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Introduction

1. Introduction
Structural Stability: What?

Consider supporting a mass M on
the top of a rod.

Collapse is imminent on at least
one!

How can we mathematically
describe this?

Two Extreme Cases:
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Introduction

1. Introduction
Structural Stability: Perturbation Behavior

Perturbation Behavior

Key insight we will invoke is behavior under perturbation:

How would the system respond if I slightly perturb it?

Mathematically, by perturbation we mean any
change to the system’s configuration.

In this case, this could be different deflection
shapes.

Question (Slightly more specific)

What will the system tend to do if an arbitrarily small
magnitude of perturbation is introduced?

Will it tend to return to its original
configuration?

Will it blow up?

Will it do something else entirely?
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Introduction Elastic Stability

1.1. Elastic Stability
Introduction

What do these words mean?

Elastic → Reversible → Conservative

Conservative System

The restoring force of a
conservative system can be written
using a gradient of a potential
function:

F = −∇U.

Equilibrium

System achieves equilibrium when
F = 0, i.e.,

∇U = 0.

1D Example

Consider a system whose configuration
is expressed by the scalar x and the
potential is as shown.

These are
the equilibriaRemember,

F = −dU
dx .

Stable

Unstable
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Introduction Bifurcation

1.2. Bifurcation
Introduction

A system is said to have undergone a bifurcation if its state of stability has
changed due to the variation of some parameter.

Example: A pinned-pinned beam undergoing axial loading.
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Introduction Modes of Stability Loss

1.3. Modes of Stability Loss
Introduction

The configuration that a system can assume as it undergoes a bifurcation is the
mode of the stability loss.

Example: Thin plate (pinned) under axial
loading

Example: Thin plate (pinned) under shear
loading
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Euler Buckling of Columns Equilibrium Equations

2.1. Equilibrium Equations
Euler Buckling of Columns

( )

Equilibrium Equations

N ′ − (V β)′ = 0

V ′ +Nβ′ +N ′β = 0

M ′ + V = 0

Assumption: V β ≪ N

N ′ = 0

V ′ +Nβ′ = 0

M ′′ −Nβ′ = 0
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Euler Buckling of Columns Kinematic Description

2.2. Kinematic Description
Euler Buckling of Columns

( )
Displacement, Strain Field

ux = u(x)− yv′(x)

uy = v(x)

εxx = u′(x)− yv′′(x)

Assumptions (E.B.T.)
Plane sections remain planar

u, v → u(x), v(x)

Neutral Axis remains ⊥ to sections
β ≡ θ = v′(x)

Small displacements, rotations
O(v2, u2, v′

2
) → 0

Constitutive Modeling

σxx = Eεxx = Eu′ − yEv′′

N =

∫
A
σxx = EAu′

M =

∫
A
−yσxx = EIv′′

Note: y measured in Centroidal
coordinates s.t.

∫
A y = 0.
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Euler Buckling of Columns The Linear Buckling Problem

2.3. The Linear Buckling Problem
Euler Buckling of Columns

Substituting, we are left with,

N ′ = EAu′′ = 0 , M ′′ −Nβ′ = EIv′′′′ −Nv′′ = 0 .

Axial Problem

Boundary conditions representing
axial compression:

u(x = 0) = 0, EAu′(x = ℓ) = −P

Solution:

u(x) = − P

EA
x

Transverse Problem

Substituting N = −P we have,

v′′′′ + k2v′′ = 0, k2 =
P

EI
.

The general solution to this
Homogeneous ODE are

v(x) = A0 + A1x + A2 cos kx + A3 sin kx

Boundary conditions on the
transverse displacement function
v(x) are necessary to fix
A0, A1, A2, A3.
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Euler Buckling of Columns The Linear Buckling Problem

2.3.1. The Pinned-Pinned Beam
The Linear Buckling Problem

For a Pinned-pinned beam we
have v = 0 on the ends and zero
reaction moments at the supports:

v = 0, x = {0, ℓ}
v′′ = 0, x = {0, ℓ}

So the general solution reduces to

v(x) = A3 sin kx,

with the boundary condition

A3 sin kℓ = 0.

Apart from the trivial solution
(A3 = 0) we have

k(n)ℓ = nπ =⇒ kn = n
π

ℓ

or in terms of the compressive
load P ,

Pcr,n = n2π
2EI

ℓ2

Interpretation: If P ̸= Pcr,n,
A3 = 0 to satisfy boundary
conditions. But for P = Pcr,n, A3

CAN BE ANYTHING!.

Load-Displacement Plot
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Euler Buckling of Columns The Linear Buckling Problem

2.3.1. The Pinned-Pinned Beam: The Imperfect Case I
The Linear Buckling Problem

Suppose there are initial imperfections in the beam’s neutral axis such
that the neutral axis can be written as v0(x).

Noting that strains are accumulated only on the relative displacement
v(x)− v0(x), we write

EI(v − v0)
′′′′

+ Pv′′ = 0.

Note that the axial load P acts on the net rotation of the deflected
beam, so we do not need to use (v − v0)

′′ here.

The governing equations become

EIv′′′′ + Pv′′ = EIv′′′′0 ,

or, in more convenient notation,

v′′′′ + k2v′′ = v′′′′0 .
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Euler Buckling of Columns The Linear Buckling Problem

2.3.1. The Pinned-Pinned Beam: The Imperfect Case II
The Linear Buckling Problem

Describing the imperfect neutral axis using an infinite series,

v0 =
∑
n

Cn sin(n
πx

ℓ
)

(
=⇒ v′′′′0 =

∑
n

(
n
π

ℓ

)4
Cn sin(n

πx

ℓ
)

)
,

the governing equations become

v′′′′ + k2v′′ =
∑
n

(
n
π

ℓ

)4
Cn sin(n

πx

ℓ
).

This is solved by,

v(x) =
∑
n

(
nπ

ℓ

)2(
nπ

ℓ

)2 − k2
Cn sin(n

πx

ℓ
)

=
∑
n

n2π2EI
ℓ2

n2π2EI
ℓ2 − P

Cn sin(n
πx

ℓ
) =

∑
n

Pcr,n

Pcr,n − P
Cn sin(n

πx

ℓ
)
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Euler Buckling of Columns The Linear Buckling Problem

2.3.1. The Pinned-Pinned Beam: The Imperfect Case
The Linear Buckling Problem

Look carefully at the solution

v(x) =
∑
n

Pcr,n

Pcr,n − P
Cn sin(n

πx

ℓ
).

Clearly P → Pcr,n are singularities. Even for very small Cn, the
“blow-up” is huge.
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Euler Buckling of Columns The Linear Buckling Problem
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(cit. on p. 2).
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Class Discussions (Outside of Slides)

4. Class Discussions (Outside of Slides)

Ball on a hill. 2D, 3D cases.

Assumptions behind compression of a bar.
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