Hybrid Rocket Thruster for Vertical Take-off and Landing in Earth's Atmosphere

Anandu Bhadran

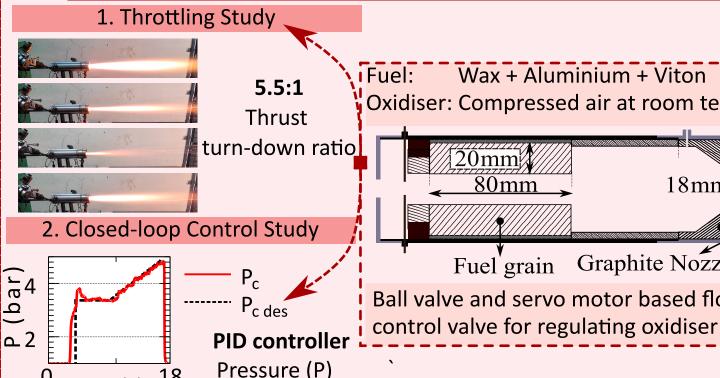
Guide: Prof. P. A Ramakrishna and Dr. Joel George M

Objective

Develop a controllable hybrid rocket motor and demonstrate its suitability for vertical take-off and landing system

Motivation

Time(s)


- Reduced runway demand
- Good and easy accesibility

feedback

- Less complex VTOL from an aircraft carrier
- Drawback of current VTOL aircraft
- Compromise on payload and fuel
- Underutilised main engine

Studies and Highlights

- Wax + Aluminium + Viton Fuel: Oxidiser: Compressed air at room temp. 20mm 80mm 18mm Fuel grain Graphite Nozzle Ball valve and servo motor based flow
- 3. Hardware-in-the Loop Simulation for Vertical Landing **System**: Platform with 3 thruster

HILS Framework

Hardware: one hybrid rocket motor

Model: Vertical transilation of system

Observation

Touch-down velocity of <1 m/s

4. Attitude Stabiliation Study

Good performance with cold flow

Minor tuning required for hot flow