Assignment - 1 Combustion Explosion and Detonation (AS 5640) Department of aerospace Engineering, IIT Madras Due date: 04/02/2019 assignment is to be submitted latest by 4:30 pm on the due date

1. Consider the combustion of a) hydrogen and air (consider only oxygen and nitrogen) and b) hydrogen and oxygen (no nitrogen), with initial reactants at temperature of 298K and total pressure of 1 atmosphere. Assuming constant pressure combustion and that there is no dissociation of products. Compute the adiabatic flame temperatures for the following reaction/s

$$\begin{split} \phi H_2 + \frac{1}{2} \bigg(O_2 + \frac{79}{21} N_2 \bigg) &\to \varphi H_2 O + \bigg(\frac{1}{2} - \frac{\varphi}{2} \bigg) O_2 + \frac{79}{42} N_2 \quad \text{for } \varphi \le 1 \\ \phi H_2 + \frac{1}{2} \bigg(O_2 + \frac{79}{21} N_2 \bigg) &\to H_2 O + \big(\varphi - 1 \big) H_2 + \frac{79}{42} N_2 \quad \text{for } \varphi > 1 \,, \end{split}$$

where φ is the equivalence ratio (0.1, 0.3, 0.5, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.5, 2.0, 2.5)

Take heat of formation, $\Delta H_{f_{H_2O}^0} = -241845 kJ / kmol$ and constant specific heat,

 $C_{P(H_2O)} = 40kJ / kmolK, C_{P(H_2)} = 30kJ / kmolK, C_{P(O_2)} = 35kJ / kmolK and C_{P(N_2)} = 33kJ / kmolK$ (all are at 1000K).

If we relax the assumption of constant specific heat capacity calculate again the adiabatic temperature using CEA software. Compare the flame temperature for the two cases (air and pure oxygen) for both constant C_p and variable C_p .

Allow for dissociation of products and obtain flame temperature for the two cases (air and pure oxygen).

2. Consider combustion of a fuel (see the table below for your fuel) is air at initial temperature of 298.16K and at constant pressure of 1atm. Use Gordon-McBride chemical equilibrium program (CEA software) to carry out thermochemical calculations for equilibrium compositions and flame temperature for equivalence ratios of 0.5 to 2.5 (take increments of 0.1 in equivalence ratio). Plot adiabatic flame temperature (T_f) and mole fractions of CO, NO and NO_2 with equivalence ratio.

Discuss the following:

- a) What is the maximum adiabatic temperature and at what equivalence ratio. Explain your observations.
- b) What equivalence ratio would you suggest to minimize NO and NO₂. Similarly what will be your strategy to reduce CO pollutants? Can you comment on challenge one is faced to reduce both NOx and CO simultaneously.

Sl. No	RollNo	First Name	
1	AE09B028	Vasireddy Saiashwin	CH4 (Methane)
2	AE14B041	Harshal Mankar	C2H2 (Acetylene)
3	AE14B044	Pratik Sutar	C2H4 (Ethene)
4	AE15B008	APOORVA BANERJEE	C2H6 (Ethane)
5	AE15B031	RAJEEV KRISHNA S	1-Propanol(C3H8O)
6	AE15B055	RAPARTHI SAITEJA	Ethanol(C2H6O)
7	AE16B103	AKKHIL VANNAN M	Carbon Monoxide (CO)
8	AE16B109	RAKESH RAUSHAN	СЗН6
9	AE17D001	PINTO ROCKY SIMON	СЗН8
10	AE18D005	VIPIN KUMAR	C4H8
11	AE18D012	SUMIT SARMA	C4H10
12	AE18D014	ANUSAI R	C5H10
13	AE18D409	CHAUN BRIJ JAYDEEPBHAI	C5H12
14	AE18D410	GOMATHINAYAGAM N	С6Н6
15	AE18M007	VALLURI RAVI PRASAD	C6H12
16	AE18M010	ADITYA WALIYA	C6H14
17	AE18M011	ANKIT SAHAY	C7H14
18	AE18M012	ARMAL NIKHIL DATTU	C7H16
19	AE18M016	GAUTHAM KRISHNAN	C8H16
20	AE18M027	SAURABH ROY	C8H18
21	AE18M028	SIBANANDA PANIGRAHY	C9H18
22	AE18M038	SHUBHAM KUMAR	C9H20
23	AE18S021	ROHITH S K	C10H20
24	AE18S025	KINGSHUK CHAKRABORTY	C10H22
25	AE18S026	VISHAL SRIVASTAV	C11H22
26	AE18S046	GAGANA S	C11H24
27	ME16B067	RAGHAV KAKANI	Methanol(CH4O)