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Introduction

1. Introduction
Structural Stability: What?

Consider supporting a mass M on
the top of a rod.

Collapse is imminent on at least
one!

How can we mathematically
describe this?

Two Extreme Cases:
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Introduction

1. Introduction
Structural Stability: Perturbation Behavior

Perturbation Behavior

Key insight we will invoke is behavior under perturbation:

How would the system respond if I slightly perturb it?

Mathematically, by perturbation we mean any
change to the system’s configuration.

In this case, this could be different deflection
shapes.

Question (Slightly more specific)

What will the system tend to do if an arbitrarily small
magnitude of perturbation is introduced?

Will it tend to return to its original
configuration?

Will it blow up?

Will it do something else entirely?
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Introduction Elastic Stability

1.1. Elastic Stability
Introduction

What do these words mean?

Elastic → Reversible → Conservative

Conservative System

The restoring force of a
conservative system can be written
using a gradient of a potential
function:

F = −∇U.

Equilibrium

System achieves equilibrium when
F = 0, i.e.,

∇U = 0.

1D Example

Consider a system whose configuration
is expressed by the scalar x and the
potential is as shown.

These are
the equilibriaRemember,

F = −dU
dx .

Stable

Unstable
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Introduction Bifurcation

1.2. Bifurcation
Introduction

A system is said to have undergone a bifurcation if its state of stability has
changed due to the variation of some parameter.

Example: A pinned-pinned beam undergoing axial loading.
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Introduction Modes of Stability Loss

1.3. Modes of Stability Loss
Introduction

The configuration that a system can assume as it undergoes a bifurcation is the
mode of the stability loss.

Example: Thin plate (pinned) under axial
loading

Example: Thin plate (pinned) under shear
loading
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Euler Buckling of Columns Equilibrium Equations

2.1. Equilibrium Equations
Euler Buckling of Columns

( )

Equilibrium Equations

N ′ − (V β)′ = 0

V ′ +Nβ′ +N ′β = 0

M ′ + V = 0

Assumption: V β ≪ N

N ′ = 0

V ′ +Nβ′ = 0

M ′′ −Nβ′ = 0
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Euler Buckling of Columns Kinematic Description

2.2. Kinematic Description
Euler Buckling of Columns

( )
Displacement, Strain Field

ux = u(x)− yv′(x)

uy = v(x)

εxx = u′(x)− yv′′(x)

Assumptions (E.B.T.)
Plane sections remain planar

u, v → u(x), v(x)

Neutral Axis remains ⊥ to sections
β ≡ θ = v′(x)

Small displacements, rotations
O(v2, u2, v′

2
) → 0

Constitutive Modeling

σxx = Eεxx = Eu′ − yEv′′

N =

∫
A
σxx = EAu′

M =

∫
A
−yσxx = EIv′′

Note: y measured in Centroidal
coordinates s.t.

∫
A y = 0.
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Euler Buckling of Columns The Linear Buckling Problem

2.3. The Linear Buckling Problem
Euler Buckling of Columns

Substituting, we are left with,

N ′ = EAu′′ = 0 , M ′′ −Nβ′ = EIv′′′′ −Nv′′ = 0 .

Axial Problem

Boundary conditions representing
axial compression:

u(x = 0) = 0, EAu′(x = ℓ) = −P

Solution:

u(x) = − P

EA
x

Transverse Problem

Substituting N = −P we have,

v′′′′ + k2v′′ = 0, k2 =
P

EI
.

The general solution to this
Homogeneous ODE are

v(x) = A0 + A1x + A2 cos kx + A3 sin kx

Boundary conditions on the
transverse displacement function
v(x) are necessary to fix
A0, A1, A2, A3.
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Euler Buckling of Columns The Linear Buckling Problem

2.3.1. The Pinned-Pinned Column
The Linear Buckling Problem

For a Pinned-pinned beam we
have v = 0 on the ends and zero
reaction moments at the supports:

v = 0, x = {0, ℓ}
v′′ = 0, x = {0, ℓ}

So the general solution reduces to

v(x) = A3 sin kx,

with the boundary condition

A3 sin kℓ = 0.

Apart from the trivial solution
(A3 = 0) we have

k(n)ℓ = nπ =⇒ kn = n
π

ℓ

or in terms of the compressive
load P ,

Pcr,n = n2π
2EI

ℓ2

Interpretation: If P ̸= Pcr,n,
A3 = 0 to satisfy boundary
conditions. But for P = Pcr,n, A3

CAN BE ANYTHING!.

Load-Displacement Plot
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Euler Buckling of Columns The Linear Buckling Problem

2.3.1. The Pinned-Pinned Column: The Imperfect Case
I
The Linear Buckling Problem

Suppose there are initial imperfections in the beam’s neutral axis such
that the neutral axis can be written as v0(x).

Noting that strains are accumulated only on the relative displacement
v(x)− v0(x), we write

EI(v − v0)
′′′′

+ Pv′′ = 0.

Note that the axial load P acts on the net rotation of the deflected
beam, so we do not need to use (v − v0)

′′ here.

The governing equations become

EIv′′′′ + Pv′′ = EIv′′′′0 ,

or, in more convenient notation,

v′′′′ + k2v′′ = v′′′′0 .
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Euler Buckling of Columns The Linear Buckling Problem

2.3.1. The Pinned-Pinned Column: The Imperfect Case
II
The Linear Buckling Problem

Describing the imperfect neutral axis using an infinite series,

v0 =
∑
n

Cn sin(n
πx

ℓ
)

(
=⇒ v′′′′0 =

∑
n

(
n
π

ℓ

)4
Cn sin(n

πx

ℓ
)

)
,

the governing equations become

v′′′′ + k2v′′ =
∑
n

(
n
π

ℓ

)4
Cn sin(n

πx

ℓ
).
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Euler Buckling of Columns The Linear Buckling Problem

2.3.1. The Pinned-Pinned Column: The Imperfect Case
III
The Linear Buckling Problem

This is solved by,

v(x) =
∑
n

(
nπ

ℓ

)2(
nπ

ℓ

)2 − k2
Cn sin(n

πx

ℓ
)

=
∑
n

n2π2EI
ℓ2

n2π2EI
ℓ2 − P

Cn sin(n
πx

ℓ
) =

∑
n

Pcr,n

Pcr,n − P
Cn sin(n

πx

ℓ
)
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Euler Buckling of Columns The Linear Buckling Problem

2.3.1. The Pinned-Pinned Column: The Imperfect Case
The Linear Buckling Problem

Look carefully at the solution

v(x) =
∑
n

Pcr,n

Pcr,n − P
Cn sin(n

πx

ℓ
).

Clearly P → Pcr,n are singularities. Even for very small Cn, the
“blow-up” is huge.
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Euler Buckling of Columns The Linear Buckling Problem

2.3.2. The Southwell Plot
The Linear Buckling Problem

The relative deformation amplitude at the mid-point is given as (for
P < Pcr,1),

δ ≈ Pcr,1

Pcr,1 − P
C1 − C1 =

C1

Pcr,1

P − 1

=⇒ δ = Pcr,1
δ

P
− C1

The Southwell Plot

Plotting δ vs δ
P

allows Non-Destructive
Evaluation of the critical load

Pcr,1 is estimated without having to
buckle the column

δ

δ
P

Pcr,1

• •
•

•

• •
•

•
•

•
•
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Euler Buckling of Columns The Linear Buckling Problem

2.3.3. The Clamped-Clamped Column
The Linear Buckling Problem

The axial solution is the same as
before: u(x) = − P

EAx.

The transverse general solution
also has the same form but
boundary conditions are different.

[
v(x)
v′(x)

]
=

[
1 x cos(kx) sin(kx)
0 1 −k sin(kx) k cos(kx)

]A0

A1

A2

A3



The boundary conditions may be
expressed as


1 0 1 0
0 1 0 k
1 ℓ cos(kℓ) sin(kℓ)
0 1 −k sin(kℓ) k cos(kℓ)


︸ ︷︷ ︸

M


A0
A1
A2
A3

 =


0
0
0
0

 .

There can be non-trivial
solutions only when M is
singular, i.e., for choices of k
such that ∆(M ) = 0.

The Eigenvalue Problem

This problem setting of finding k such
that ∆(M (k)) = 0 is known as an
eigenvalue problem.

Aside: Eigenvalue Problems (M ∈ Rd×d)

Linear Eigenvalue Problem (d eigenvalues)

M (k) = M0 + kM1

Quadratic Eigenvalue Problem (2d eigenvalues)

M (k) = M0 + kM1 + k2M2

Our matrix M (k) has k-dependency in
terms of k, sin(kℓ), cos(kℓ), making this
a Nonlinear Eigenvalue Problem.

=⇒ ∞ eigenvalues here (not always though!)
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Euler Buckling of Columns The Linear Buckling Problem

2.3.3. The Clamped-Clamped Column I
The Linear Buckling Problem

We proceed to solve this as,

∆



1 0 1 0
0 1 0 k
1 ℓ cos(kℓ) sin(kℓ)
0 1 −k sin(kℓ) k cos(kℓ)


 = −k (kℓ sin(kℓ) + 2 cos(kℓ)− 2)

We set it to zero through the following factorizations:

∆(M (k)) = −k

(
2kℓ sin(

kℓ

2
) cos(

kℓ

2
)− 4 sin2(

kℓ

2
)

)
= −2k sin(

kℓ

2
)

(
kℓ cos(

kℓ

2
)− 2 sin(

kℓ

2
)

)
= 0

=⇒ sin(
kℓ

2
) = 0 , (or) tan(

kℓ

2
) =

kℓ

2
.
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Euler Buckling of Columns The Linear Buckling Problem

2.3.3. The Clamped-Clamped Column II
The Linear Buckling Problem

Two “classes” of solutions emerge:

1 sin( kℓ
2
) = 0 =⇒ knℓ

2
= nπ =⇒ P (1)

n = 4n2 π
2EI

ℓ2

2 tan( kℓ
2
) = kℓ

2
=⇒ knℓ

2
≈ 0, 4.49, 7.72, · · · =⇒ P

(2)
1 ≈ 8.98π2EI

ℓ2

The smallest critical load is P
(1)
n = 4π2EI

ℓ2 = π2EI
( ℓ
2 )

2 .

Concept of “Effective Length”

Question: If the beam were simply supported, what would be the length such
that it also has the same first critical load?

Here it comes out to be ℓeff = ℓ
2
.

The column clamped on both ends can take the same buckling load as a column
that is pinned on both ends with half the length.
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Euler Buckling of Columns The Linear Buckling Problem

2.3.3. The Clamped-Clamped Column III
The Linear Buckling Problem

Effective lengths of beams with different boundary conditions (Figure from Brush and Almroth 1975)

Self-Study

Derive the effective length for the clamped-simply supported and clamped-free
columns.
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Euler Buckling of Columns The Linear Buckling Problem

2.3.3. The Clamped-Clamped Column: The Mode-shape
The Linear Buckling Problem

Let us substitute k1 = 2π
ℓ into the matrix M (k1) so that the boundary

conditions now read as
1 0 1 0
0 1 0 2π

ℓ
1 ℓ 1 0
0 1 0 2π

ℓ



A0

A1

A2

A3

 =


0
0
0
0

 .

This implies the following:

A1 = 0, A3 = 0, A2 = −A0.

So, if k = k1, the solution has to be the following to satisfy the boundary
conditions:

v = A0

(
1− cos(

2πx

ℓ
)

)
≡ A0 sin

2(
πx

ℓ
)

Buckling mode-shape
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Energy Perspectives

3. Energy Perspectives

Concept of conservative force field.

Work done by a force field:

W (x)

∣∣∣∣x2

x1

=

x2∫
x1

f(x) · dx.

Introduction to work done.

W (x) = Π(x)︸ ︷︷ ︸
External Work

− V (x)︸ ︷︷ ︸
Internal Work/Potential Energy

Example

Force balance reads: F = kx

Work done expression: W (x) = Fx− k
2x

2
k F
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Energy Perspectives

3. Energy Perspectives

Expanding W about some xs we have,

W (xs + δx) = W (xs) +∇W
∣∣
xs

δx+O(δx2).

Stationarity of work: δW = ∇W (xs)δx = 0, ∀ x ∈ Ω , where Ω is the

configuration-space.

Example

For the SDoF system above, we have W = Fx− k
2
x2 and

∇W (xs) =
dW

dx
= F − kxs = 0 =⇒ xs =

F

k
.

Work-stationarity hereby gives a convenient definition for equilibrium.

What about higher order effects?
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3. Energy Perspectives

Continuing the Taylor expansion (SDoF case) for W (x) we have,

W (x) = W (xs) +
dW

dx
(xs)δx+

1

2

d2W

dx2
(xs)δx

2 +O(δx3).

At equilibrium, dW
dx is zero. The sign of d2W

dx2 governs the local tendency of
the work around equilibrium.

Example

For the SDoF example, d2W
dx2 = −k, implying W is maximized.

If d2W
dx2 < 0, then the second order effect of virtual displacements is to

reduce the work scalar: Stable Equilibrium.

The opposite case is Unstable Equilibrium.

Hypothetical Example

−W
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3.1. Post-Buckling Behavior
Energy Perspectives

Let us use the energy approach to study the post-buckling behavior of a
beam.

We’ve developed some intuition that buckling blows up the displacement
levels. Let us revise our kinematic description to capture this.

The (simplified) approach we will follow is as follows:
1 Write out nonlinear kinematics, identify normal force N =

∫
A σaxdA

and moment M =
∫
A −yσaxdA.

2 Assume transverse deformation field v = V sin
(
πx
ℓ

)
3 Assume axial tip deflection uT and derive axial deformation field.
4 Express work done in terms of scalars V and uT . → Extremize.
5 Plot force deflection curves, analyze stability.
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3.1. Post-Buckling Behavior
Energy Perspectives

Geometrically Nonlinear Kinematics

The deformation field is written as ux = u− yv′, uy = v. Consider the
deformation of a line from (x, y) to (x+∆x, y):

(x, y) → (x+ u− yv′, y + v),

(x+∆x, y) → (x+∆x+ u− yv′ + (u′ − yv′′)∆x, y + v + v′∆x),

∆S = ∆x, ∆s2 = ∆x2((1 + u′ − yv′′)2 + v′
2
).

We write the axial strain as

ϵax =
1

2

∆s2 −∆S2

∆S2
= (u′ − yv′′) +

1

2

(
(u′ − yv′′)2 + v′

2
)

ϵax ≈ (u′ − yv′′) +
v′

2

2
.

The final assumption is sometimes referred to as Von Karman strain
assumptions.
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3.1. Post-Buckling Behavior
Energy Perspectives

Nearly nothing changes in the equilibrium equations. We first write out
the area-normal stresses and moments:

N =

∫
A
EϵaxdA = EA(u′ +

v′
2

2
), M =

∫
A
−yEϵaxdA = EIv′′.

The axial force balance reads:

N ′ = EA
d

dx

(
u′ +

v′
2

2

)
= 0, u(x)|x=0 = 0, u|x=ℓ = uT .

Balaji, N. N. (AE, IITM) AS2070 February 17, 2025 27 / 33



Energy Perspectives Post-Buckling Behavior

3.1. Post-Buckling Behavior: Axial Problem
Energy Perspectives

We next impose the transverse deformation field v(x) = V sin
(
πx
ℓ

)
on the axial problem. Solving this, we get

u(x) = −πV 2

8ℓ
sin

(
2πx

ℓ

)
+ C1x+ C2.

Boundary conditioned are imposed by setting C1 = uT

ℓ and C2 = 0.

The parameterized axial deformation field, therefore, is

u(x;V, uT ) =
uT

ℓ
x− πV 2

8ℓ
sin

(
2πx

ℓ

)
.

Note that we have not said anything about V or uT so far.
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3.1. Post-Buckling Behavior: Strain Energy Density
Energy Perspectives

The strain energy density (per unit length) is written as,

V =

∫
A

Eϵ2ax
2

dA =
E

2

∫
A
(u′ − yv′′ +

v′
2

2
)2dx

=
EA

2

(
u′ +

v′
2

2

)2

+
EI

2
v′′

2 ≈ EI

2
v′′

2
+

EA

2

v′
4

4
.

Note that we have assumed uT → 0, i.e., providing negligible influence on
the overall potential energy.

Substituting the assumed deformation field v = V sin(πxℓ ) and integrating
over (0, ℓ) we have,

Vtot =

ℓ∫
0

V(x)dx =
π4EI

4ℓ3
V 2 +

3Π4EA

64ℓ3
V 4

=
π2Pcr

4ℓ
V 2 +

3π2APcr

64Iℓ
V 4.
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3.1. Post-Buckling Behavior: Work Stationarity
Energy Perspectives

The work done by an axial compressive load P is given by

Π =

ℓ∫
0

∫
A

P

A
εaxdAdx =

ℓ∫
0

∫
A

P

A
(u′ − yv′′ +

v′
2

2
)dAdx

= P

ℓ∫
0

u′dx+
P

2

ℓ∫
0

v′
2
dx

Π = PuT +
π2P

4ℓ
V 2 .

So the total work scalar (W = Π− Vtot) is given as (we ignore uT here)

W (V ) =
π2

4ℓ
(P − Pcr)V

2 − 3π2A

64Iℓ
PcrV

4.
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3.1. Post-Buckling Behavior: Work Stationarity
Energy Perspectives

Stationarizing the work we get,

dW

dV
=

π2Pcr

2ℓ
V

((
P

Pcr
− 1

)
− 3A

8I
V 2

)
=⇒ V = 0,±

√
8I

3A

(
P

Pcr
− 1

)
.

Note that the non-trivial solution is only active for P >= Pcr.

We can next estimate uT easily by applying the boundary conditions.

Post-Buckling Solution
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4. Plate Buckling
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6. Class Discussions (Outside of Slides)

Ball on a hill. 2D, 3D cases.

Assumptions behind compression of a bar.
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