

AS2070: Aerospace Structural Mechanics Module 3: Introduction to Fatigue and Failure

Instructor: Nidish Narayanaa Balaji

Department of Aerospace Engineering, IIT Madras

January 24, 2025

Balaji, N. N. (AE, IITM)

AS2070

January 24, 2025

Table of Contents

Introduction

- Structure of Materials
- Understanding the Stress-Strain Curve
- Failure Mechanisms • Fracture • Fatigue
- Energy Release Rate
- Linear Elastic Fracture Me
- Modes of Fracture

Chapter 3 in Jr and Rethwisch (2012).

ELEMENTS OF FRACTURE MECHANICS

Chapters 1-3 in Kumar (2009).

Chapter 15 in Megson (2013)

1.1. Structure of Materials

Introduction

Types of crystal structures in metals Sparky (2013)

1.1. Structure of Materials

Introduction

Types of crystal structures in metals Sparky (2013)

Crystal and Grain Structures New Technique Provides Detailed Views of Metals' Crystal Structure (2016). "Polycrystallinity"

1.1. Structure of Materials

1.2. Understanding the Stress-Strain Curve

1.2. Understanding the Stress-Strain Curve

1. Introduction

"Griffith Theory" of brittle fracture

- Theoretical fracture stress $\sim \frac{E}{5} \frac{E}{30}$ (steel $\sim \frac{E}{1000}$)
- Fracture occurs when $E_{strain} = E_{surface}$
- Crack propagates when $\frac{dE_{strain}}{dL} = \frac{dE_{surface}}{dL}$

1. Introduction

"Griffith Theory" of brittle fracture

- Theoretical fracture stress $\sim \frac{E}{5} \frac{E}{30}$ (steel $\sim \frac{E}{1000}$)
- Fracture occurs when $E_{strain} = E_{surface}$
- Crack propagates when $\frac{dE_{strain}}{dL} = \frac{dE_{surface}}{dL}$

Ductile Fracture

1. Introduction

"Griffith Theory" of brittle fracture

- Theoretical fracture stress $\sim \frac{E}{5} \frac{E}{30}$ (steel $\sim \frac{E}{1000}$)
- Fracture occurs when $E_{strain} = E_{surface}$
- Crack propagates when $\frac{dE_{strain}}{dL} = \frac{dE_{surface}}{dL}$

Ductile Fracture

Ductile Fracture Rajendran 2011

Sr. No	Brittle Fracture	Ductile Fracture
1.	It occurs with no or little plastic deformation.	It occurs with large plastic deformation.
2.	The rate of propagation of the crack is fast.	The rate of propagation of the crack is slow.
3.	It occurs suddenly without any warning.	It occurs slowly.
4.	The fractured surface is flat.	The fractured surface has rough contour and the shape is similar to cup and cone arrangement.
5.	The fractured surface appears shiny.	The fractured surface is dull when viewed with naked eye and the surface has dimpled appearance when viewed with scanning electron microscope.
6.	It occurs where micro crack is larger.	It occurs in localised region where the deformation is larger.

Ductile vs Brittle Fracture Rajendran 2011

AS2070

1. Introduction

...over 90% of mechanical failures are caused because of metal fatigue *What Is Metal Fatigue?* 2021...

The De Havilland Comet The deHavilland Comet Disaster 2019 [lecture]

1. Introduction

...over 90% of mechanical failures are caused because of metal fatigue *What Is Metal Fatigue?* 2021...

A more recent example (2021 United Airlines Boeing 777) DCA21FA085.Aspx n.d. [video] The De Havilland Comet The deHavilland Comet Disaster 2019 [lecture]

1. Introduction

...over 90% of mechanical failures are caused because of metal fatigue *What Is Metal Fatigue?* 2021...

1. Introduction

...over 90% of mechanical failures are caused because of metal fatigue *What Is Metal Fatigue?* 2021...

The De Havilland Comet The deHavilland Comet Disaster 2019 [lecture]

6/10

1. Introduction

...over 90% of mechanical failures are caused because of metal fatigue *What Is Metal Fatigue?* 2021...

Balaji, N. N. (AE, IITM)

1. Introduction

Balaji, N. N. (AE, IITM)

January 24, 2025

Introduction

Simplistic picture of the introduction of a crack in a stretched specimen(Figure from sec 2.5 in Kumar 2009)

- Because of the crack, we assume $\sigma \approx 0$ in the triangles.
- Corresponding energy loss:

$$E_R = V_\Delta \times \left(\frac{\sigma^2}{2E}\right) = \frac{2a^2\lambda t\sigma^2}{E}.$$

Introduction

Simplistic picture of the introduction of a crack in a stretched specimen(Figure from sec 2.5 in Kumar 2009)

- Because of the crack, we assume $\sigma \approx 0$ in the triangles.
- Corresponding energy loss:

$$E_R = V_\Delta \times \left(\frac{\sigma^2}{2E}\right) = \frac{2a^2\lambda t\sigma^2}{E}.$$

Balaji, N. N. (AE, IITM)

- For thin plates, $\lambda = \frac{\pi}{2}$. So, $E_R = \frac{\pi a^2 t \sigma^2}{E}$.
- The "creation" of a surface takes energy. We write this as,

 $E_S = 2(2at)\gamma = 4at\gamma.$

Introduction

(Ref: Sec. 8.4.2 in Sadd 2009)

Consider the following two cases. **Question**: Where will the point of peak stress occur? And which will have higher maximum stress?

Introduction

(Ref: Sec. 8.4.2 in Sadd 2009)

Consider the following two cases. **Question**: Where will the point of peak stress occur? And which will have higher maximum stress?

Introduction

(Ref: Sec. 8.4.2 in Sadd 2009)

Consider the following two cases. **Question**: Where will the point of peak stress occur? And which will have higher maximum stress?

Balaji, N. N. (AE, IITM)

January 24, 2025

Introduction

(Ref: Sec. 8.4.2 in Sadd 2009)

Consider the following two cases. **Question**: Where will the point of peak stress occur? And which will have higher maximum stress?

1.6. Modes of Fracture

Introduction

Balaji, N. N. (AE, IITM)

References I

- W. D. C. Jr and D. G. Rethwisch. Fundamentals of Materials Science and Engineering: An Integrated Approach, John Wiley & Sons, 2012. ISBN: 978-1-118-06160-2 (cit. on pp. 2, 11-17).
- [2] P. Kumar. Elements of Fracture Mechanics, 1st Edition. McGraw-Hill Education, 2009. ISBN: 978-0-07-065696-3. URL: https://www.accessengineeringlibrary.com/content/book/9780070656963 (visited on 12/15/2024) (cit. on pp. 2, 18-21, 26).
- T. H. G. Megson. Aircraft Structures for Engineering Students, Elsevier, 2013. ISBN: 978-0-08-096905-3 (cit. on pp. 2, 11-17).
- [4] Sparky. Sparky's Sword Science: Introduction to Crystal Structure. Dec. 2013. URL: https://sparkyswordscience.blogspot.com/2013/12/introduction-to-crystal-structure.html (visited on 08/09/2024) (cit. on pp. 3-5).
- [5] New Technique Provides Detailed Views of Metals' Crystal Structure. July 2016. URL: https://news.mit.edu/2016/metals-crystal-structure-0706 (visited on 08/09/2024) (cit. on pp. 3-5).
- [6] V Rajendran. Materials Science, Tata McGraw-Hill Education, 2011. ISBN: 978-1-259-05006-0 (cit. on pp. 6-10).
- [7] N. Connor. What Is Stress-strain Curve Stress-strain Diagram Definition. July 2020. URL: https://material-properties.org/what-is-stress-strain-curve-stress-strain-diagram-definition/ (visited on 08/07/2024) (cit. on pp. 6, 7).
- [8] What Is Metal Fatigue? Metal Fatigue Failure Examples. Apr. 2021. URL: https://yenaengineering.nl/what-is-metal-fatigue-an-overview/ (visited on 08/09/2024) (cit. on pp. 11-17).
- The deHavilland Comet Disaster. July 2019. URL: https://aerospaceengineeringblog.com/dehavilland-comet-disaster/ (visited on 08/09/2024) (cit. on pp. 11-17).
- [10] DCA21FA085.Aspx. URL: https://www.ntsb.gov/investigations/Pages/DCA21FA085.aspx (visited on 08/09/2024) (cit. on pp. 11-17).
- [11] Fatigue Physics. URL: https://fatigue-life.com/fatigue-physics/ (visited on 08/09/2024) (cit. on pp. 11-17).
- [12] M. H. Sadd. Elasticity: Theory, Applications, and Numerics, 2nd ed. Amsterdam; Boston: Elsevier/AP, 2009. ISBN: 978-0-12-374446-3 (cit. on pp. 22-25).