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Introduction

1. Introduction

Structural Stability: What?

o Consider supporting a mass M on
the top of a rod.
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Introduction

1. Introduction

Structural Stability: What?

o Consider supporting a mass M on M
the top of a rod.

o Collapse is imminent on at least
|
one!

M/, A/

AN Two Extreme Cases:

4 M M

How can we mathematically
describe this? J

A/ 7
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Introduction

1. Introduction

Structural Stability: Perturbation Behavior
Perturbation Behavior

Key insight we will invoke is behavior under perturbation:

How would the system respond if I slightly perturb it?

o Mathematically, by perturbation we mean any

change to the system’s configuration.
. . . . A ]
o In this case, this could be different deflection ‘\‘\I- ] Illl
W
shapes. Wl
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Introduction

1. Introduction

Structural Stability: Perturbation Behavior
Perturbation Behavior

Key insight we will invoke is behavior under perturbation:

How would the system respond if I slightly perturb it?

o Mathematically, by perturbation we mean any

change to the system’s configuration.
o In this case, this could be different deflection T\:‘ :,'-‘; /17
]
shapes. “): 7 ,/Il
/
Question (Slightly more specific) ,,'«’(“III/
What will the system tend to do if an arbitrarily small ',"," '{II
arbitrarily sma.l ;
magnitude of perturbation is introduced? i '!
Wl
/

o Will it tend to return to its original
configuration? \ E£
7

e Will it blow up?

o Will it do something else entirely?
v
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Introduction

1.1. Elastic Stability

Introduction

What do these words mean?

Elastic — Reversible —+ Conservative

Elastic Stability

Conservative System

@ The restoring force of a
conservative system can be written
using a gradient of a potential
function:

F=—VU.

Equilibrium

@ System achieves equilibrium when
F=0,1ie,

VU = 0.

1D Example

Consider a system whose configuration
is expressed by the scalar x and the
potential is as shown.

U,

&V
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Introduction

Elastic Stability

What do these words mean?

Elastic — Reversible —+ Conservative

Conservative System 1D Example

@ The restoring force of a Consider a syste Tl oce are  Jon

conservative system can be written | is expressed by { th Qibri

using a gradient of a potential potential is as sH ¢ equiibria

function: l

F=-VU. Uy
v
Equilibrium

@ System achieves equilibrium when

F=0,1ie,

VU = 0. ) L1 L2 £ )
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1.1. Elastic Stability

Introduction

What do these words mean?

Elastic — Reversible —+ Conservative

Elastic Stability

Conservative System

@ The restoring force of a
conservative system can be written
using a gradient of a potential
function:

F=—VU.

Equilibrium

@ System achieves equilibrium when

1D Example

Consider a system whose configuration
is expressed-hv the scalar » and the

potential iy ~Remember,
F = —dU
- dx *

U,

E=0, e, |« « | >»
VU = 0. L1 L2 )
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Introduction

1.1. Elastic Stability

Introduction

What do these words mean?

Elastic — Reversible —+ Conservative

Elastic Stability

Conservative System

@ The restoring force of a
conservative system can be written
using a gradient of a potential
function:

F=—VU.

Equilibrium

@ System achieves equilibrium when
F=0,1ie,

VU = 0.

1D Example

Consider a system whose configuration
is expressed by the scalar x and the
potential is as shown.

U,

“Attractive”

“Repulsive”

X1 To "x
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Introduction

1.1. Elastic Stability

Introduction

What do these words mean?

Elastic — Reversible —+ Conservative

Elastic Stability

Conservative System

@ The restoring force of a
conservative system can be written
using a gradient of a potential
function:

F=—VU.

Equilibrium

@ System achieves equilibrium when
F=0,1ie,

VU = 0.

1D Example

Consider a system whose configuration
is expressed by the scalar x and the
potential is as shown. Unstable

« Ve

Uy Stable

“AWl/ve”

X1 To "x
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Introduction  Bifurcation

1.2. Bifurcation

Introduction

A system is said to have undergone a bifurcation if its state of stability has
changed due to the variation of some parameter. J

Transverse Axial train Energ
s
> _—F s b
e
pP/P,, P/P,, v

z, Coordinate

Example: A pinned-pinned beam undergoing azial loading.

Balaji, N. N. (AE, IITM) AS2070 February 4, 2025 6/25



Introduction Modes of Stability Loss

1.3. Modes of Stability Loss

Introduction

The configuration that a system can assume as it undergoes a bifurcation is the
mode of the stability loss. J

& |
e - ’," .

E <04 . - g 2
06 g : - = O B3 T i o s o T
X, 08 o X, X iy = e 3 =

m=1 m=2 Mode 1 Mode 2

) x

Exzample: Thin plate (pinned) under shear
Example: Thin plate (pinned) under azial loading
loading
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Euler Buckling of Columns Equilibrium Equations

2.1. Equilibrium Equations

Euler Buckling of Columns

Sy

Equilibrium Equations

N —(VB) =0
VI +Ng +N'B5=0
M +V=0

Assumption: V3 < N

N' =0
V' + NB' =0
M'"—Np' =0
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Euler Buckling of Columns Kinematic Description

2.2. Kinematic Description

Euler Buckling of Columns

Cy

Displacement, Strain Field 0 = v'(x)
us = ul) -y’ (x)
uy = v(z)

€xz = U’ (z) — yv"' ()

Assumptions (E.B.T.)
Plane sections remain planar
u, v — u(zx), v(x) v(x)
Neutral Axis remains L to sections
B=0=1'(x)
Small displacements, rotations

Ow* u?,v'"?) =0 U(ZC)

o
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Euler Buckling of Columns Kinematic Description

2.2. Kinematic Description

Euler Buckling of Columns

Cy

- Constitutive Modeling ,
Displacement, S v (x)

Ug = u(z) —- Ope = Beye = Fu' —yEV”

uy:vgx) N:/O‘IIZEAU,

Eox = u'(T) — A

1
Assumptions | M :/ ~YOea = Elv
. . A

Plane sections remair

u,v — Note: y measured in Centroidal
Neutral Axis remains c00rdinates s.t. Jay=o0.

B=0=1"(x)
Small displacements, rotations
Ow* u?,v'"?) =0

u(z)
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Euler Buckling of Columns The Linear Buckling Problem

2.3. The Linear Buckling Problem

Euler Buckling of Columns

@ Substituting, we are left with,
NI:, MN_N/B/:‘EI’UHN_N'UN:O.

Transverse Problem

@ Substituting N = —P we have,

_r
~ED

Axial Problem

@ Boundary conditions representing o+ kR =0, K
axial compression:
@ The general solution to this

/
wz=0)=0, EAu(z=/{)=-P Homogeneous ODE are

@ Solution: ‘ v(z) = Ag + Ay + Ag cos ke + Ag sin ke
P .
w(x) = ———1x @ Boundary conditions on the
EA transverse displacement function

v(z) are necessary to fix
Ap, A1, Az, As.
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Euler Buckling of Columns The Linear Buckling Problem

2.3.1. The Pinned-Pinned Column

The Linear Buckling Problem

. . @ Apart from the trivial solution
e For a Pinned-pinned beam we (A3 = 0) we have
have v = 0 on the ends and zero s
reaction moments at the supports: kol = nm = ki = n%
v=0, z=/{0,0}

or in terms of the compressive
v =0, x=1{0/(} LSSty

load P,
@ So the general solution reduces to 5
P27 BT
v(x) = Az sin kz, e 02
with the boundary condition o Interpretation: If P # P, ,,

Az = 0 to satisfy boundary

Aszsinkl = 0. conditions. But for P = P, ,, A3

CAN BE ANYTHING!.
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Euler Buckling of Columns The Linear Buckling Problem

2.3.1. The Pinned-Pinned Column

The Linear Buckling Problem

Load-Displacement Plot oluti
e For a Pinn| ’__———T——-§§§I’€ Psou o
have v =0 - 7
reaction m % A3 % s
v A
p A3 pressive
v Stable Unstable
A3 =0 9 A3 =0
@ So the gen ! 3 =
Pcr,l f) El
v i b
7 >
with the b Pcr n= n’IT El # Pcr,ny
' 03 dary
[ V - P(:r,na A3
CAN BE ANYTHING!.
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Euler Buckling of Columns The Linear Buckling Problem

2.3.1. The Pinned-Pinned Column: The Imperfect Case
I

The Linear Buckling Problem

@ Suppose there are initial imperfections in the beam’s neutral axis such
that the neutral axis can be written as vo(z).

o Noting that strains are accumulated only on the relative displacement
v(x) —vo(x), we write

ElI(v—1)"" + Pv" =0.

Note that the axial load P acts on the net rotation of the deflected
beam, so we do not need to use (v — vg)” here.

@ The governing equations become
EI " + P'U EIU////

or, in more convenient notation,

//// k2 " __ ////
= O .
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Euler Buckling of Columns The Linear Buckling Problem

2.3.1. The Pinned-Pinned Column: The Imperfect Case
IT

The Linear Buckling Problem

@ Describing the imperfect neutral axis using an infinite series,

4
Vg = zn: Cn &n(n%) ( N ,UIOIII = zn: (n%) Cn sm(n?)) 5
the governing equations become

V" 4 k2 = Z (n%)4 C, sin(n%).

n
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Euler Buckling of Columns

The Linear Buckling Problem

2.3.1. The Pinned-Pinned Column: The Imperfect Case

III

The Linear Buckling Problem

@ This is solved by,

)’

N &\ﬁ

(%)
w (n7)

2 2EI

72 WrlEl _ p 2E1
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C’ sin(n—)
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T
C’ sm( E $C’n sin(n—-)
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Euler Buckling of Columns The Linear Buckling Problem

2.3.1. The Pinned-Pinned Column: The Imperfect Case

The Linear Buckling Problem
@ Look carefully at the solution

Pcr,n . T
’U(.T) = Z m On SlIl(TLT).

o Clearly P — P, are singularities. Even for very small C),, the
“blow-up” is huge.

Agp I

mEl
/3

Pcr,n =n

v I
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Euler Buckling of Columns The Linear Buckling Problem

2.3.2. The Southwell Plot

The Linear Buckling Problem

@ The relative deformation amplitude at the mid-point is given as (for

P<Pcr,1)a
Pc’r‘l Cl
b~ — O —-Ci= ——"——
Py — PO Per g
)
— 5:PCT71F_01

The Southwell Plot

@ Plotting ¢ vs % allows Non-Destructive

Evaluation of the critical load

@ P, is estimated without having to
buckle the column

ol
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Euler Buckling of Columns

The Linear Buckling Problem

2.3.3. The Clamped-Clamped Column

The Linear Buckling Problem

@ The axial solution is the same as
. _ P
before: u(z) = —g72.

@ The transverse general solution

also has the same form but
boundary conditions are different.

[:/((i-))} -

Balaji, N. N.

o

T cos(kx)
1 —ksin(kz)

(AE, IITM)

sin(kx)
k cos(kz)

3

AS2070

@ The boundary conditions may be
expressed as

0 1 0 Ao 0
1 0 k A1l _ |o
‘ cos (k) sin(ke) | [Aa| = |o] "
1 —ksin(ke) kcos(kl)| A3 0

o

[SEERSE

@ There can be non-trivial
solutions only when M is
singular, i.e., for choices of k
such that A(M ) = 0.

The Eigenvalue Problem

This problem setting of finding k such
that A(M (k)) = 0 is known as an
eigenvalue problem.

February 4, 2025 17 /25



Euler Buckling of Columns The Linear Buckling Problem

2.3.3. The Clamped-Clamped Column

The Linear Buckling Problem

@ The boundary conditions may be
Ry 77 /777777 SN )

Aside: Eigenvalue Problems (M € R%*9)
Linear Eigenvalue Problem (d eigenvalues) ﬁ‘f} _ ﬁ 4
Q=0 2‘3’ 8
it M () = My + kMy
=0 =0
Quadratic Eigenvalue Problem (2d eigenvalues)
o The axig is
before: M (k) = My + kM + k*Ms s of k
o The tran
also has
boundar
k such
v(z) | _
[U/(x)] R - rerrr— an

"1 45| eigenvalue problem.
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Euler Buckling of Columns The Linear Buckling Problem

2.3.3. The Clamped-Clamped Column

The Linear Buckling Problem

@ The boundary conditions may be
Y //////// / AN 1

Aside: Eigenvalue Problems (M € R%*9)
Linear Eigenvalue Problem (d eigenvalues) 22} _ ﬁ .
Q=0 2‘2’ 8
it M () = My + kMy
=0 =0
Quadratic Eigenvalue Problem (2d eigenvalues)
o The axig is
before: M (k) = My + kM + k*Ms s of k
° ;ﬁgg iclrazzn Our matrix M (k) has k-dependency in
boundar terms of k, sin(k¢), cos(kf), making this
a Nonlinear Eigenvalue Problem.
k such
['U/((w))] _| e = oo eigenvalues in general an
v (x T - TSI

"1 45| eigenvalue problem.
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Euler Buckling of Columns The Linear Buckling Problem

2.3.3. The Clamped-Clamped Column I

The Linear Buckling Problem

o We proceed to solve this as,

10 1 0
0 1 0 k .

A 1 £ cos(kl) sin(k() = —k (klsin(kl) + 2 cos(kl) — 2)
0 1 —Fksin(kl) kcos(kl)

o We set it to zero through the following factorizations:
A(M (k) = -k <2k€sin(k§)cos(];€) — 4sin2(k€))

= _2ksin(%é) (Mcos(k;) — ZSin(];E)> =0

T4 ke, ke
= sin(;) =0/ (or) tan(g) =5

Balaji, N. N. (AE, IITM) AS2070 February 4, 2025 18 /25



Euler Buckling of Columns The Linear Buckling Problem

2.3.3. The Clamped-Clamped Column II

The Linear Buckling Problem

e Two “classes” of solutions emerge:

S m2ET
62

@ tan(i) = B — Eal ~0,449,7.72,..- — P ~ 8987 EL

Qsin()=0 = 2 =nr — P =an

e The smallest critical load is P,gl) = 4”251 = TEZJQI
2

Concept of “Effective Length”

@ Question: If the beam were simply supported, what would be the length such
that it also has the same first critical load?

@ Here it comes out to be leyy = é.

@ The column clamped on both ends can take the same buckling load as a column
that is pinned on both ends with half the length.

v
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Euler Buckling of Columns The Linear Buckling Problem

2.3.3. The Clamped-Clamped Column III

The Linear Buckling Problem

Boundary Critical Deflection Effective
conditions load P, mode shape length KL

simplesuppori-  TEL_Nsor™ soNL
simple support L? N
w2El 3
Clamped-clamped 4 I R R L
Clamped-simple T2El §—@0®
support 2.04 Iz — - 0.70L

2 ) ~—
m2El §r /T 2L

1
Clamped-free 1 IZ

Effective lengths of beams with different boundary conditions (Figure from Brush and Almroth 1975)

Self-Study

@ Derive the effective length for the clamped-simply supported and clamped-free
columns.

Balaji, N. N. (AE, IITM) AS2070 February 4, 2025 20/ 25



Euler Buckling of Columns The Linear Buckling Problem

2.3.3. The Clamped-Clamped Column: The Mode-shape

The Linear Buckling Problem

o Let us substitute k; = 27 into the matrix M (k1) so that the boundary
conditions now read as

101 07 /[A 0
0 1 0 27| (A _ |0
1 ¢ 1 0f[A] |0
0 1 0 2¢] |45 0

o This implies the following:
A1 =0, A3=0, Ay=—A.

e So, if k = kq, the solution has to be the following to satisfy the boundary

conditions:
2mx . T
v=Ag(1—cos(—==) ) = Agsin?(—)
Y4 Y4
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Euler Buckling of Columns The Linear Buckling Problem

2.3.3. The Clamped-Clamped Column: The Mode-shape

The Linear Buckling Problem

o Let us substitute k; = 27 into the matrix M (k1) so that the boundary

conditions now read as

[1 0 1 0][A] [0

Buckling mode-shape

\ -~

\ ,4" ~‘*~\ P

=" =
@ This im § EI, /

Qxr=0 Qx =/
u=0 EAW = -P

e So,ifk|lv=2"=0 v=1 = he boundary

conditions:

2
v=Agy (1 - 005(7)> = Ao 51112(%)
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Energy Perspectives Post-Buckling Behavior

3.1. Post-Buckling Behavior

Energy Perspectives
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4. Plate Buckling
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Plate Buckling
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Class Discussions (Outside of Slides)

6. Class Discussions (Outside of Slides)

e Ball on a hill. 2D, 3D cases.

e Assumptions behind compression of a bar.
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