ASSIGNMENT 2 (SOLUTION)

Answer 1

The energy-transfer mechanism during radical or
atom recombination is described by the following chemical
steps:
$$2R \frac{k_1}{k_2}R_2^*$$

 $R_2^* + X \frac{k_3}{k_2}R_2 + X$

According to the law of mass action, the rate of
change of the concentration of
$$R_2^*$$
 can be written as

$$\frac{dC_{R_2^*}}{dt} = k_1 C_R^2 - k_2 C_{R_2^*} - k_3 C_{R_2^*} C_X$$
Under steady -state condition, $\frac{dC_{R_2^*}}{dt} = 0$.
Therefore, $C_{R_2^*} = \frac{k_1 C_R^2}{k_2 + k_3 C_X}$
The rate of production of R is

$$\frac{dC_R}{dt} = -2k_1 C_R^2 + 2k_2 C_{R_2^*} = -2k_1 C_R^2 + \frac{2k_1k_2 C_R^2}{k_2 + k_3 C_X}$$
The rate of consumption of R is equal to

$$\frac{2k_1 k_3 C_X C_R^2}{k_2 + k_3 C_X}$$
When the concentration of X is sufficiently large
such that $k_3 C_X >> k_2$,

$$\frac{dC_{R_2}}{dt} = k_3 C_{R_2^*} C_X = \frac{k_1 k_3 C_R^2 C_X}{k_2 + k_3 C_X} \approx k_1 C_R^2$$
,
thus, the order of recombination reaction is 2nd order.
When the pressure is very low, $k_3 C_X << k_2$, then

$$\frac{dC_{R_2}}{dt} = \frac{k_1 k_3 C_R^* C_X}{k_1 + k_3 C_X} \approx \frac{k_1 k_3}{k_2} C_X C_R^2$$
; therefore the
reaction is 3rd order.

Answer 2

Using the steady - state hypothesis we get,

$$\frac{dC_{OH}}{dt} = 2k_{1}C_{H_{2}}C_{0_{2}} - k_{2}C_{0H}C_{H_{2}} + k_{3}C_{H}C_{0_{2}} + k_{4}C_{0}C_{H_{2}} - k_{5}C_{H}C_{0H}C_{M} = 0$$
(1)

$$\frac{dC_{H}}{dt} = k_{2}C_{0H}C_{H_{2}} - k_{3}C_{H}C_{0_{2}} + k_{4}C_{0}C_{H_{2}} - k_{5}C_{H}C_{0H}C_{M}$$

$$= 0$$
(2)

$$\frac{dC_{0}}{dt} = k_{3}C_{H}C_{0_{2}} - k_{4}C_{0}C_{H_{2}} = 0$$
(3)
From Eq. (3), $k_{3}C_{H}C_{0_{2}} = k_{4}C_{0}C_{H_{2}}$
(4)
Substituting Eq.(4) in (2) we get,
 $k_{2}C_{0H}C_{H_{2}} = k_{5}C_{H}C_{0H}C_{M}$
(5)
Substituting Eq.(4) and (5) into (1), we get,
 $k_{1}C_{H_{2}}C_{0_{2}} - k_{1}C_{0H}C_{H_{2}} + k_{3}C_{H}C_{0_{2}} = 0$
(6)
Substituting Eq.(5) into (6) We get,
 $k_{1}C_{H_{2}}C_{0_{2}} - k_{2}C_{0H}C_{H_{2}} + k_{3}k_{3}C_{H_{2}}C_{0_{2}}/k_{5}C_{M} = 0$
Therefore $C_{0H} = [k_{1}+k_{1}k_{3}/k_{5}C_{M}]C_{0_{2}}/k_{5}$
(7)

Therefore
$$C_{0H} = [k_1 + k_1 k_3 / k_5 C_M] C_{02} / k_2$$
 (7)
 $A | s_0, \frac{d C_{H_2 0}}{dt} = k_2 C_{0H} C_{H_2} + k_5 C_H C_{0H} C_M$
 $= 2 k_1 C_{0H} C_{H_2}$ (From Eq. (5))
 $\frac{d C_{H_2 0}}{dt} = 2 k_2 C_{02} C_{H_2} \left(\frac{K_1}{K_2} + \frac{K_3}{K_5 C_M}\right)$