

AS3020: Aerospace Structures Module 2: Aircraft Materials

Instructor: Nidish Narayanaa Balaji

Dept. of Aerospace Engg., IIT-Madras, Chennai

August 15, 2024

Balaji, N. N. (AE, IITM)

AS3020*

August 15, 2024

Table of Contents

- Understanding the Stress-Strain Curve
 - Failure Mechanisms
 - Materials Used in Aircrafts
 - Metallic Alloys
 - Introduction to Material Science
 - Metallic Crystal Structure
 - Phase Diagrams

Chapters 2, 9, 11 in Rajendran [1]

Chapters 3, 5, 9-11 in Jr and Rethwisch [2]

Chapters 11, 15 in Megson [3]

August 15, 2024

2	1	20
۹.		Þ

Balaji, N. N. (AE, IITM)

AS3020*

1. Understanding the Stress-Strain Curve

1. Understanding the Stress-Strain Curve

Ductile Material Stress-Strain Curve

Balaji, N. N. (AE, IITM)

1. Understanding the Stress-Strain Curve

1. Understanding the Stress-Strain Curve

1. Understanding the Stress-Strain Curve

Ductile Material Stress-Strain Curve

Balaji, N. N. (AE, IITM)

1. Understanding the Stress-Strain Curve

"Griffith Theory" of brittle fracture

- Theoretical fracture stress $\sim \frac{E}{5} \frac{E}{30}$ (steel $\sim \frac{E}{1000}$)
- Fracture occurs when $E_{strain} = E_{surface}$
- Crack propagates when $\frac{dE_{strain}}{dL} = \frac{dE_{surface}}{dL}$

1. Understanding the Stress-Strain Curve

"Griffith Theory" of brittle fracture

- Theoretical fracture stress $\sim \frac{E}{5} \frac{E}{30}$ (steel $\sim \frac{E}{1000}$)
- Fracture occurs when $E_{strain} = E_{surface}$
- Crack propagates when $\frac{dE_{strain}}{dL} = \frac{dE_{surface}}{dL}$

1. Understanding the Stress-Strain Curve

"Griffith Theory" of brittle fracture

- Theoretical fracture stress $\sim \frac{E}{5} \frac{E}{30}$ (steel $\sim \frac{E}{1000}$)
- Fracture occurs when $E_{strain} = E_{surface}$
- Crack propagates when $\frac{dE_{strain}}{dL} = \frac{dE_{surface}}{dL}$

Ductile Fracture

Sr. No	Brittle Fracture	Ductile Fracture
1.	It occurs with no or little plastic deformation.	It occurs with large plastic deformation.
2.	The rate of propagation of the crack is fast.	The rate of propagation of the crack is slow.
3.	It occurs suddenly without any warning.	It occurs slowly.
4.	The fractured surface is flat.	The fractured surface has rough contour and the shape is similar to cup and cone arrangement.
5.	The fractured surface appears shiny.	The fractured surface is dull when viewed with naked eye and the surface has dimpled appearance when viewed with scanning electron microscope.
6.	It occurs where micro crack is larger.	It occurs in localised region where the deformation is larger.

Ductile vs Brittle Fracture [1]

AS3020*

1. Understanding the Stress-Strain Curve

... over 90% of mechanical failures are caused because of metal fatigue [6]...

The De Havilland Comet [7] [lecture]

1. Understanding the Stress-Strain Curve

... over 90% of mechanical failures are caused because of metal fatigue [6]...

A more recent example (2021 United Airlines Boeing 777) [8]. [video]

The De Havilland Comet [7] [lecture]

1. Understanding the Stress-Strain Curve

...
ver 90% of mechanical failures are caused because of metal fati
gue $[6]\ldots$

1. Understanding the Stress-Strain Curve

... over 90% of mechanical failures are caused because of metal fatigue [6]...

The De Havilland Comet [7] [lecture]

1. Understanding the Stress-Strain Curve

... over 90% of mechanical failures are caused because of metal fatigue [6]...

Balaji, N. N. (AE, IITM)

1. Understanding the Stress-Strain Curve

1. Understanding the Stress-Strain Curve

- Constant stress applied over a long time
- High temperature phenomenon (>∼ 30 − 45% of melting point)

Creep curve [1]

1. Understanding the Stress-Strain Curve

- Constant stress applied over a long time
- High temperature phenomenon (>∼ 30 − 45% of melting point)

Examples

Zinc Melts at $\sim 420^{\circ}$ C $(T_{creep} \sim 145^{\circ}$ C)

1. Understanding the Stress-Strain Curve

- Constant stress applied over a long time
- High temperature phenomenon (>∼ 30 − 45% of melting point)

Examples

Zinc Melts at ~ 420° C $(T_{creep} \sim 145^{\circ} \text{ C})$ Lead $T_{creep} \sim 114^{\circ} \text{ C}$

1. Understanding the Stress-Strain Curve

- Constant stress applied over a long time
- High temperature phenomenon (>∼ 30 − 45% of melting point)

Examples

 $\label{eq:creep} \begin{array}{ll} {\bf Zinc} \mbox{ Melts at} \sim 420^{\circ} \mbox{ C} \\ (T_{creep} \sim 145^{\circ} \mbox{ C}) \\ {\bf Lead} \mbox{ } T_{creep} \sim 114^{\circ} \mbox{ C} \\ {\bf Titanium} \mbox{ } T_{creep} \sim 650^{\circ} \mbox{ C} \end{array}$

Creep curve [1]

1. Understanding the Stress-Strain Curve

- Constant stress applied over a long time
- High temperature phenomenon (>∼ 30 − 45% of melting point)

Examples

1. Understanding the Stress-Strain Curve

- Constant stress applied over a long time
- High temperature phenomenon (>∼ 30 − 45% of melting point)

Examples

 $\begin{array}{ll} {\bf Zinc} & {\rm Melts} \mbox{ at } \sim 420^{\circ} \mbox{ C} \\ & (T_{creep} \sim 145^{\circ} \mbox{ C}) \end{array} \\ {\bf Lead} & T_{creep} \sim 114^{\circ} \mbox{ C} \\ {\bf Titanium} & T_{creep} \sim 650^{\circ} \mbox{ C} \\ & {\bf Tin} & T_{creep} \sim 80^{\circ} \mbox{ C} \\ {\bf Steel, AA} & T_{creep} \sim 400^{\circ} \mbox{ C} \end{array}$

1. Understanding the Stress-Strain Curve

- Constant stress applied over a long time
- High temperature phenomenon (>∼ 30 − 45% of melting point)

Examples

1. Understanding the Stress-Strain Curve

- Constant stress applied over a long time
- High temperature phenomenon (>∼ 30 − 45% of melting point)

Examples

- Fundamentally related to grain dislocation movement
- Single crystal solutions: **Super-Alloys**: $T_{creep} > 1000^{\circ}$ C

Balaji, N. N. (AE, IITM)

1. Understanding the Stress-Strain Curve

2.1. Metallic Alloys

Main Considerations

- Strength-to-weight ratio;
- Stiffness, Strength;
- Toughness, resistance to fast crack propagation;
- Fatigue life;
- Thermal behavior ("Superalloys")

2.1. Metallic Allovs

Main Considerations • Strength-to-weight ratio; 551 MPa Aluminium alloy 7075-T6 • Stiffness, Strength; Molybdenum Toughness, resistance to fast crack ۰ Mild Steel propagation; BS EN 10087 11SMn30 • Fatigue life: Stress 275 MPa Strong Grey Cast Iron BS EN1561 EN-GJL-350 • Thermal behavior ("Superalloys") Magnesium alloy Metallic Alloys/"Solutions" Weak Grey Cast Iron BS EN1561 ENG.IL 150 Pure Aluminium-Annealed Fe Alloys C, Ni, Co, Mo, Ti, Mn, Si, S, P (C \uparrow , Ductility \downarrow) 0.004 0.008 0,012 0.016 0.020 0,028 0.024 0.032 Strain Stress strain curve of common metals [12] Balaii, N. N. (AE, IITM) AS3020* August 15, 2024

7/20

2.1. Metallic Alloys

Main Considerations • Strength-to-weight ratio; 551 MPa Aluminium alloy 7075-T6 • Stiffness, Strength; Molybdenum Toughness, resistance to fast crack ۰ Mild Steel propagation; BS EN 10087 11SMn30 • Fatigue life: Stress 275 MPa Strong Grey Cast Iron BS EN1561 EN-GJL-350 • Thermal behavior ("Superalloys") Magnesium alloy Metallic Alloys/"Solutions" Weak Grey Cast Iron BS EN1561 ENGJL 150 Pure Aluminium-Annealed Fe Alloys C, Ni, Co, Mo, Ti, Mn, Si, S, P (C \uparrow , Ductility \downarrow) 0,004 0.008 0,012 0.016 0.020 0,028 Al Alloys Cu, Mg, Mn, Si, Fe, Zn, 0.024 0.032 Strain Ni. Ti Stress strain curve of common metals [12]

2.1. Metallic Alloys

Main Considerations • Strength-to-weight ratio; 551 MPa Aluminium alloy 7075-T6 • Stiffness, Strength; Molybdenum • Toughness, resistance to fast crack Mild Steel propagation; BS EN 10087 11SMn30 • Fatigue life: Stress 275 MPa Strong Grey Cast Iron BS EN1561 EN-GJL-350 • Thermal behavior ("Superalloys") Magnesium alloy Metallic Alloys/"Solutions" Weak Grey Cast Iron BS EN1561 ENGJL 150 Pure Aluminium-Annealed Fe Alloys C, Ni, Co, Mo, Ti, Mn, Si, S, P (C \uparrow , Ductility \downarrow) 0,004 0.008 0,012 0.016 0.020 0,028 Al Alloys Cu, Mg, Mn, Si, Fe, Zn, 0.024 0.032 Strain Ni. Ti Stress strain curve of common metals [12] Ti Alloys Al, V

7/20

2.1. Metallic Alloys

2.1. Metallic Alloys

2. Materials Used in Aircrafts 2.1. Metallic Alloy Aluminum Alloys [1]

	C. M.	411	Commercition	Duran anti-re	A	
Main Consid	1.	Duralumin	Al = 94% Cu = 4%	High tensile strength and high electrical conductance	Sheets, tubes, cables, forgings, rivets, nuts,	
• Strength			Mg, Mn, Si, Fe 0.5% each	Soft enough for a workable period after it has been quenched.	bolts, etc. Airplanes and	
• Stiffness,				Melting point = 923 K Brinell hardness;	nonmagnetic instruments like	Aluminium alloy 7075-T6
• Toughne	2	V-Alloy	A1 = 92 5%	Annealed = 60 Age hardened = 100 Strength at 573 K is better than	surgical and orthapaedic.	
propagat	2.	1-Anoy	Cu = 4% Ni = 2%	aluminium. High strength and hardness at high	piston cylinder heads, crank cases of internal	$\frac{1}{0.7}$
• Fatigue l			Mg = 1.5%	Easily cast and hot worked.	combustion engines and die casting, pump rods, etc.	1.26
• Thermal	3.	Hindalium	Cu = 4.5% Si = 0.8%	Strong and hard. Cannot be easily scratched.	House bold equipments like	nesium alloy
			Mn = 0.8% Mg = 0.5%	Can take fine finish. Does not absorb much heat and thus	pressure vessels,	
Metallic All			Al = 93.4%	saves fuel while cooking. Can be easily cleaned. Do not react with the food acids	chemical handling storages.	Cast Iron 61 ENGJL 150
Fe Alloys				Low cost (about one-third of stainless steel).		ure Aluminium-Annealed
Al Alloys	4.	Magnelium	$\begin{array}{l} Al = 85 \ to \ 95\% \\ Cu = 0 \ to \ 25\% \\ Mg = 1 \ to \ 5.5\% \\ Ni = 0 \ to \ 1.2\% \\ Sn = 0 \ to \ 3\% \\ Fe = 0 \ to \ 0.9\% \end{array}$	Light weight and high tensile strength annealed state : 200 MNm ⁻² Cold worked state : 280 MNm ⁻² Elongation	Gearbox housings, vehicle door handles, luggage racks, coffee- grinder parts and ornamental fixtures.	1 1 1 1 1016 0.020 0.024 0.028 0.032 Strain
Ti Alloys			Mn = 0 to 0.03% Si = 0.2 to 0.6%	annealed state : 30% Cold worked state : 7% Alloy is brittle, Castability poor,		common metals [12]
Ni Superalle				Machinability good and easily welable.		

Balaji, N. N. (AE, IITM)

AS3020*

August 15, 2024

7 / 20

2. Materials Used in Aircrafts 2.1. Metallic Alloy Aluminum Alloys [1]

	Sr .No	Alloy	Composition	Properties	Applications	
Main Consid	1.	Duralumin	A1 = 94% Cu = 4%	High tensile strength and high electrical conductance	Sheets, tubes, cables, forgings, rivets, nuts,	
• Strength			Mg, Mn, Si, Fe 0.5% each	Soft enough for a workable period after it has been quenched.	bolts, etc. Airplanes and other machines	
• Stiffness,				Melting point = 923 K Brinell hardness;	nonmagnetic instruments like	Aluminium alloy 7075-T6
• Toughne				Annealed = 60 Age hardened = 100	surgical and orthapaedic.	
propagat	2.	Y-Alloy	Al = 92.5% Cu = 4% Ni = 2%	Strength at 573 K is better than aluminium. High strength and hardness at high	Components like piston cylinder heads, crank cases of internal	$\frac{\sigma_u \text{ (GPa)}}{1}$
• Fatigue l			Mg = 1.5% Necess	sary Reading	combustion engines	1.26
• Thermal	3.	Hindalium	^c ^s Pages 353-359 in Megson [3].			nesium alloy
			$M_{a} = 0.5\%$	Doos not absorb much hast and thus	pipes food and	icolon and y
Metallic All			A1 = 93.4%	saves fuel while cooking. Can be easily cleaned. Do not react with the food acids	chemical handling storages.	Cast Iron 61 ENGJL 150
Fe Alloys				Low cost (about one-third of stainless steel).		ure Aluminium-Annealed
Al Alloys	4.	Magnelium	$\begin{array}{l} Al = 85 \ to \ 95\% \\ Cu = 0 \ to \ 25\% \\ Mg = 1 \ to \ 5.5\% \\ Ni = 0 \ to \ 1.2\% \\ Sn = 0 \ to \ 3\% \\ Fe = 0 \ to \ 0.9\% \end{array}$	Light weight and high tensile strength annealed state : 200 MNm $^{-2}$ Cold worked state : 280 MNm $^{-2}$ Elongation	Gearbox housings, vehicle door handles, luggage racks, coffee- grinder parts and ornamental fixtures.	0.016 0.020 0.024 0.028 0.032 Strain
Ti Alloys			Mn = 0 to $0.03%Si = 0.2 to 0.6\%$	annealed state : 30% Cold worked state : 7% Alloy is brittle, Castability poor, Manhiability good and agaily		common metals [12]
Ni Superalle				welable.		↓ ↓
Balaii, N. N.	(AE.	UTM)		AS3020*		August 15, 2024 7 / 20

Mechanical Behavior of Steel

2. Materials Used in Aircrafts

Balaji, N. N. (AE, IITM)

AS3020*

August 15, 2024

3. Introduction to Material Science

3.1. Metallic Crystal Structure

Types of crystal structures in metals [13]

3. Introduction to Material Science

3.1. Metallic Crystal Structure

Types of crystal structures in metals [13]

 $\mathbf{R} = (\theta, \hat{\boldsymbol{o}})$

0.5 cm

001
3. Introduction to Material Science

3.1. Metallic Crystal Structure

Types of crystal structures in metals [13]

3.1. Metallic Crystal Structure

- The ability of a metal to deform plastically depends on the ability of its disloications to *move*.
- Restricting or hindering dislocation motion renders a material harder and stronger.

Figures from [2]

3.1. Metallic Crystal Structure

3. Introduction to Material Science

- The ability of a metal to deform plastically depends on the ability of its disloications to *move*.
- Restricting or hindering dislocation motion renders a material harder and stronger.

Material Strengthening

- Grain size reduction
- Solid-solution (alloys)
- Strain hardening

Figures from [2]

3.1. Me Strain/Work Hardening aka Cold Working

3. Introduction

• Increased yield stress with plastic deformation

• The "price" that we pay is reduced ductility

- Strain
- As plastic work is done, dislocations increase in size/move closer. It takes higher stress to *move* bigger/more numerous dislocations.
 - Annealing undoes this.

3. Introduction to Material Science

Mechanical properties are a direct consequence of microstructures, which are direct consequences of thermal histories.

3. Introduction to Material Science

Mechanical properties are a direct consequence of microstructures, which are direct consequences of thermal histories.

Balaji, N. N. (AE, IITM)

3. Introduction to Material Science

Mechanical properties are a direct consequence of microstructures, which are direct consequences of thermal histories.

3. Introduction to Material Science

Mechanical properties are a direct consequence of microstructures, which are direct consequences of thermal histories.

Balaji, N. N. (AE, IITM)

3. Introduction to Material Science

Mechanical properties are a direct consequence of microstructures, which are direct consequences of thermal histories.

3. Introduction to Material Science

Mechanical properties are a direct consequence of microstructures, which are direct consequences of thermal histories.

3. Introduction to Material Science

Balaji, N. N. (AE, IITM)

3. Introduction to Material Science

The Lead-Tin System [2]

12/20

3. Introduction to Material Science

The Lead-Tin System [2]

12/20

3. Introduction to Material Science

The Lead-Tin System [2]

3. Introduction to Material Science

The Iron Carbon System [2]

3. Introduction to Material Science

The Al-Cu-Mg System (2024 AA) [15]

3. Introduction to Material Science

Balaji, N. N. (AE, IITM)

- 3. Introduction to Material Science
 - Although a phase may be unstable (eg., Austenite for $T < 727^{\circ}$ C), phase-change takes time, especially when solid.

- 3. Introduction to Material Science
 - Although a phase may be unstable (eg., Austenite for $T < 727^{\circ}$ C), phase-change takes time, especially when solid.
 - When cooled at higher temperatures, we get **thick lamellae** \implies coarse pearlite

diagram [2]

10 µm

- 3. Introduction to Material Science
 - Although a phase may be unstable (eg., Austenite for $T < 727^{\circ}$ C), phase-change takes time, especially when solid.
 - When cooled at higher temperatures, we get thick lamellae \implies coarse pearlite
 - For $T \in (215^{\circ} \text{ C}, 540^{\circ} \text{ C})$, <u>Bainite</u> is formed

3. Introduction to Material Science

Isothermal transformation diagram [2]

- 3. Introduction to Material Science
 - Although a phase may be unstable (eg., Austenite for $T < 727^{\circ}$ C), phase-change takes time, especially when solid.
 - When cooled at higher temperatures, we get thick lamellae \implies coarse pearlite
 - For $T \in (215^{\circ} \text{ C}, 540^{\circ} \text{ C})$, <u>Bainite</u> is formed
 - When quenched to \sim ambient, <u>Martensite</u>
 - "Diffusion-less" transformation
 - Super-saturated carbon solution
 - Non-equilibrium, time-independent

AS3020*

Balaji, N. N. (AE, IITM)

3. Introduction to Material Science

Isothermal transformation diagram [2]

Balaji, N. N. (AE, IITM)

AS3020*

AS3020*

3.2. The Fe-Fe₃C System: Heat Treatment

- 3. Introduction to Material Science
 - Although a phase may be unstable (eg., Austenite for $T < 727^{\circ}$ C), phase-change takes time, especially when solid.
 - When cooled at higher temperatures, we get thick lamellae \implies coarse pearlite
 - For $T \in (215^{\circ} \text{ C}, 540^{\circ} \text{ C})$, <u>Bainite</u> is formed
 - \bullet When quenched to $\sim {\rm ambient}, \, \underline{{\rm Martensite}}$
 - "Diffusion-less" transformation
 - Super-saturated carbon solution
 - Non-equilibrium, time-independent
 - The presence of other alloy content changes these curves

3.2. The Fe-Fe₃C System: The Heat Treatment Process

3. Introduction to Material Science

A typical heat treatment process involving Austenizing, quenching and tempering

Balaji, N. N. (AE, IITM)

Understanding the Stress-Strain Curve
Failure Mechanisms

Materials Used in AircraftsMetallic Alloys

Introduction to Material Science
Metallic Crystal Structure

• Phase Diagrams
References I

- V Rajendran. Materials Science, Tata McGraw-Hill Education. ISBN: 978-1-259-05006-0 (cit. on pp. 2–10, 17–33).
- [2] W. D. C. Jr and D. G. Rethwisch. Fundamentals of Materials Science and Engineering: An Integrated Approach, John Wiley & Sons, 2012. ISBN: 978-1-118-06160-2 (cit. on pp. 2, 11–16, 34, 38–70).
- [3] T. H. G. Megson. Aircraft Structures for Engineering Students, Elsevier, 2013. ISBN: 978-0-08-096905-3 (cit. on pp. 2–7, 11–16, 26–33).
- [4] N. Connor. What Is Stress-strain Curve Stress-strain Diagram Definition. July 2020. URL: https://material-properties.org/what-is-stress-straincurve-stress-strain-diagram-definition/ (visited on 08/07/2024) (cit. on pp. 3-7).
- T. E. Engineer. Understanding Material Strength, Ductility and Toughness. Nov. 2020. URL: https://efficientengineer.com/material-strength-ductility-toughness/ (visited on 08/07/2024) (cit. on pp. 3-7).

References II

- [6] What Is Metal Fatigue? Metal Fatigue Failure Examples. Apr. 2021. URL: https://yenaengineering.nl/what-is-metal-fatigue-an-overview/ (visited on 08/09/2024) (cit. on pp. 11-16).
- [7] The deHavilland Comet Disaster. July 2019. URL: https://aerospaceengineeringblog.com/dehavilland-comet-disaster/ (visited on 08/09/2024) (cit. on pp. 11-16).
- [8] DCA21FA085.Aspx. URL: https://www.ntsb.gov/investigations/Pages/DCA21FA085.aspx (visited on 08/09/2024) (cit. on pp. 11-16).
- [9] Fatigue Physics. URL: https://fatigue-life.com/fatigue-physics/ (visited on 08/09/2024) (cit. on pp. 11-16).

[10] "3.2.5. Single Crystal Casting and Rapid Solidification Single Crystal Casting". In: 2008. URL: https://www.semanticscholar.org/paper/3.2.5.-Single-Crystal-Castingand-Rapid-%E2%99%A6-Single/bedde761663a0e711f814ea2e2a9eaf4d6bd8fbb (visited on 08/10/2024) (cit. on pp. 17-25).

References III

- [11] DRDO Develops Single Crystal Blades for Helicopter Engine Application. URL: https: //www.pib.gov.in/www.pib.gov.in/Pressreleaseshare.aspx?PRID=1714134 (visited on 08/10/2024) (cit. on pp. 17-25).
- [12] What Is a Stress-Strain Curve? | Documentation. URL: https://www.simscale.com/docs/simwiki/fea-finite-elementanalysis/what-is-a-stress-strain-curve/ (visited on 08/09/2024) (cit. on pp. 26-33).
- Sparky. Sparky's Sword Science: Introduction to Crystal Structure. Dec. 2013. URL: https://sparkyswordscience.blogspot.com/2013/12/introduction-to-crystal-structure.html (visited on 08/09/2024) (cit. on pp. 35-37).
- [14] New Technique Provides Detailed Views of Metals' Crystal Structure. July 2016. URL: https://news.mit.edu/2016/metals-crystal-structure-0706 (visited on 08/09/2024) (cit. on pp. 35-42).
- [15] 2024 | Innovation Project Metallographic Atlas. URL: https://www.ucm.es/metallographicatlas/a2024 (visited on 08/09/2024) (cit. on pp. 53, 54).