

AS2070: Aerospace Structural Mechanics Module 1: Elastic Stability

Instructor: Nidish Narayanaa Balaji

Dept. of Aerospace Engg., IIT Madras, Chennai

February 4, 2025

Balaji, N. N. (AE, IITM)

Table of Contents

1 Introduction

- Elastic Stability
- Bifurcation
- Modes of Stability Loss
- 2 Euler Buckling of Columns
 - Equilibrium Equations
 - Kinematic Description
 - The Linear Buckling Problem • The Pinned-Pinned Beam

BUCKLING OF BARS, PLATES, AND SHELLS

Don O. Brush Bo O. Almroth

Chapters 1-3 in Brush and Almroth (1975).

Chapters 7-9 in Megson (2013)

2/15

Structural Stability: What?

• Consider supporting a mass M on the top of a rod.

Structural Stability: What?

• Consider supporting a mass M on the top of a rod.

Two Extreme Cases:

Balaji, N. N. (AE, IITM)

AS2070

Structural Stability: What?

- Consider supporting a mass M on the top of a rod.
- Collapse is imminent on at least one!

Two Extreme Cases:

AS2070

Structural Stability: What?

- Consider supporting a mass M on the top of a rod.
- Collapse is imminent on at least one!

M

Structural Stability: Perturbation Behavior

Perturbation Behavior

Key insight we will invoke is behavior under **perturbation**: How would the system respond if I slightly perturb it?

- Mathematically, by perturbation we mean *any* change to the system's configuration.
- In this case, this could be different deflection shapes.

Structural Stability: Perturbation Behavior

Perturbation Behavior

Key insight we will invoke is behavior under **perturbation**: How would the system respond if I slightly perturb it?

- Mathematically, by perturbation we mean *any* change to the system's configuration.
- In this case, this could be different deflection shapes.

Question (Slightly more specific)

What will the system tend to do if an <u>arbitrarily small</u> magnitude of perturbation is introduced?

- Will it tend to return to its original configuration?
- Will it blow up?
- Will it do **something else entirely**?

Introduction

What do these words mean?

 $\mathbf{Elastic} \rightarrow \mathbf{Reversible} \rightarrow \mathbf{Conservative}$

Conservative System

• The restoring force of a conservative system can be written using a gradient of a **potential** function:

$$\underline{F} = -\nabla U.$$

Equilibrium

• System achieves equilibrium when $\underline{F} = \underline{0}$, i.e.,

 $\nabla U = 0.$

1D Example

Consider a system whose configuration is expressed by the scalar x and the potential is as shown.

Introduction

What do these words mean?

 $\mathbf{Elastic} \rightarrow \mathbf{Reversible} \rightarrow \mathbf{Conservative}$

Conservative System 1D Example • The restoring force of a Consider a syste tion These are conservative system can be written is expressed by t the equilibria using a gradient of a **potential** potential is as sl function. $F = -\nabla U.$ Equilibrium • System achieves equilibrium when F = 0, i.e., $\dot{x_1}$ $\dot{x_2}$ \mathbf{x} $\nabla U = 0.$

Introduction

What do these words mean?

 $\mathbf{Elastic} \rightarrow \mathbf{Reversible} \rightarrow \mathbf{Conservative}$

Conservative System

• The restoring force of a conservative system can be written using a gradient of a **potential** function:

$$\underline{F} = -\nabla U.$$

Equilibrium

• System achieves equilibrium when $\underline{F} = \underline{0}$, i.e.,

$$\nabla U = 0$$

Introduction

What do these words mean?

 $\mathbf{Elastic} \rightarrow \mathbf{Reversible} \rightarrow \mathbf{Conservative}$

Conservative System

• The restoring force of a conservative system can be written using a gradient of a **potential** function:

$$\underline{F} = -\nabla U.$$

Equilibrium

• System achieves equilibrium when $\underline{F} = \underline{0}$, i.e.,

$$\nabla U = 0$$

1D Example

Consider a system whose configuration is expressed by the scalar x and the potential is as shown.

Introduction

What do these words mean?

 $\mathbf{Elastic} \rightarrow \mathbf{Reversible} \rightarrow \mathbf{Conservative}$

Conservative System

• The restoring force of a conservative system can be written using a gradient of a **potential** function:

 $\underline{F} = -\nabla U.$

Equilibrium

• System achieves equilibrium when $\underline{F} = \underline{0}$, i.e.,

 $\nabla U = 0.$

1D Example

Consider a system whose configuration is expressed by the scalar x and the potential is as shown. Unstable "Reputsive"

1.2. Bifurcation

Introduction

A system is said to have **undergone a bifurcation** if its state of stability has changed due to the variation of some parameter.

Example: A pinned-pinned beam undergoing axial loading.

Balaji, N. N. (AE, IITM)

1.3. Modes of Stability Loss

Introduction

The **configuration** that a system can assume as it undergoes a bifurcation is the mode of the stability loss.

Example: Thin plate (pinned) under axial loading

loading

2.1. Equilibrium Equations

Euler Buckling of Columns

Balaji, N. N. (AE, IITM)

2.2. Kinematic Description

Euler Buckling of Columns

2.2. Kinematic Description

Euler Buckling of Columns

2.3. The Linear Buckling Problem

Euler Buckling of Columns

• Substituting, we are left with,

$$N' = \boxed{EAu'' = 0}, \quad M'' - N\beta' = \boxed{EIv'''' - Nv'' = 0}$$

Axial Problem

• Boundary conditions representing axial compression:

$$u(x=0) = 0, \quad EAu'(x=\ell) = -P$$

• Solution:

$$u(x) = -\frac{P}{EA}x$$

Transverse Problem

• Substituting N = -P we have,

$$v'''' + k^2 v'' = 0, \quad k^2 = \frac{P}{EI}.$$

• The general solution to this **Homogeneous ODE** are

 $v(x)=A_0+A_1x+A_2\cos kx+A_3\sin kx$

• Boundary conditions on the transverse displacement function v(x) are necessary to fix A_0, A_1, A_2, A_3 .

2.3.1. The Pinned-Pinned Beam

The Linear Buckling Problem

• For a Pinned-pinned beam we have v = 0 on the ends and zero reaction moments at the supports:

 $v = 0, \quad x = \{0, \ell\}$ $v'' = 0, \quad x = \{0, \ell\}$

• So the general solution reduces to

 $v(x) = A_3 \sin kx,$

with the boundary condition

$$A_3 \sin k\ell = 0.$$

• Apart from the trivial solution $(A_3 = 0)$ we have

$$k_{(n)}\ell = n\pi \implies k_n = n\frac{\pi}{\ell}$$

or in terms of the compressive load P,

$$P_{cr,n} = n^2 \frac{\pi^2 EI}{\ell^2}$$

• Interpretation: If $P \neq P_{cr,n}$, $A_3 = 0$ to satisfy boundary conditions. But for $P = P_{cr,n}$, A_3 **CAN BE ANYTHING!**.

2.3.1. The Pinned-Pinned Beam

The Linear Buckling Problem

Balaji, N. N. (AE, II)	TM)
------------------------	-----

2.3.1. The Pinned-Pinned Beam: The Imperfect Case I

The Linear Buckling Problem

- Suppose there are initial imperfections in the beam's neutral axis such that the neutral axis can be written as $v_0(x)$.
- Noting that strains are accumulated only on the *relative displacement* $v(x) v_0(x)$, we write

$$EI(v - v_0)'''' + Pv'' = 0.$$

Note that the axial load P acts on the **net rotation** of the deflected beam, so we do not need to use $(v - v_0)''$ here.

• The governing equations become

$$EIv^{\prime\prime\prime\prime\prime} + Pv^{\prime\prime} = EIv_0^{\prime\prime\prime\prime},$$

or, in more convenient notation,

$$v'''' + k^2 v'' = v_0''''$$

Balaji, N. N. (AE, IITM)

2.3.1. The Pinned-Pinned Beam: The Imperfect Case II

The Linear Buckling Problem

• Describing the imperfect neutral axis using an infinite series,

$$v_0 = \sum_n C_n \sin(n\frac{\pi x}{\ell}) \quad \left(\implies v_0^{\prime\prime\prime\prime} = \sum_n \left(n\frac{\pi}{\ell}\right)^4 C_n \sin(n\frac{\pi x}{\ell}) \right),$$

the governing equations become

$$v^{\prime\prime\prime\prime} + k^2 v^{\prime\prime} = \sum_n \left(n \frac{\pi}{\ell} \right)^4 C_n \sin(n \frac{\pi x}{\ell}).$$

• This is solved by,

$$v(x) = \sum_{n} \frac{\left(n\frac{\pi}{\ell}\right)^{2}}{\left(n\frac{\pi}{\ell}\right)^{2} - k^{2}} C_{n} \sin(n\frac{\pi x}{\ell})$$

= $\sum_{n} \frac{\frac{n^{2}\pi^{2}EI}{\ell^{2}}}{\frac{n^{2}\pi^{2}EI}{\ell^{2}} - P} C_{n} \sin(n\frac{\pi x}{\ell}) = \sum_{n} \frac{P_{cr,n}}{P_{cr,n} - P} C_{n} \sin(n\frac{\pi x}{\ell})$

Balaji, N. N. (AE, IITM)

February 4, 2025

2.3.1. The Pinned-Pinned Beam: The Imperfect Case

The Linear Buckling Problem

• Look carefully at the solution

$$v(x) = \sum_{n} \frac{P_{cr,n}}{P_{cr,n} - P} C_n \sin(n\frac{\pi x}{\ell}).$$

• Clearly $P \to P_{cr,n}$ are singularities. Even for very small C_n , the "blow-up" is huge.

References I

- D. O. Brush and B. O. Almroth. Buckling of Bars, Plates, and Shells, McGraw-Hill, 1975. ISBN: 978-0-07-008593-0 (cit. on p. 2).
- T. H. G. Megson. Aircraft Structures for Engineering Students, Elsevier, 2013. ISBN: 978-0-08-096905-3 (cit. on p. 2).

Class Discussions (Outside of Slides)

4. Class Discussions (Outside of Slides)

- Ball on a hill. 2D, 3D cases.
- Assumptions behind compression of a bar.