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Introduction

In this module we seek to gain an
executive understanding of,

the evolution of the structural
design of aircrafts;

the balance of the different loads
on an aircraft;

joining processes used in aircrafts.

Why do aircrafts look the way they
do?

RV-14 Airframe [3]

Textbook References

Chapters 1-5,7,9 in J. Cutler. Understanding Aircraft Structures, Wiley, 2005.
isbn: 978-1-4051-2032-6

Chapters 12-15 in T. H. G. Megson. Aircraft Structures for Engineering
Students, Elsevier, 2013. isbn: 978-0-08-096905-3.
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Historical Overview Wired Brace Construction

1.1. Wired Brace Construction: The Wright Flyer
Historical Overview

The Wright Flyer, 1903 [4]

The bi-wing construction for
structural integrity

Light-weight wired-brace
construction

The warping wing [5].

Wired brace construction [6]
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Historical Overview Braced Fuselage Design

1.2. Braced Fuselage Design
Historical Overview

The wired-braced, box-strut
design approach persisted for a
couple decades or so (∼1930s)

Wooden struts/longerons replaced
by steel-tubes in this time

Frame of the 1917 Sopwith Camel [7]

Warren trusses replaced wire
braces (“Warren-girder” design)

Hawker Hurricane frame, 1935 [1]

Warren Truss [8]

Patented truss (∼1840s) formed by
equilateral triangles

Braced Fuselage Design

The Truss frame carries the load,
and the skin (sometimes even
fabric), just maintains
aerodynamics.
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Historical Overview Semi-Monocoque Design

1.3. Semi-Monocoque Design
Historical Overview

Ships have always had to
maximize volume while
maintaining a shape

Bent wooden frames used to
maintain the hull shape

A wooden ship hull [9]

The skin is now load-bearing:
stressed skin construction,
aka, semi-monocoque
construction

Since skins also carry load, the
structure is at a generally lower
stress level

Douglas DC-3 (1933) [10]
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Historical Overview Semi-Monocoque Design

1.3. Semi-Monocoque Design
Historical Overview

Thin-walled structures can carry
tension much better than
compression

Buckling becomes a major issue
under compression

Thin-walled cylinder [11]

The common-sensical thing to do
is to split up the skin into
multiple smaller elements

We do this by means of
ribs/frames holding the
structure perpendicular to section
and stringers, longitudinally.

Shear buckling [12]

Insides of a fuselage [2]Stringers

Frames/Rings
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Historical Overview Semi-Monocoque Design

1.3. Semi-Monocoque Design

The Fuselage

Structural members in a fuselage [13]

The Wing

Structural members in a wing-box [14]

The basic premises of the designs are identical, but loads on the
members vary

Balaji, N. N. (AE, IITM) AS3020* August 7, 2024 8 / 25



Historical Overview Semi-Monocoque Design

1.3. Semi-Monocoque Design
Historical Overview

Through experience, the industry
has converged onto the following
numbers:

Frame-spacing: ∼ 500 mm
Frame-sections: ∼ 75− 150 mm

A few more considerations:

The skins need to be fastened
onto the frames
Moving to more and more
lightweight structures, thin walls
are very prone to
Sheet-buckling/wrinkling
(even “thermal” buckling)

Douglas DC-3 (1933) [10]

Sandwich structures

Figure from [1]

Composite Materials

Figure from [2]
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Historical Overview Semi-Monocoque Design

1. Historical Overview

Design Overview

Figure from [3]

The “converged” aircraft

Figure from [1]

Parts of an aircraft

Figure from [2]

“Wings”: Mainplane,
tailplane

High lift devices: flaps,
ailerons, elevators

High Lift Devices

Figure from [1]

Dimensions of an Aircraft

Figure from [1]
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Aircraft Loads Loads in Steady Level Flight

2. Aircraft Loads
2.1. Loads in Steady Level Flight

The fuselage is being lifted up by
the wing as the flight moves
forward

The load distributions are
non-trivially related to flying
conditions as well as design choices

Load at steady level flight [1] Lift and inertial load distributions [15]Balaji, N. N. (AE, IITM) AS3020* August 7, 2024 11 / 25



Aircraft Loads Loads During Maneuvers

2.2. Loads During Maneuvers
2. Aircraft Loads

A maneuver is any disturbance to steady-level flight.
Note: Even increasing acceleration in level flight is a maneuver.

Steady Pull-out

Figure from [2]

Banking

Figure from [2]
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Aircraft Loads Loads During Maneuvers

2.2. Loads During Maneuvers: “Pure Roll” Banking
2. Aircraft Loads

Let us consider the pure roll condition for banking the aircraft.

Figures from [2, 16]
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Aircraft Loads Load-based Design

2.3. Load-based Design
2. Aircraft Loads

Content from sec. 5.6.4 in [1].

Loads on a Box-Structure

Design modifications due to shear-load V

Flat member PQRS
introduced to maintain
section-integrity;

Additional material added
at the spar-webs (corners)
to support shearing;

“Corner material” increased
at fixture to support
moments.

Design modifications due to shear H and Torsion T

Longitudinal members
added to prevent torsional
collapse;

Horizontal members added
to support shear load H;

In a real wing these will be,

Face PQRS: Wing
Ribs/Fuselage
Frames
Longitudinal members:
Stringers
Face QBCR: Wing
Spars
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Aircraft Loads Flight Load Envelopes

2.4. Flight Load Envelopes
2. Aircraft Loads

The aircraft experiences heightened
inertial loads during maneuvers

It has therefore become customary to
specify max. permissible loads in “g’s”,
i.e., in acceleration units

Example

In [1], it is mentioned that EASA CS-25
specifies the following for large airplanes:

9g forwards;

1.5g upwards;

6g downwards;

3g rearwards.

Loads During Steady Pull-Out
Maneuver [2]
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Aircraft Loads Flight Load Envelopes

2.4. Flight Load Envelopes: The V-n Diagram
2. Aircraft Loads

Flight Envelope from [2]

At any given
flight speed,
the envelope
specifies the

load that the
flight must
be able to
withstand

The wings
can’t carry

the aircraft to
the left of here

The logic for
this cut-off is
that there’s an
upper limit to
how quickly
you maneuver

Balaji, N. N. (AE, IITM) AS3020* August 7, 2024 16 / 25



Aircraft Loads Flight Load Envelopes

2.4. Flight Load Envelopes: The V-n Diagram
2. Aircraft Loads

Flight Envelope from [2]

At any given
flight speed,
the envelope
specifies the

load that the
flight must
be able to
withstand

The wings
can’t carry

the aircraft to
the left of here

The logic for
this cut-off is
that there’s an
upper limit to
how quickly
you maneuver

Balaji, N. N. (AE, IITM) AS3020* August 7, 2024 16 / 25



Aircraft Loads Flight Load Envelopes

2.4. Flight Load Envelopes: The V-n Diagram
2. Aircraft Loads

Flight Envelope from [2]

At any given
flight speed,
the envelope
specifies the

load that the
flight must
be able to
withstand

The wings
can’t carry

the aircraft to
the left of here

The logic for
this cut-off is
that there’s an
upper limit to
how quickly
you maneuver

Balaji, N. N. (AE, IITM) AS3020* August 7, 2024 16 / 25



Joining Technology Welding

3. Joining Technology
3.1. Welding

Welding is an “easy road out” for
a designer but quite non-ideal in
practice

Requires high skill;
Difficult to inspect for defects;
Poor fatigue strength.

Extensively used in ship-hulls but
not so much in aircraft skin

Listing out reasons will be part
of your first assignment! ;)

The skins of most large ships are welded

Figure from [17]
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Joining Technology Bolted and Riveted Joints

3.2. Bolted and Riveted Joints
3. Joining Technology

Bolts, screws, rivets

Riveting process:

Pop riveting:
https://www.youtube.com/

watch?v=u9EnPAgo8p4

Hot riveting:
https://www.youtube.com/

watch?v=5aTL0Jvrf4I

Attaching thin plates to the
frames, riveting/bolting (fastening
in general) is the most appropriate

An important consideration for
fastening in general is
maintenance

Types of fasteners [1]
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Joining Technology Bolted and Riveted Joints

3.2. Bolted and Riveted Joints
3. Joining Technology

Bolts, screws, rivets

Riveting process:

Pop riveting:
https://www.youtube.com/

watch?v=u9EnPAgo8p4

Hot riveting:
https://www.youtube.com/

watch?v=5aTL0Jvrf4I

Attaching thin plates to the
frames, riveting/bolting (fastening
in general) is the most appropriate

An important consideration for
fastening in general is
maintenance

Detail on skin attachment to frame [1]
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Joining Technology Strength of a bolted joint

3.3. Strength of a bolted joint
3. Joining Technology

Considering the strength of a
loaded jointed system, we have to
compute the loads on each
fastener individually and
check for failure

Bolt-Load Distribution

S =
Pe∑
r2

r

Eccentrically loaded joint [2]
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Tutorial Session

4. Tutorial Session
Joint Strength Computation

Let us first consider the simple lap
joint in the right

“Modes” of failure

Modes of joint failures [18]

Simple Lap Joint [19]

Some Initial Notes

Tensile tear-out (g) avoided
by spacing rivets at least
1 1
2
× d away from edges.

Bending failure (b) can be
quite complicated so we
won’t consider this.
Factors of safety help
here.

(c) Rivet Shear

Pb

(πd2)/4
= τ1

(d) Member-tensile failure

Pb

t(b− d)
= σult

(d) Member-tensile failure

Pb

t(b− d)
= σult

(e) Bearing-pressure failure

Pb

td
= pb

(f) Member-shear failure

Pb

2at
= τ2
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Tutorial Session

4. Tutorial Session
Joint Strength Computation

Example 1 [18] Example 2 [18]
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