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Understanding the Stress-Strain Curve

1. Understanding the Stress-Strain Curve

The Uniaxial Tensile Test

Figure from [1]

Figure from [4]

Terminology

1 Proportionality Limit;

2 Elastic Limit;

3 Yield Point;

4 Ultimate Strength;

5 Fracture Point;

6 Elongation at Failure;

Ductile Fracture

Figure from [1]

Toughness, Resilience [5]
Strain Hardening [3]

Classifications

Brittle, Ductile

Non-dissipative: Elastic,
Hyper-elastic

Dissipative: Elastic-perfectly
plastic, Bi-linear
elastoplastic, etc.
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Understanding the Stress-Strain Curve Failure Mechanisms

1.1. Failure Mechanisms: Fracture
1. Understanding the Stress-Strain Curve

“Griffith Theory” of brittle
fracture

Theoretical fracture stress
∼ E

5
− E

30
(steel ∼ E

1000
)

Fracture occurs when
Estrain = Esurface

Crack propagates when
dEstrain

dL
=

dEsurface

dL

Ductile Fracture

Ductile Fracture [1]

Ductile vs Brittle Fracture [1]
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Understanding the Stress-Strain Curve Failure Mechanisms

1.1. Failure Mechanisms: Fatigue
1. Understanding the Stress-Strain Curve

..over 90% of mechanical failures are caused because of metal fatigue [6]...

Fatigue variables [3]

The S-n Diagram [3]

The De Havilland Comet [7] [lecture]

A more recent example (2021 United Airlines
Boeing 777) [8]. [video]

Fatigue Crack Propagation: Beech
Marks

Figure from [9]

S-N Curves for Common Metals [2]
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Understanding the Stress-Strain Curve Failure Mechanisms

1.1. Failure Mechanisms: Creep
1. Understanding the Stress-Strain Curve

Constant stress applied over a
long time

High temperature
phenomenon (>∼ 30− 45% of
melting point)

Examples

Zinc Melts at ∼ 420◦ C
(Tcreep ∼ 145◦ C)

Lead Tcreep ∼ 114◦ C

Titanium Tcreep ∼ 650◦ C

Tin Tcreep ∼ 80◦ C

Steel, AA Tcreep ∼ 400◦ C

Nickel Melts at ∼ 900◦ C

Super-Alloys

Creep curve [1]

Fundamentally related to grain
dislocation movement

Single crystal solutions:
Super-Alloys: Tcreep > 1000◦ C

Single Crystal Casting [10]

DMRL developed this capability in 2021 [11]

Tmelting ↑ =⇒ EY oung ↑, dgrain ↑ ⇐= creep resistance ↑
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Materials Used in Aircrafts Metallic Alloys

2. Materials Used in Aircrafts
2.1. Metallic Alloys

Main Considerations

Strength-to-weight ratio;

Stiffness, Strength;

Toughness, resistance to fast crack
propagation;

Fatigue life;

Thermal behavior (“Superalloys”)

Metallic Alloys/“Solutions”

Fe Alloys C, Ni, Co, Mo, Ti, Mn, Si,
S, P (C ↑, Ductility↓ )

Al Alloys Cu, Mg, Mn, Si, Fe, Zn,
Ni, Ti

Ti Alloys Al, V

Ni Superalloys Cr, Al

Stress strain curve of common metals [12]

Alloy ρ (kg m−3) E (GPa) σu (GPa)

Fe 7800 200 1
Al 2700 69 0.7
Ti 4400 120 1.26

Steel Alloys [1]

Aluminum Alloys [1]

Necessary Reading

Pages 353-359 in Megson [3].
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Materials Used in Aircrafts Metallic Alloys

Mechanical Behavior of Steel
2. Materials Used in Aircrafts

As Carbon Content↑, Strength↑, but Ductility↓ [2]
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Introduction to Material Science Metallic Crystal Structure

3. Introduction to Material Science
3.1. Metallic Crystal Structure

Types of crystal structures in metals [13]
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The ability of a metal to deform
plastically depends on the ability
of its disloications to move.

Restricting or hindering
dislocation motion renders a
material harder and stronger.

Material Strengthening

1 Grain size reduction

2 Solid-solution (alloys)

3 Strain hardening

Figures from [2]

Screw Edge

Dislocation line

Grain Size Reduction

Grain boundaries act as barriers to dislocation movement

Figure from [14]

Hall-Petch Equation:

σy = σ0 + kyd
− 1

2

Controlled by heat-treatment (rate of solidification, etc.)

Solid-Solution Alloying

Substitutional/interstitial impurity addition

Impurities redistribute lattice strains

Figure from [2]

Solutes have a tendency to distribute around
imperfections in host lattice

Greater stress necessary for dislocation movement =⇒
Greater strength and hardness

Strain/Work Hardening aka Cold Working

Increased yield stress with plastic deformation

The “price” that we pay is reduced ductility

Figure from [2]

As plastic work is done, dislocations increase in size/move
closer. It takes higher stress to move bigger/more
numerous dislocations.

Annealing undoes this.
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3.2. Phase Diagrams
3. Introduction to Material Science

Mechanical properties are a direct consequence of microstructures, which are direct
consequences of thermal histories.

What is a phase diagram? [2]
The Copper-Nickel Phase
Diagram [2]

Equilibrium Cooling [2]Non-Equilibrium Cooling [2]

Mechanical Ramifications [2]
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3.2. Phase Diagrams: Eutectic Systems
3. Introduction to Material Science

The Lead-Tin System [2]

Solvus

Solidus

Liquidus

The Lead-Tin System [2]
Some Pictures [2]
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3.2. Phase Diagrams: The Iron-Carbon System [2]
3. Introduction to Material Science
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3.2. The Fe-Fe3C System: Heat Treatment
3. Introduction to Material Science

Although a phase may be unstable (eg.,
Austenite for T < 727◦ C), phase-change
takes time, especially when solid.

When cooled at higher temperatures, we
get thick lamellae =⇒ coarse pearlite

For T ∈ (215◦ C, 540◦ C), Bainite is
formed

When quenched to ∼ambient, Martensite

“Diffusion-less” transformation
Super-saturated carbon solution
Non-equilibrium, time-independent

The presence of other alloy content
changes these curves

Isothermal transformation
diagram [2]

Fine-Pearlite is harder!

Bainite is harder than Pearlite!Martensite is the hardest! Tempering

Heating up and holding
the steel at a
temperature below
eutectoid (T ∈ (250◦

C,650◦ C)).

Enhances ductility
and relieves internal
stresses

Summary
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3.2. The Fe-Fe3C System: The Heat Treatment Process
3. Introduction to Material Science

A typical heat treatment process involving Austenizing, quenching and tempering
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