420° C $(T_{creen} \sim 145^{\circ} \text{ C})$ Lead $T_{creen} \sim 114^{\circ}$ C \textbf{T} itanium $T_{creep} \sim 650^{\circ} \text{ C}$ Tin $T_{creen} \sim 80^{\circ}$ C Steel, AA $T_{creen} \sim 400^{\circ}$ C Nickel Melts at ∼900° C Super-Alloys $T_{creep} \sim 400^{\circ}$ C
 \bullet Single crystal solutions:

- Fundamentally related to grain dislocation movement
- **Super-Alloys:** $T_{creen} > 1000^{\circ}$ C

Balaji, N. N. (AE, IITM) AS3020^{*} AS3020^{*} August 15, 2024 6/20

1. [Understanding the Stress-Strain Curve](#page-2-0)

2.1. [Metallic Alloys](#page-25-0) \mathbf{B}

Main Considerations

- Strength-to-weight ratio;
- Stiffness, Strength;
- Toughness, resistance to fast crack propagation; Alloy ρ (kg m−3) E (GPa) σu (GPa)
- Fatigue life;
- Thermal behavior ("Superalloys") Necessary Reading

Fe 7800 200 1 Al 2700 69 0.700 69 0.700 69 0.700 69 0.700 69 0.700 69 0.700 69 0.700 69 0.700 69 0.700 69 0.700 69 0.700 69 Ti 4400 120 1.26

2. [Materials Used in Aircrafts](#page-25-0) $_{\rm 2.1.~Metallic~Alloy}$ $\rm Aluminum~Alloys~[1]$ $\rm Aluminum~Alloys~[1]$

2. [Materials Used in Aircrafts](#page-25-0) $_{\rm 2.1.~Metallic~Alloy}$ $\rm Aluminum~Alloys~[1]$ $\rm Aluminum~Alloys~[1]$

Mechanical Behavior of Steel

2. [Materials Used in Aircrafts](#page-25-0)

3. [Introduction to Material Science](#page-34-0)

3.1. [Metallic Crystal Structure](#page-34-0)

Types of crystal structures in metals [\[13\]](#page-74-3)

3. [Introduction to Material Science](#page-34-0)

3.1. [Metallic Crystal Structure](#page-34-0)

Types of crystal structures in metals [\[13\]](#page-74-3)

Crystal and Grain Structures [\[14\]](#page-74-4). "Polycrystallinity"

 \leftarrow \Box
3. [Introduction to Material Science](#page-34-0)

3.1. [Metallic Crystal Structure](#page-34-0)

Types of crystal structures in metals [\[13\]](#page-74-0)

3.1. [Metallic Crystal Structure](#page-34-0)

3. [Introduction to Material Science](#page-34-0)

- The ability of a metal to deform plastically depends on the ability of its disloications to move.
- Restricting or hindering dislocation motion renders a material harder and stronger.

Figures from [\[2\]](#page-72-0) $C_{\rm c}$ heat-treatment (rate of solidification, etc.)

3.1. [Metallic Crystal Structure](#page-34-0)

3. [Introduction to Material Science](#page-34-0)

- The ability of a metal to deform plastically depends on the ability of its disloications to move.
- Restricting or hindering dislocation motion renders a material harder and stronger.

Material Strengthening

-
- **2** Solid-solution (alloys) imperfections in host lattice \mathbb{I}^{\times}
- ³ Strain hardening

Figures from [\[2\]](#page-72-0) $C_{\rm c}$ heat-treatment (rate of solidification, etc.)

 \leftarrow \Box

$3.1. \; \rm{M}\epsilon \; \rm{strain/}\widetilde{W}$ ork Hardening aka Cold Working

3. Introduction Charles Science Science Science Science Science Associates with plastic deformation

• The "price" that we pay is <u>reduced ductility</u>

- ³ Strain closer. It takes higher stress to *move* bigger/more As plastic work is done, dislocations increase in size/m numerous dislocations. As plastic work is done, dislocations increase in size/move
	- *Annealing* undoes this.

3. [Introduction to Material Science](#page-34-0)

Mechanical properties are a direct consequence of microstructures, which are direct consequences of thermal histories.

3. [Introduction to Material Science](#page-34-0)

Mechanical properties are a direct consequence of microstructures, which are direct consequences of thermal histories.

Balaji, N. N. (AE, IITM) [AS3020*](#page-0-0) August 15, 2024 11 / 20

3. [Introduction to Material Science](#page-34-0)

Mechanical properties are a direct consequence of microstructures, which are direct consequences of thermal histories.

3. [Introduction to Material Science](#page-34-0)

Mechanical properties are a direct consequence of microstructures, which are direct consequences of thermal histories.

Balaji, N. N. (AE, IITM) [AS3020*](#page-0-0) August 15, 2024 11 / 20

3. [Introduction to Material Science](#page-34-0)

Mechanical properties are a direct consequence of microstructures, which are direct consequences of thermal histories.

3. [Introduction to Material Science](#page-34-0)

Mechanical properties are a direct consequence of microstructures, which are direct consequences of thermal histories.

3. [Introduction to Material Science](#page-34-0)

The Lead-Tin System [\[2\]](#page-72-0)

Balaji, N. N. (AE, IITM) [AS3020*](#page-0-0) August 15, 2024 12 / 20

3. [Introduction to Material Science](#page-34-0)

The Lead-Tin System [\[2\]](#page-72-0)

3. [Introduction to Material Science](#page-34-0)

The Lead-Tin System [\[2\]](#page-72-0)

 \leftarrow \Box

3. [Introduction to Material Science](#page-34-0)

The Iron Carbon System [\[2\]](#page-72-0)

3. [Introduction to Material Science](#page-34-0)

The Al-Cu-Mg System (2024 AA) [\[15\]](#page-74-2)

 \leftarrow \Box

3. [Introduction to Material Science](#page-34-0)

3. [Introduction to Material Science](#page-34-0)

- 3. [Introduction to Material Science](#page-34-0)
	- Although a phase may be unstable (eg., Austenite for $T < 727^\circ$ C), phase-change $\begin{bmatrix} 588 \\ 32 \end{bmatrix}$ than $\begin{bmatrix} 56 \\ 160 \end{bmatrix}$ takes time, especially when solid.

 \leftarrow \Box

3.2. The Fe-Fe3C System: Heat Treatment Isothermal transformation

- 3. [Introduction to Material Science](#page-34-0)
	- Although a phase may be unstable (eg., Austenite for $T < 727^\circ$ C), phase-change $\begin{bmatrix} 588 \\ 32 \end{bmatrix}$ than $\begin{bmatrix} 56 \\ 160 \end{bmatrix}$ takes time, especially when solid.
	- When cooled at higher temperatures, we \bullet get thick lamellae \implies coarse pearlite

 \leftarrow \Box \rightarrow

diagram [\[2\]](#page-72-0)

Transformation ande

> $10⁴$ $10⁵$

Transformation
temperature 675°C Heating up and holding Transformation
begins $\begin{array}{c|c|c|c|c|c} \hline 0 & 1 & 10 & 10^2 & \end{array}$

 100

3. [Introduction to Material Science](#page-34-0)

Isothermal transformation

Balaji, N. N. (AE, IITM) AS3020^{*} August 15, 2024 15/20

- 3. [Introduction to Material Science](#page-34-0)
	- Although a phase may be unstable (eg., Austenite for $T < 727^\circ$ C), phase-change $\begin{bmatrix} 588 \\ 32 \end{bmatrix}$ than $\begin{bmatrix} 56 \\ 160 \end{bmatrix}$ takes time, especially when solid.
	- When cooled at higher temperatures, we get thick lamellae \implies coarse pearlite
	- For $T \in (215^{\circ} \text{ C}, 540^{\circ} \text{ C})$, Bainite is formed

3. [Introduction to Material Science](#page-34-0)

Isothermal transformation diagram [\[2\]](#page-72-0)

- 3. [Introduction to Material Science](#page-34-0)
	- Although a phase may be unstable (eg., Austenite for $T < 727^\circ$ C), phase-change $\begin{bmatrix} 588 \\ 32 \end{bmatrix}$ than $\begin{bmatrix} 56 \\ 160 \end{bmatrix}$ takes time, especially when solid.
	- When cooled at higher temperatures, we get thick lamellae \implies coarse pearlite
	- For $T \in (215^{\circ} \text{ C}, 540^{\circ} \text{ C})$, Bainite is formed
	- When quenched to ∼ambient, Martensite
		- "Diffusion-less" transformation
		- Super-saturated carbon solution
		- Non-equilibrium, time-independent

[Introduction to Material Science](#page-34-0) [Phase Diagrams](#page-42-0)

3.2. The Fe-Fe3C System: Heat Treatment Isothermal transformation 3. [Introduction to Material Science](#page-34-0) diagram [\[2\]](#page-72-0) $100₁$ Although a phase may be unstable (eg., Tempering $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ Heating up and holding Summary t_{700} the steel at a \blacksquare ۰ temperature below $10⁵$ $\begin{array}{|c|c|c|c|c|}\hline \text{600} & \text{Martensite} \end{array}$ eutectoid (T ∈ (250◦ $\frac{1}{2}$ $\frac{1}{2}$ c, $\frac{1}{2}$ c, $\frac{1}{2}$ $C,650^{\circ}$ C)). Brinell hardness number Enhances ductility and relieves internal A00 V Tempered martensite stresses (tempered at 371° C) 500 Temperature (°C) $\overline{}$ sol $\overline{}$ R Non-equilibrium, time-independent 400 200 Fine pearlite 300 100 M(start) 50% 200 $M + A$ M(50%) Ω $M(90\%)$ Ω 0.2 0.4 0.6 0.8 1.0 100 Composition (wt% C) $10 \mu m$ $\mathbf{0}$ $\frac{1}{10^5}$ 10^{-1} 10 $10²$ 10^{3} $10⁴$ Balaji, N. N. (AE, IITM) AS3020^{*} Assets August 15, 2024 15/20

3.2. The Fe-Fe3C System: Heat Treatment Isothermal transformation

- 3. [Introduction to Material Science](#page-34-0)
	- Although a phase may be unstable (eg., Austenite for $T < 727^\circ$ C), phase-change $\begin{bmatrix} 588 \\ 32 \end{bmatrix}$ than $\begin{bmatrix} 56 \\ 160 \end{bmatrix}$ takes time, especially when solid.
	- When cooled at higher temperatures, we get thick lamellae \implies coarse pearlite
	- For $T \in (215^{\circ} \text{ C}, 540^{\circ} \text{ C})$, Bainite is formed
	- When quenched to ∼ambient, Martensite
		- "Diffusion-less" transformation
		- Super-saturated carbon solution
		- Non-equilibrium, time-independent
	- The presence of other alloy content changes these curves

3.2. The Fe-Fe3C System: The Heat Treatment Process

3. [Introduction to Material Science](#page-34-0)

A typical heat treatment process involving Austenizing, quenching and tempering

Balaji, N. N. (AE, IITM) [AS3020*](#page-0-0) August 15, 2024 16/20

² [Materials Used in Aircrafts](#page-25-0) • [Metallic Alloys](#page-25-0)

³ [Introduction to Material Science](#page-34-0)

- [Metallic Crystal Structure](#page-34-0)
- [Phase Diagrams](#page-42-0)
References I

- [1] V Rajendran. Materials Science, Tata McGraw-Hill Education. isbn: 978-1-259-05006-0 (cit. on pp. [2–](#page-1-0)[10,](#page-9-0) [17–](#page-16-0)[33\)](#page-32-0).
- [2] W. D. C. Jr and D. G. Rethwisch. Fundamentals of Materials Science and Engineering: An Integrated Approach, John Wiley & Sons, 2012. ISBN: 978-1-118-06160-2 (cit. on pp. [2,](#page-1-0) [11–](#page-10-0)[16,](#page-15-0) [34,](#page-33-0) [38–](#page-37-0)[70\)](#page-69-0).
- [3] T. H. G. Megson. Aircraft Structures for Engineering Students, Elsevier, 2013. isbn: 978-0-08-096905-3 (cit. on pp. [2–](#page-1-0)[7,](#page-6-0) [11–](#page-10-0)[16,](#page-15-0) [26–](#page-25-0)[33\)](#page-32-0).
- [4] N. Connor. What Is Stress-strain Curve Stress-strain Diagram Definition. July 2020. url: [https://material-properties.org/what-is-stress-strain](https://material-properties.org/what-is-stress-strain-curve-stress-strain-diagram-definition/)[curve-stress-strain-diagram-definition/](https://material-properties.org/what-is-stress-strain-curve-stress-strain-diagram-definition/) (visited on 08/07/2024) (cit. on pp. [3–](#page-2-0)[7\)](#page-6-0).
- [5] T. E. Engineer. Understanding Material Strength, Ductility and Toughness. Nov. 2020. url: <https://efficientengineer.com/material-strength-ductility-toughness/> (visited on 08/07/2024) (cit. on pp. [3–](#page-2-0)[7\)](#page-6-0).

4 0 8

References II

- [6] What Is Metal Fatigue? Metal Fatigue Failure Examples. Apr. 2021. URL: <https://yenaengineering.nl/what-is-metal-fatigue-an-overview/> (visited on 08/09/2024) (cit. on pp. [11–](#page-10-0)[16\)](#page-15-0).
- [7] The deHavilland Comet Disaster. July 2019. URL: <https://aerospaceengineeringblog.com/dehavilland-comet-disaster/> (visited on 08/09/2024) (cit. on pp. [11–](#page-10-0)[16\)](#page-15-0).
- [8] DCA21FA085.Aspx. URL: <https://www.ntsb.gov/investigations/Pages/DCA21FA085.aspx> (visited on 08/09/2024) (cit. on pp. [11–](#page-10-0)[16\)](#page-15-0).
- [9] Fatique Physics. URL: <https://fatigue-life.com/fatigue-physics/> (visited on 08/09/2024) (cit. on pp. [11–](#page-10-0)[16\)](#page-15-0).

[10] "3.2.5. Single Crystal Casting and Rapid Solidification Single Crystal Casting". In: 2008. url: [https://www.semanticscholar.org/paper/3.2.5.-Single-Crystal-Casting](https://www.semanticscholar.org/paper/3.2.5.-Single-Crystal-Casting-and-Rapid-%E2%99%A6-Single/bedde761663a0e711f814ea2e2a9eaf4d6bd8fbb)[and-Rapid-%E2%99%A6-Single/bedde761663a0e711f814ea2e2a9eaf4d6bd8fbb](https://www.semanticscholar.org/paper/3.2.5.-Single-Crystal-Casting-and-Rapid-%E2%99%A6-Single/bedde761663a0e711f814ea2e2a9eaf4d6bd8fbb) (visited on 08/10/2024) (cit. on pp. [17–](#page-16-0)[25\)](#page-24-0).

 \leftarrow \Box

References III

- [11] DRDO Develops Single Crystal Blades for Helicopter Engine Application. url: [https:](https://www.pib.gov.in/www.pib.gov.in/Pressreleaseshare.aspx?PRID=1714134) [//www.pib.gov.in/www.pib.gov.in/Pressreleaseshare.aspx?PRID=1714134](https://www.pib.gov.in/www.pib.gov.in/Pressreleaseshare.aspx?PRID=1714134) (visited on 08/10/2024) (cit. on pp. [17–](#page-16-0)[25\)](#page-24-0).
- [12] What Is a Stress-Strain Curve? | Documentation. URL: [https://www.simscale.com/docs/simwiki/fea-finite-element](https://www.simscale.com/docs/simwiki/fea-finite-element-analysis/what-is-a-stress-strain-curve/)[analysis/what-is-a-stress-strain-curve/](https://www.simscale.com/docs/simwiki/fea-finite-element-analysis/what-is-a-stress-strain-curve/) (visited on 08/09/2024) (cit. on pp. [26](#page-25-0)[–33\)](#page-32-0).
- [13] Sparky. Sparky's Sword Science: Introduction to Crystal Structure. Dec. 2013. url: [https://sparkyswordscience.blogspot.com/2013/12/introduction](https://sparkyswordscience.blogspot.com/2013/12/introduction-to-crystal-structure.html)[to-crystal-structure.html](https://sparkyswordscience.blogspot.com/2013/12/introduction-to-crystal-structure.html) (visited on $08/09/2024$) (cit. on pp. [35](#page-34-0)[–37\)](#page-36-0).
- [14] New Technique Provides Detailed Views of Metals' Crystal Structure. July 2016. url: <https://news.mit.edu/2016/metals-crystal-structure-0706> (visited on 08/09/2024) (cit. on pp. [35–](#page-34-0)[42\)](#page-41-0).
- [15] 2024 | Innovation Project Metallographic Atlas. URL: <https://www.ucm.es/metallographicatlas/a2024> (visited on 08/09/2024) (cit. on pp. [53,](#page-52-0) [54\)](#page-53-0).