

AS2070: Aerospace Structural Mechanics Module 1: Elastic Stability

Instructor: Nidish Narayanaa Balaji

Dept. of Aerospace Engg., IIT Madras, Chennai

February 4, 2025

Table of Contents

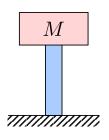
- Introduction
 - Elastic Stability
 - Bifurcation
 - Modes of Stability Loss
- 2 Euler Buckling of Columns
 - Equilibrium Equations
 - Kinematic Description
 - The Linear Buckling Problem
 - The Pinned-Pinned Column
 - The Southwell Plot
 - The Clamped-Clamped Column
- 3 Energy Perspectives
 - Post-Buckling Behavior
- 4 Plate Buckling

Chapters 1-3 in Brush and Almroth (1975).

 $\begin{array}{c} Chapters \ 7\text{-}9 \\ in \ Megson \ (2013) \end{array}$

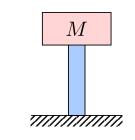
Structural Stability: What?

 \bullet Consider supporting a mass M on the top of a rod.

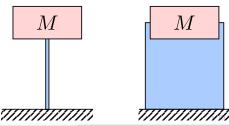


Structural Stability: What?

• Consider supporting a mass M on the top of a rod.

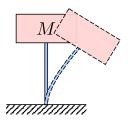


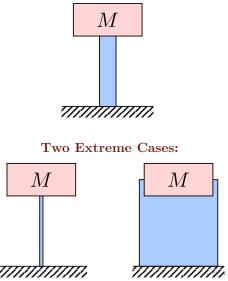
Two Extreme Cases:



Structural Stability: What?

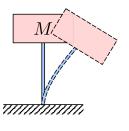
- Consider supporting a mass M on the top of a rod.
- Collapse is imminent on at least one!



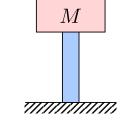


Structural Stability: What?

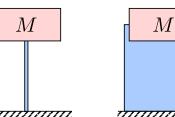
• Collapse is imminent on at least one!



How can we mathematically describe this?



Two Extreme Cases:



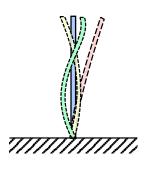
Structural Stability: Perturbation Behavior

Perturbation Behavior

Key insight we will invoke is behavior under **perturbation**:

How would the system respond if I slightly perturb it?

- Mathematically, by perturbation we mean any change to the system's configuration.
- In this case, this could be different deflection shapes.



Structural Stability: Perturbation Behavior

Perturbation Behavior

Key insight we will invoke is behavior under **perturbation**:

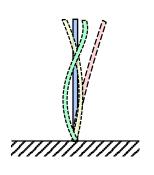
How would the system respond if I slightly perturb it?

- Mathematically, by perturbation we mean any change to the system's configuration.
- In this case, this could be different deflection shapes.

Question (Slightly more specific)

What will the system tend to do if an arbitrarily small magnitude of perturbation is introduced?

- Will it tend to return to its original configuration?
- Will it blow up?
- Will it do something else entirely?



Introduction

What do these words mean? Elastic \rightarrow Reversible \rightarrow Conservative

Conservative System

• The restoring force of a conservative system can be written using a gradient of a **potential** function:

$$F = -\nabla U$$
.

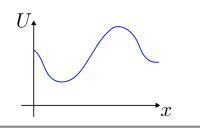
Equilibrium

• System achieves equilibrium when $\underline{F} = \underline{0}$, i.e.,

$$\nabla U = 0.$$

1D Example

Consider a system whose configuration is expressed by the scalar x and the potential is as shown.



Introduction

What do these words mean? Elastic \rightarrow Reversible \rightarrow Conservative

Conservative System

• The restoring force of a conservative system can be written using a gradient of a **potential** function:

$$F = -\nabla U$$
.

Equilibrium

• System achieves equilibrium when $\underline{F} = \underline{0}$, i.e.,

$$\nabla U = 0.$$

1D Example

Consider a systellis expressed by the potential is as shadow of the consideration of the cons

 \dot{x}_1

These are the equilibria

 \boldsymbol{x}

 $\dot{x_2}$

Introduction

What do these words mean? Elastic \rightarrow Reversible \rightarrow Conservative

Conservative System

• The restoring force of a conservative system can be written using a gradient of a **potential** function:

$$F = -\nabla U$$
.

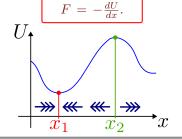
Equilibrium

• System achieves equilibrium when $\underline{F} = \underline{0}$, i.e.,

$$\nabla U = 0.$$

1D Example

Consider a system whose configuration is expressed by the scalar r and the potential is Remember,



Introduction

What do these words mean? Elastic \rightarrow Reversible \rightarrow Conservative

Conservative System

• The restoring force of a conservative system can be written using a gradient of a **potential** function:

$$F = -\nabla U$$
.

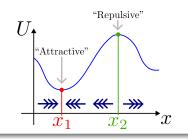
Equilibrium

• System achieves equilibrium when $\underline{F} = \underline{0}$, i.e.,

$$\nabla U = 0.$$

1D Example

Consider a system whose configuration is expressed by the scalar x and the potential is as shown.



Introduction

What do these words mean? Elastic \rightarrow Reversible \rightarrow Conservative

Conservative System

• The restoring force of a conservative system can be written using a gradient of a **potential** function:

$$F = -\nabla U$$
.

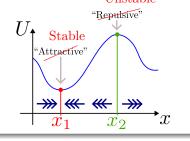
Equilibrium

• System achieves equilibrium when $\underline{F} = \underline{0}$, i.e.,

$$\nabla U = 0.$$

1D Example

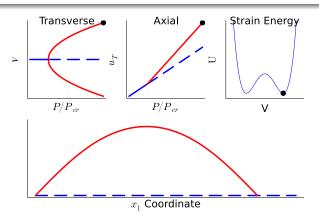
Consider a system whose configuration is expressed by the scalar x and the potential is as shown. Unstable



1.2. Bifurcation

Introduction

A system is said to have **undergone a bifurcation** if its state of stability has changed due to the variation of some parameter.

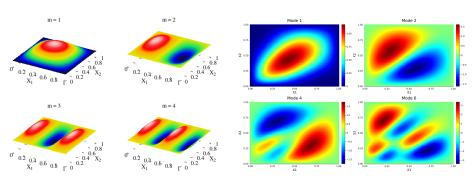


Example: A pinned-pinned beam undergoing axial loading.

1.3. Modes of Stability Loss

Introduction

The **configuration** that a system can assume as it undergoes a bifurcation is the mode of the stability loss.

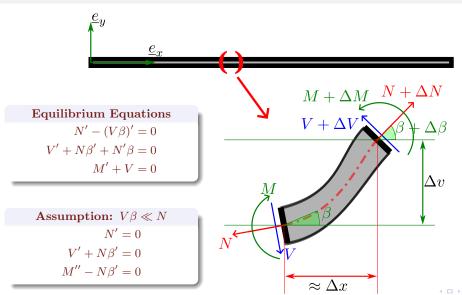


Example: Thin plate (pinned) under axial loading

Example: Thin plate (pinned) under shear loading

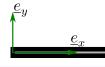
2.1. Equilibrium Equations

Euler Buckling of Columns



2.2. Kinematic Description

Euler Buckling of Columns



Displacement, Strain Field

$$u_x = u(x) - yv'(x)$$

$$u_y = v(x)$$

$$\varepsilon_{xx} = u'(x) - yv''(x)$$

Assumptions (E.B.T.)

Plane sections remain planar

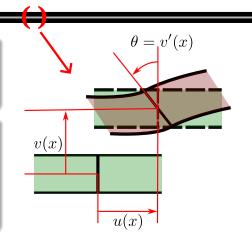
$$u, v \to u(x), v(x)$$

Neutral Axis remains | to sections

$$\beta \equiv \theta = v'(x)$$

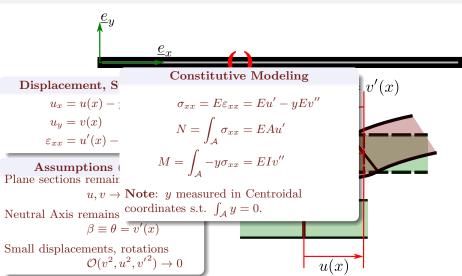
Small displacements, rotations

$$\mathcal{O}(v^2, u^2, {v'}^2) \to 0$$



2.2. Kinematic Description

Euler Buckling of Columns



2.3. The Linear Buckling Problem

Euler Buckling of Columns

• Substituting, we are left with,

$$N' = \boxed{EAu'' = 0}, \quad M'' - N\beta' = \boxed{EIv'''' - Nv'' = 0}.$$

Axial Problem

• Boundary conditions representing axial compression:

$$u(x = 0) = 0$$
, $EAu'(x = \ell) = -P$

• Solution:

$$u(x) = -\frac{P}{EA}x$$

Transverse Problem

• Substituting N = -P we have,

$$v'''' + k^2 v'' = 0, \quad k^2 = \frac{P}{EI}.$$

• The general solution to this **Homogeneous ODE** are

$$v(x) = A_0 + A_1 x + A_2 \cos kx + A_3 \sin kx$$

• Boundary conditions on the transverse displacement function v(x) are necessary to fix A_0, A_1, A_2, A_3 .

2.3.1. The Pinned-Pinned Column

The Linear Buckling Problem

• For a Pinned-pinned beam we have v = 0 on the ends and zero reaction moments at the supports:

$$v = 0, \quad x = \{0, \ell\}$$

 $v'' = 0, \quad x = \{0, \ell\}$

• So the general solution reduces to

$$v(x) = A_3 \sin kx,$$

with the boundary condition

$$A_3 \sin k\ell = 0.$$

• Apart from the trivial solution $(A_3 = 0)$ we have

$$k_{(n)}\ell = n\pi \implies k_n = n\frac{\pi}{\ell}$$

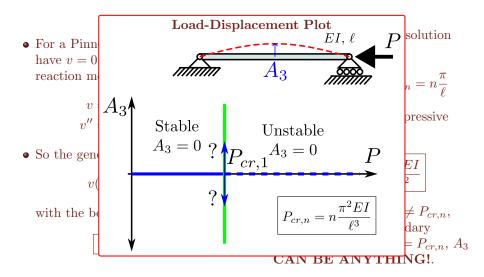
or in terms of the compressive load P,

$$P_{cr,n} = n^2 \frac{\pi^2 EI}{\ell^2}$$

• Interpretation: If $P \neq P_{cr,n}$, $A_3 = 0$ to satisfy boundary conditions. But for $P = P_{cr,n}$, A_3 CAN BE ANYTHING!.

2.3.1. The Pinned-Pinned Column

The Linear Buckling Problem



February 4, 2025

The Linear Buckling Problem

- Suppose there are initial imperfections in the beam's neutral axis such that the neutral axis can be written as $v_0(x)$.
- Noting that strains are accumulated only on the relative displacement $v(x) - v_0(x)$, we write

$$EI(v - v_0)'''' + Pv'' = 0.$$

Note that the axial load P acts on the **net rotation** of the deflected beam, so we do not need to use $(v-v_0)''$ here.

• The governing equations become

$$EIv'''' + Pv'' = EIv_0'''',$$

or, in more convenient notation,

$$v'''' + k^2 v'' = v_0''''$$

12 / 25

The Linear Buckling Problem

П

• Describing the imperfect neutral axis using an infinite series,

$$v_0 = \sum_n C_n \sin(n\frac{\pi x}{\ell}) \quad \left(\implies v_0'''' = \sum_n \left(n\frac{\pi}{\ell}\right)^4 C_n \sin(n\frac{\pi x}{\ell})\right),$$

the governing equations become

$$v'''' + k^2 v'' = \sum_{n} \left(n \frac{\pi}{\ell} \right)^4 C_n \sin(n \frac{\pi x}{\ell}).$$

4 □ ▶

The Linear Buckling Problem

• This is solved by,

$$v(x) = \sum_{n} \frac{\left(n\frac{\pi}{\ell}\right)^{2}}{\left(n\frac{\pi}{\ell}\right)^{2} - k^{2}} C_{n} \sin(n\frac{\pi x}{\ell})$$

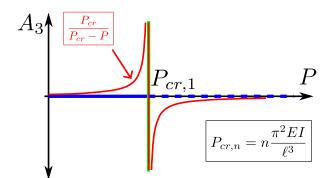
$$= \sum_{n} \frac{\frac{n^{2}\pi^{2}EI}{\ell^{2}}}{\frac{n^{2}\pi^{2}EI}{\ell^{2}} - P} C_{n} \sin(n\frac{\pi x}{\ell}) = \sum_{n} \frac{P_{cr,n}}{P_{cr,n} - P} C_{n} \sin(n\frac{\pi x}{\ell})$$

The Linear Buckling Problem

• Look carefully at the solution

$$v(x) = \sum_{n} \frac{P_{cr,n}}{P_{cr,n} - P} C_n \sin(n \frac{\pi x}{\ell}).$$

• Clearly $P \to P_{cr,n}$ are **singularities**. Even for very small C_n , the "blow-up" is huge.



← □ →

2.3.2. The Southwell Plot

The Linear Buckling Problem

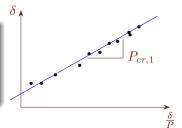
• The relative deformation amplitude at the mid-point is given as (for $P < P_{cr,1}$),

$$\delta \approx \frac{P_{cr,1}}{P_{cr,1} - P} C_1 - C_1 = \frac{C_1}{\frac{P_{cr,1}}{P} - 1}$$

$$\Longrightarrow \delta = P_{cr,1} \frac{\delta}{P} - C_1$$

The Southwell Plot

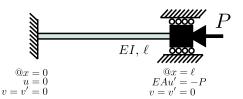
- Plotting δ vs $\frac{\delta}{P}$ allows Non-Destructive Evaluation of the critical load
- $P_{cr,1}$ is estimated without having to buckle the column



 $\frac{\delta}{P}$

2.3.3. The Clamped-Clamped Column

The Linear Buckling Problem



- The axial solution is the same as before: $u(x) = -\frac{P}{FA}x$.
- The transverse general solution also has the same form but boundary conditions are different.

$$\begin{bmatrix} v(x) \\ v'(x) \end{bmatrix} = \begin{bmatrix} 1 & x & \cos(kx) & \sin(kx) \\ 0 & 1 & -k\sin(kx) & k\cos(kx) \end{bmatrix}$$

• The boundary conditions may be expressed as

$$\underbrace{\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & k \\ 1 & \ell & \cos(k\ell) & \sin(k\ell) \\ 0 & 1 & -k\sin(k\ell) & k\cos(k\ell) \end{bmatrix}}_{M} \begin{bmatrix} A_0 \\ A_1 \\ A_2 \\ A_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

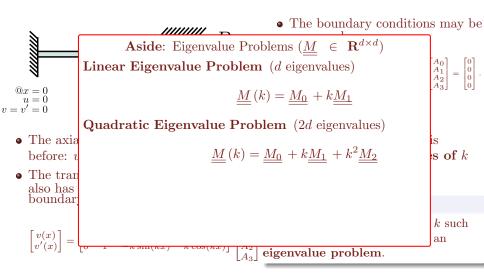
• There can be non-trivial solutions only when M is singular, i.e., for choices of ksuch that $\Delta(\underline{M}) = 0$.

The Eigenvalue Problem

 A_{0} This problem setting of finding k such eigenvalue problem.

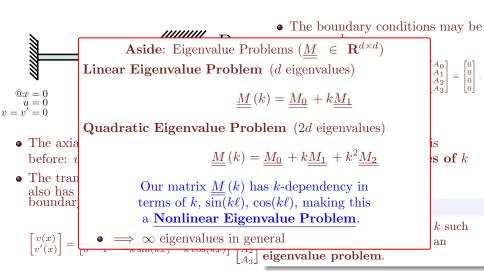
2.3.3. The Clamped-Clamped Column

The Linear Buckling Problem



2.3.3. The Clamped-Clamped Column

The Linear Buckling Problem



2.3.3. The Clamped-Clamped Column I

The Linear Buckling Problem

• We proceed to solve this as,

$$\Delta \left(\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & k \\ 1 & \ell & \cos(k\ell) & \sin(k\ell) \\ 0 & 1 & -k\sin(k\ell) & k\cos(k\ell) \end{bmatrix} \right) = -k\left(k\ell\sin(k\ell) + 2\cos(k\ell) - 2\right)$$

• We set it to zero through the following factorizations:

$$\Delta(\underline{\underline{M}}(k)) = -k \left(2k\ell \sin(\frac{k\ell}{2})\cos(\frac{k\ell}{2}) - 4\sin^2(\frac{k\ell}{2}) \right)$$
$$= -2k\sin(\frac{k\ell}{2}) \left(k\ell\cos(\frac{k\ell}{2}) - 2\sin(\frac{k\ell}{2}) \right) = 0$$
$$\Longrightarrow \boxed{\sin(\frac{k\ell}{2}) = 0}, \quad \text{(or)} \quad \boxed{\tan(\frac{k\ell}{2}) = \frac{k\ell}{2}}.$$

18 / 25

The Linear Buckling Problem

- Two "classes" of solutions emerge:
 - $\bullet \sin(\frac{k\ell}{2}) = 0 \implies \frac{k_n\ell}{2} = n\pi \implies P_n^{(1)} = 4n^2 \frac{\pi^2 EI}{\ell^2}$
- The smallest critical load is $P_n^{(1)} = 4\frac{\pi^2 EI}{\ell^2} = \frac{\pi^2 EI}{(\ell)^2}$.

Concept of "Effective Length"

- Question: If the beam were simply supported, what would be the length such that it also has the same first critical load?
- Here it comes out to be $\ell_{eff} = \frac{\ell}{2}$.
- The column clamped on both ends can take the same buckling load as a column that is pinned on both ends with half the length.

2.3.3. The Clamped-Clamped Column III

The Linear Buckling Problem

Boundary conditions	Critical load P_{cr}	Deflection mode shape	Effective length KL
Simple support- simple support	$\frac{\pi^2 EI}{L^2}$	+	L
Clamped-clamped	$4\frac{\pi^2 EI}{L^2}$	→	$\frac{1}{2}L$
Clamped-simple support	$2.04 \frac{\pi^2 EI}{L^2}$	→	0.70 <i>L</i>
Clamped-free	$\frac{1}{4} \frac{\pi^2 EI}{L^2}$	—	2 <i>L</i>

Effective lengths of beams with different boundary conditions (Figure from Brush and Almroth 1975)

Self-Study

• Derive the effective length for the clamped-simply supported and clamped-free columns.

Balaji, N. N. (AE, IITM) AS2070 February 4, 2025 20 / 25

Euler Buckling of Columns T

2.3.3. The Clamped-Clamped Column: The Mode-shape

The Linear Buckling Problem

• Let us substitute $k_1 = \frac{2\pi}{\ell}$ into the matrix $\underline{\underline{M}}(k_1)$ so that the boundary conditions now read as

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & \frac{2\pi}{\ell} \\ 1 & \ell & 1 & 0 \\ 0 & 1 & 0 & \frac{2\pi}{\ell} \end{bmatrix} \begin{bmatrix} A_0 \\ A_1 \\ A_2 \\ A_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

• This implies the following:

$$A_1 = 0, \quad A_3 = 0, \quad A_2 = -A_0.$$

• So, if $k = k_1$, the solution has to be the following to satisfy the boundary conditions:

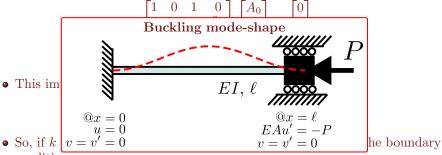
$$v = A_0 \left(1 - \cos(\frac{2\pi x}{\ell}) \right) \equiv A_0 \sin^2(\frac{\pi x}{\ell})$$

21 / 25

2.3.3. The Clamped-Clamped Column: The Mode-shape

The Linear Buckling Problem

• Let us substitute $k_1 = \frac{2\pi}{\ell}$ into the matrix $\underline{M}(k_1)$ so that the boundary conditions now read as



conditions:

$$v = A_0 \left(1 - \cos(\frac{2\pi x}{\ell}) \right) \equiv A_0 \sin^2(\frac{\pi x}{\ell})$$

3. Energy Perspectives

Energy Perspectives

4. Plate Buckling

References I

- [1] D. O. Brush and B. O. Almroth. Buckling of Bars, Plates, and Shells, McGraw-Hill, 1975. ISBN: 978-0-07-008593-0 (cit. on pp. 2, 32).
- T. H. G. Megson. Aircraft Structures for Engineering Students, Elsevier, 2013. ISBN: 978-0-08-096905-3 (cit. on p. 2).

6. Class Discussions (Outside of Slides)

- Ball on a hill. 2D, 3D cases.
- Assumptions behind compression of a bar.